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A SURVEY ON THE CLASSIFICATION PROBLEM OF FACTORS
OF
VON NEUMANN ALGEBRAS

The present survey article is a thoroughly revised version of the eér]ier
one published in NOTAS DE MATEMATICA, N2 116, 1991. Unlike the earlier
version, here we give sufficient motivations of the various concepts and
developments in the classification theory and devote a section to describe
the matrix representation of operators, which plays a key role in the whole
work. The fantastic achievements of many mathematicians in the classifi-
cation theory are described here in an easily accessible form, as far as

possible, to a general functional analyst.




A SURVEY ON THE CLASSIFICATION PROBLEM OF FACTORS
OF
VON NEUMANN ALGEBRAS
BY
T.V. PANCHAPAGESAN™

In the famous work 'On Rings of Operators' [19] published by Murray and von
Neumann in 1936 is given the type classification theory of factors along ' with a ge
neral measure. theoritic construction of those of type I and II, leaving aside the
problem of determining the existence of type III-factors. Later, in [25] von
Neumann modified the construction given in [19] and gave the construction of type
III-factors with some examples in the same. Introducing an isomorphism invariant,
known as the property ., Murray and von Neumann succeeded in constructing a pair of

non-isomorphic type II.-factors in [21],but couldn't obtain such results for type

1
III-factors. Only in 1956, Pukansky [28] could produce two non-isomorphic type ITI-
factors, one satisfying ;he property (L) introduced by him and the other failing
this property. Since the publication of the work of Pukansky [28], many mathemati-
cians got interested in the construction of new non-isomorphic type 111 or type III
-factors on a separable Hilbert space H, which finally culminated in the remarkable
discoveries of Powers [27] and Dusa McDuff [18], who showed respectively the exis-

tence of a continuum of non-isomorphic type III- and type IIl—factors on H. Since

the family of all von Neumann algebras on H has the cardinality of continuum,their

results are optimum in this direction.

The results of Powers motivated the work of Araki and Woods [2] on infinite

tensor product of type I-factors, which in turn played a crucial role inmotivating
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the study of Connes [6]. Making use of the Tomita-Takesaki's theory of modular Hil
bert algebras and the unitary co-cycle Radon-Nikodym theorem obtained earlier in
[7], Connes classified all type III-factors in terms of type III, -factors for A€
[0,1] and derived the structure theorem of type IIIA-factors for) elo,l) in his
famous memoir [6], which fetched him the Fields medal for that decade. (In this
connection, we should not fail to mention that Takesaki [36] too independently ob-
tained the structure theorem for the more general type III von Neumann algebras in

the same time, using some of the earlier results of Connes).

The aim of  the present survey article is to narrate some of themost important
discoveries in the classification theory since the publication of [19].Though many
of theresults cited above are treated in the monographs and textson von Neumann
algebras, because of their very advanced nature they are practically inaccessible
to a general functional analyst. Therefore, in the present survey we try to give a
description of the fantastic achievements of these mathematicians in an easily ac-
cesible form, as far as possible, by restricting our study just to that of factors

on separable Hilbert spaces only.

By a Hilbert space we mean a complex infinite dimensional one. A separable
Hilbert spéce is thus infinite dimensional and separable. An operator on a Hilbert
space H is bounded and linear. An inner product preserving linear transformation
from one Hilbert space onto another is called an isomorphism of these  Hilbert

spaces.

1.-Definition of a factor. Throughout this article H - denotes a separable
Hilbert space, unless otherwise mentioned. L(H) denotes the Banach algebra of all
operators on H with respect to the operator norm and is a C*-algebra. The inner

product of H is denoted by <.,.>.

For T € L(H) and x,y € H, let Py y(T)= |<Tx,y> . Then the locally convex

topology T, defined by the semi-norms {px g%y € H} is called the weak operaton
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topology and is weaker than the norm topology of L(H). It is well known that these

two topologies coincide if and only if H is finite dimensional.

A Tw—closed *-subalgebra R of L(H) is called a von Neumann algebra if R

contains the identity operator.

Historically speaking, von Neumann introduced this class of operators in [23]
and called it a ring of operators. But, later it was justly suggested by Dieudonne

to call these classes as von Neumann algebras (vide Introduction of [9]).

For the general theory of von Neumann algebras, the classical reference is [9].
However, an easily readable account is found in [26], which gives an introductory

treatment of these algebras. The reader may also refer to Chapter VII of [22].

Given a *-subalgebra R of L(H), the set {T ¢ L(H):TR=RT, R g R}is calle& the
commutant of R and is denoted by R'. The commutant (R')' of R' is called the doubfe
commutant of R and is denoted by R". For a *-subalgebra R of L(H), it is easy
to observe that R' is a Tw—closed *-gubalgebra of L(H), containing the identity

operator and hence is a von Neumann algebra.

Thanks to the double commutant theorem of von Neumann [23], we can give the
definition of a von Neumann algebra just algebraically, without using any topolo-
gical ingredient. In fact, this is the approach adopted by Dixmier in [9]. Now,let

us state the double commutant theorem.

THEOREM 1.1. A *-subalgebra R of L(H) is a von Neumann algebra if and only if
R= R",

Motivated by certain problems in quantum mechanics and the theory of infinite
dimensional representations of groups, Murray and von Neumann made an extensive
study of operator algebras in [19]. In this context, they defined the notion of a
factor of a von Neumann algebra and their study led to the classification of

factors as type In’ n € N, type I , type IIl’ type I1 and type III. In the first

¢




paper [19] of 1936, they could give a general method to construct type I and II-
factors and thus obtained some examples of these factors. But, as they point out
explicity in [19], they were not aware of the existence of any type III-factors at

that time. All these details we shall elaborate in the sequel.

To give the definition of a factor we proceed as follows.Suppose C is a non-
void subset of L(H). Let R((C) be the smallest von Neumann algebra in L(H), which
contains C. Since L(H) itself is a von Neumann algebra and the interseétion of a
non-void family of von Neumann algebras is a von Neumann algebra, obviousl§ R(C)is
well defined. R((C) is called the von Neumann algebra generated by C. Let I be the
class of all von Neumann algebras on H. If we partially order I by the 1inclusion,
then L(H) and CI are respectively the greatest and the smallest elements in X,where

I is the identity operator on H. Given RI’ RZ in Z, the supremum RI\/ RZ and the

inf imum RI A RZ , of RI and RZ with respect to this partial ordering exist in
L and are given by

Rp ™ Ry = R(Ry,Ry
and

RIA RZ = R,."aRZ.
Clearly, we have

' ] 1
(RI Ryl '= R, A RZ (D

Now, by the double commutant theorem we also have

(R, A RZJ’= RI' RZ . (2)

We say that R_ and RZ form a factorisation if RI and Ry commute elementwise aznd

1

R RZ = L(H). The notion of factors arises then as a particular case of factori-

1

sation and is given by the following

DEFINITION 1.1. For Re X, suppose R - R'= L(H) so that R and R’ form a factorisa

tion. Then R 1is called a gactoxr.




If R is a factor, then by the double commutant theorem R'is also a factor.
Besides, as (L(H))'= €¢I, by (1) and Theorem 1.1 a von Neumann algebra Ron H is a

factor if and only if its centre is CI.

Before ending this section, we remark that all the definitions and results
given above for *-algebras of operators on H also hold when H is of arbitrary di

mension.

2.-Relative dimension function of a factor. Given a factor M on H, we construct a
relative dimension function DH of M and use the range of DM to classify M as of
type I, II or III. We prefer to use the relative dimension functions of a factor to
describe the classification in stead of the normal trace, since this épproach is

more direct and elementary. The definitions and results mentioned in this section

are found in [19,22].

Throughout this section M denotes a factor on H and P(M) is the set of all
projections belonging to M. Besides, H can be a unitary space or a separable Hil-

bert space.

For two projections E and F on H, it is natural to consider E to be smaller

tha F in size if dim EH £ dim FH, where dim denotes the dimension of the subspace.

Clearly, this is equivalent to say that there exists a linear isometry U from EH
onto a closed subspace of FH. On extending U linearly to the whole of H bydefining
U(H. EH)= o, we observe that dim EH £ dim FH if and only if there exists a partial
isometry U € L(H) with its initial domain EH and final domain a closed subspace of

FH. This observation motivaties the following.

DEFINITION 2.1. For E,F € P(M), we write E = F if there exists a partial isometry

U € M with its initial domain EH and final domain F,H, where F

1 € P(M) and F. £ F.

1 1

If Fl= F, then we write E ~ F, If E . F and E & F, then we write E y F or simply,

E . F.




In other words, for projections E and F in P(M), we say E L F if and only if
there exists a partial isometry U € M such that U*U= E and UU*= F1 S F. Besides,

' ' is an equivalence relation on P(M).

Note that dim EH= dim FH, if E.. F. But, the converse is not true in general,
since dim EH= dim FH doesn't guarantee the existence of a partial ismoetry Ueg M

for which U*U= E and UU*= F hold.
Now we can state the following result on - .

THEOREM 2.1. For E,F ¢ P(M), E~. F and F = E imply E -~ F. Besides, given E,F ¢

P(M) one and only one of the relations E 2 F, E -~ F or F - E holds.

Motivated by the concepts of finite and infinite sets in set theory, we say
that E € P(M) is §inife (relative to M), if E ~ F for any subprojection F of E
belonging to M; i.e. if E - F S E and Fe P(M), then F= E. We say that E is Angd-
nite (relative to M), if it is not finite. In this case, there exists a F € P(M)

such that E - F < E.

The following lemma of [19] is a key result on which are based the definitions

of a fundamental sequence and a relative dimension function of M.

LEMMA 2.1. Let E,F € P(M), E # o and F finite. Then there exists a finite sequence

fGifﬁ of mutually orthogonal projections in M such that

(i) E G1 ‘ G2 .o Gp,
P
(ii) ZG, £ F and
1 1
P
(iii)F - X G, ~ E.
) i
i=1

Besides, this number p is wuniquely determined by E and F, and is denoted by

Note that ['1;:] € N U {o} and [§]= o if F - E.

A projection E € M is said to be minimal if for any projection F ¢ M with

FSE we have F= 0 or F= E. Since these projections play an exceptional role, this




fact is taken care of in the following

DEFINITION 2.2. Let - ={E1,E2,...} be an infinite sequence in P(M) with each Ei #

E, -
o and finite. If [Ei ] 2 2 for all i, then we say that is a fundamental sequen
i+l
ce in M. If E is a minimal projection in M, then also = = {E} is called a fundamen

tal sequence in M.

We note that the minimal projections are finite ones in M. In [19] Murray and
von Neumann establish that there exists al least one fundamental sequence in M, if
there exists a non-zero finite projection in M. Given a fundamental sequence in
M, for two fin&te non-zero projections E and F in M is defined a positive real

number (%) by the following

THEOREM 2.2. If = {Ei}T is a fundamental sequence in M and E,F ¢ P(M),E,F non-
zero and finite, then F
E
lim [ i] - (E)
tEy E
E,
i
exists as a positive real number, where by lim we mean the value at i = 1 when
consits of a minimal projection.
In [19] is develop. i :: functional calculus for ( ) , which suggests the fo-

llowing concept.
DEFINITION 2.3. A function D:P(M)»> [o,»] is called a relative dimension funciticn cf
M if
(i) D(o)= o;
(ii) E “F =>D(E)= D(F) and
(iii)EF= o =>D(E + F)= D(E) + D(F)
for projections E,F in M.
If M has a non-zero finite projection E, we can construct a fundamental

sequence in M by Lemma 8.13 of [19] and define a relative dimension function

D wusing C% for FeP(M). More precisely, we have the following
4




THEOREM 2.3. Let M be a factor on H. Then:

(1)

(i1)

(iii)E .. F<=> DM(E)

(iv)

(v)

If no non-zero finite projection belongs to M, let
o if F= o
M()

© if Fe¢ P(M),F # o.

If M has a non-zero finite projection E, let
o if F= o

D, (F)=< (%) if FEP(M), F # o, F finite

© if F ¢P(M) and F is infinite
where is a fundamental sequence in M. In this case, DM is independent of the

fundamental sequence . used in the definition.
In both the cases, DM thus defined is a relative dimension function of M.

If D' is another relative dimension function of M, then D's= cDH for some

constant ¢ g (o,»).

N DH(F), where E -~ F if F ~ E.
D

The range A of satisfies the following properties:

M
(a) & [o,=].

(b) oe Ay sup A = tO > o and to e A.

(e) For tl,tz e A, t2 > £, =>t, - t1 £ A.
(@) 1f {t.} A with ozot, St =sup A, then Zt, € A.
i'l 1 1 o ) 1

The only sets A which satisfy (a)-(d) of (iv) are the following ones:
(In): A= {kd&:k= o,1,...,n }forng W,0< § < o

(I ): A={k$:k=0,1,2,..., ©0}0< § <

(Ill):A= {t:o<gtg to} 0 <t <o

(IT ):A={t:0 <t € =}

(I11):A= {0, =} .

If we normalise DM by a suitable positive multiple (vide (ii)) we can take ¢=

i in(In), and (I ) and t,= 1 in (IIl). ’




(LN

Then we have A={o0,l,...,n} for (In); A={0,1,2,...,0} for (I ) and A={t:0o
t s 1 }or (II)).

By an Lsomoaphism & from A onto B, where A and B are *-algebras, we mean a *-
isomorphism. If a *-algebra A satisfies a property (P) and if this property(P)holds
for anisomorphic .= image of A, then we say that (P) is an {somorphism invariant.Ilt
turns out that the range A of DH is an isomorphism invariant and hence is used for
the classification of factors. Thus we have the following.

DEFINITION 2.4. A factor M on H is said to be of type I_, n & N, type I ,type I,
Zype 11, or #fype III according as the range A of the corresponding normalided
relative dimension function DH of M is given by A ={o0,1,...,n}, A={0,1,2,...,0 } ,
A={tiost<l}, A={t:o <t< o } or A={o0,»}, respectively. When M is of type In or I,
we say that M is of fype I or discrete; when M is of type I1, or II,, we say that

M is of ftype II or continuous and finally, when M is of type III we also say that

M is purely Anginite. When M is not of type III, we say M is semi-finite.

Now we can state the following

THEOREM 2.4. For a factor M on H only one of the types In’ I ,IIl,IIoo or III can
occur. Besides, any two isomorphic factors on separable Hilbert spaces have the
same type. If M is a factor, then M is of type I(respy.,of type II,of type III) if
and only if M' is so.

NOTE 2.1. The classification theory of Murray and von Neumann [l19]has been extended
later to arbitrary von Neumann algebras Ron Hilbert spaces of arbitrary diemnsion
and accordingly, there exist unique mutually orthogonal central projections Pl’PZ
and P, of R such that R P, is of type I if P, ¥ o; RP2 is of type II if P, # o and

3

RP3 is of type III if P3 # o. Besides, P1+ P2 + P3= I. When P3= o, we say that R is

semi~finite; when P2 is finite and non-zero, we say that RPZ is of type IIl and

when P,

) ig infinite, we say that RP2 is of type II,. For details, the reader may

refer, to [9], [26], etc.
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3.-Matrix representation of an operator. The results of this section play a

o0
crucial role in the sequel. Suppose H= I + Hi’ where all the spaces Hi are
1 .
isomorphic to the fixed Hilbert space Hl’ Here we represent each T £ L(H) as a

matrix (Tij) of operators in L(Hl).

Let Ui:H ‘*Hi be an isomorphism. Considering Hi as a closed subspace of H,it

1

is easy to observe that the adjoint U? is a linear mapping from H onto Hl such that

Consequently, U’{Ui is the

U*(H - H.)= o and U* maps H, isometrically onto H,.
i i i i 1

identity operator on H, and U1U§ is the projection Pi of H onto Hi. For T & L(H),

1

let T,.= U%TU,. Then T,,:H.> H_, linear and HT,.H=|@# TU.H EHTH. Thus (T,.) . .is
ij i 7] ij 1 1] 1 J ij

1 ij

matrix of operators in L(HlkuchthatH Tij|l§||T||for all i,j.
Conversely, suppose (Tij) is a matrix of operators Tij £ L(Hl) such that Tij=

® 2
U? TU, for some linear mapping T:H>H. Then, for x € H, we have fll L Ii_U*XH =
i=1 j=1

8

HuipiTﬂ\2=Z||PiTx\F= |hx\F, since Ui is an isometry

j
1S vare x|P= 5 |lusmx|P-
i ] . 1 1

1 j=1 i=1 i

N o~

Thus T € L(H) if and only if there exists a constant C > o, such that

(o] o 2
T, U% < C 1
El“jil j_J JXHZ s ’P{Hz ( )

1
for x £ H. When (T..) with T..= U%TU., satisfies (1), we say that (T,.) is bounded.
1] ij 1 3 ij

Thus, the matrix (T,,) of operators T., € L(H,) with T, ,= U% TU, for a linear
ij ij 1 ij i 3
mapping T:H~+H is bounded if and only if T € L(H). In this case, we describe T as

the matrix(Tij) and observe that

o © 0 ® ®
Tx= .2, TP.x= L L P TP x= L L U U U,U¥x
j=1l""] j=li=1"1i"j j=li=1"41 i~ j ]

[o <IN o]

L LU T, U*x
j=li=1 "1 ij j

for x ¢ H. This shows that the correspondence T’b(Tij)is abijective correspondence

from L(H) onto all bounded matrices (T,.) of operators T,, e L(H ),with T ,=UXTU,.
ij i ij 1 i3 L ]

¢
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4.-Factors of type In’ n e N and I,. For a unitary space H of dimension n, L(H)
is a type 1 -factor. If H is separable, then L(H) is a type I -factor.
n o0

If M is a type In—factor on H, n € W U {»}, then there exists an orthogonal
n

. [ n .
family {Ei}l of minimal equivalent projections in M such that ZEi= I. Let Hj=LiH.
: 1
For T ¢ M', let T ~(T,,), with T_,= U’ ,TU ., where the U, , are partial isometries
ij ij 11 717 11
in M with the initial domain H1 and final domain Hi. Since T ¢ M', TE1_= EiT and

hence T is reduced by EiH' Let To= T|E1H. Then it is easy to observe that Tij =

CijTo for i,j= 1,2,...,n. Thus T %(5ijTo)(vide Section 3). Since M= M", ‘the factor

M on the space H must consist of all matrices A %(Aij) (bounded in the sense  of

Section 3, if n=< of operators Aij= U*iAU

1 € L(Hl)’ which commute with altl

1]

matrices of the form(éijTo), being T0= TiHl and T € M'. An operational calcules of

these matrices readily shows that T A,.,= A,.T for all i,j and hence A, .¢ (M'E,)'.
o ij ijo ij 1

But, (M'El)' can be shown to coincide with ElMEl and hence M consists of all the
matrices of the form (A_j), with Aije ElMEl (and bounded, if n=«). On the other
i

hand, by the spectral theorem the von Neumann algebra ElMEl on Hl is the norm

closure of the linear span of all the projections in E MEl. Since El is a minimal

1

projection, this shows that ElMEl= CEl. Consequently, M={(Kij):Kij € C and bounded
n

if n=o} Thus there exists an isomorphism U:H>Z + Hl such thatIJALIl= (Aij) =
1

(\;j) for A € M. In particular, M is isomorphic to L(K), where K={(Ki)2: Xi oo

T2

Nj <k

i
Thus we have proved the following

THEOREM 4.1. Suppose M is a type In factor on a unitary space H or on a separable

Hilbert space H withn € IN Uf{~}. Then there exists a closed subspace H, of H and

1
n
an isomorphism V from H onto 2 + Hl such that VAV L (A'j)= (Aij) for Ae M. In
1 i
particular, M is isomorphic to L(K), with dimK= n.
From the above theorem we observe that a factor of type In is isomorphic to

L(K) with dimK= n, n € N U {®}.Thus all factorsvof type In(respy., of type I on




a separable Hilbert space) are isomorphic to each other.

5.-Structure theorem for type IIu;factors. Every type II -factor can be obtained
as the tensor product of a type ILffactor and L(HZ) for a suitable separable Hil-

bert space H,. In fact, suppose M is a type IImrfactor on H. Then, by definition,

2

there exists E € P(M), E # o, and finite such that EME is a type IIl—factor on

EH. Consequently, by a classical result on type IIa;factors there exists an ortho-

0]

gonal sequence of projections {Ei}T in M such that I= ZEn and E E E, ... Then
1
(o]
H is isomorphic to . + EH. Consequently, as discussed in Section 4, it can be shown
1

that M= {(Aij):Aij ¢ EME, and the matrix is bounded in the sense of Section 4
This matrix representation is written in the form M= (EME) x L(HZ) where HZ =

2
. |“< =}. (Vide§ 2 of Chapter I of [9]). Thus we obtain the follo

ﬁ(>\l)l>\1 € C’ fl)\l

wing structure theorem of type IIfactors.

THEOREM 5.1. Every type II“;factor M on a separable Hilbert space H is of the form

M. x L(HZ) for a suitable type II,-factor M., where H, is a separable Hilbert space.

1 1 1 2

Thus the study of type II, ~factors is reduced to that of type IIl—factors.
6.-Measure theoretic construction of type I and type II-factors. In [25] von  Neu
mann modified the construction given earlier in [19] and constructed factors of
type I, II and III on a separable Hilbert space. Till the appearance of [25] the
existence of a type III-factor was unknown. In this section we follow [25] and

restrict our attention to the construction of type I and type II-factors only, while

in the next section we shall take up the study of type III-factors.

Let (X,S,u) be a O-finite measure space with p(X)> o and let C be an utmost

countable subfamily of S such that S is the o-algebra generated by C, UC= X, and
cel

w(C)< =~ for C € C. Further, we assume that for x,y € X such that x € E <> y ¢E for

all E ¢ C, then x= y. In the sequel, all the measure spaces considered are supposed

to catisfy the above assumptions.

DEFINITION 6.1. Let G be any at most countable group, We say that G is an (X,S,u )
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-group if the following conditions hold:
(i) For each g € G there exists a bijective map Tg:X-*X given by Tgx= xg such that

1

T for gl,gze G.(This implies Tex= x and (Tg)_ X= Tg_lx for x € X,

T =T
g8, 8] 8,8
where e is the identity of G).
(ii) For A X and for g € G, let Ag= {xg:x € A} = Tg(A). Then Ae S impiies Age S.
(iii)The measures Mg on S defined by ug(A)= u(Ag) for A ¢ S and g ¢ G are absolu-

tely continuous with respect to u(i.e. ug «py for all g ¢ G).
The following definition is essential for the construction of factors.

DEFINITION 6.2. Let G be an (X,S,u)-group. We say that

(i) G is free if gfe and A= {x ¢ X:xg= x }, then p*(A)= o, where p* is the outer
measure induced by U on P(X);

(ii) G is ergodic if A€ S such that u(Ag AA)= o for all g € G implies that either
H(A)= o or U(X A)= o;

(iii)G is measunrable if there exists a o-finite measure v on S such that vz u(i.e.
V €y and Y €v ) and v(A)= v(Ag) for all A ¢ S and g € G (i.e. v is C-
invariant); and

(iv) G is non-measurable if G is not measurable.

In the sequel we assume that G is an utmost countable (X,S,u)-group, which is

free and ergodic.
Let

H8= {F(x,g):X1<G->C such that F(.,g) is S-measurable for each g€ G and L IF (x,
2 geG X
g)!“d (x)< =}, with the inner product given by

> = 3 X Fl(x,g)Fz(x,g)du(x).

<F.,F
* geG

2

Clearly, HS= L+ Lz(u). The hypotheses on (X,S,u) imply that LZ(U) is non-
gEG

- . G | .
trivial and separable. As G is at most countable, H  is either a unitary space or

u

a separable Hilbert space.
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With the aim of constructing a factor we define certain linear transformations

G
on H  as below.

u
DEFINITION 6.3. Let F(.,.) ¢ Hi, 8, € G and ¥ a bounded S-measurable complex func
dH -
tion on X. Let a_E__be the Radon-Nikodym derivative of Ug with respect to u for g
L
£ G. Then we define
: _ dU (X) L

(a) (U F)(x,8)= (%0, )* Fixg ,gg );

g, a0 ) 0’%%0o

— _ _1 .
(b) (VgOF)(x,g)— F(x,g_"8);

_ du__, () o 1 -1
(e (WF)(x,g)='(—di— Y F(xg , 8 )

(d) (in)(x,g)= () F(x,g) 3
and

y -1
(e) (M F)(x,g)= W(xg )F(x,g).
The folowing theorem is established in [25].

THEOREM 6.1.

(i) ﬁg’ Vg, ﬁ, fw and ﬁw as in Definition 6.3 are bounded operators on H

and Ug’vg and W are even unitary.

(ii) Let 2 ={ ﬁg’ fw:g € G,V as in Definition 6.3 but arbitrary} and § ={ Gg’ﬁt :

gt G, Y as in Definition 6.3 but arbitrary}. Then R(1)= (ﬁ)‘ and R(é) = O
where Q'= {T ¢ L(Hg): TA= AT for A £€Q}, etc.
(i11)R(Q) and R(Q) are spatially Lisomorphic and the spatial isomorphism is implemen

ted by W in the sense that the isomorphicm @:R(Q)+-R(§) is given by ¢(A)=

ﬁt\ﬁ_l, A € R()). Each is the commutant of the other.

(iv) Since G is free and ergodic, R({{) and R(ﬁ) are factors.
NOTATION 6.1. In the sequel we shall denote R({!) and R() by M(X,G,u) and M'(X, G.

), rspectively.
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In order to define relative dimension functions DM and DM' of M(X,G,u) and

M'(X,G,u), we make use of the results of Section 3.

2
Since Hﬁ= . EG + L"(4), by Section 3 every T € L(Hﬁ) has a matrix representa=-

tion of the form (Tg h)g he G where each T h is a bounded linear operator on
’ ’ &
2 _
L°(u) and |hg h|lélﬁ||for g,h ¢ G. However, when T belongs to M(X,G,u) or M'(X, G,
U) we can describe T more specifically. To this end, we define the following

mappings on Lz(u).

2
DEFINITION 6.4. For f ¢L™ () let

du_(x)
(8) (U £) ()= (EE& )2 f(xg) for g £ G

and

(B) (wa)(x)= Y(x)f(x) for any bounded S -measurable complex function |y omn X.

2
Then it is known that Ug’ LW are bounded operators on L™ (u) and Ug is even

2
unitary. Recall that L (u) is a unitary space or a separable Hilbert space.

Now we can describe (Tg h) as below.
?

THEOREM 6.2. Let T be a bounded operator on HG with its marix representation

u
(T . :
{ g,h)g,hg;G Then
(i) T & M(X,G,y) if and only if T . =L U _ and
R R
(ii) T ¢ M'(X,C u) if and only if T = I _1 . where Y is a bounded S-
’ Y Tgih by (b b g

measurable complex function on X.

NOTATION 6.2. In the terminology of Theorem 6.2 we shall write T [[kj)g(x)]]g;‘G for
T ¢ M(X.G,p) (respy., for TeM'(X,G,u)). (Note that the totality of the functions

{$g:g £G} is the same for both M(X,G,u) and M'(X,G,u).)

Making use of the results in [19] and [25] we can determine the types of
(X,G,H) and M'(X,G,U), when G is measurable and the following theorem describes

their type classifcation.
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THEOREM 6.3. Suppose G is an utmost countable, free, ergodic and measurable (X,S ,

W-group, with v =p, where v is a ¢g-finite G-invariant measure on S. Let y*  be
the outer measure induced by v . Let dvlx) _ k(x) and let T 3[[¢ (x)1] for
du g ge G

T € M(X,G,U) or for Te M'(X,G,u). Let DM(E)=VX?e(x)k(x)du(x) and DM,(E') =

x V(0 k(x)du(x) where E = [Ty, 11, E'x [[Jjg(x)]]gg c» Ee M(X,6,u) and E'

e G’

¢ M'(X,G,p). (Since G is ergodic, the function k(x) is uniquely determined but for

a positive constant multiple) Then the following hold:

(1) DM is a relative dimension function of M(X,G,u) and there exists a projection
E € M(X,G,}) with o < D(E)< ®. Thus M(X,G,|) is a non-type III-factor. A simi

lar result holds for DM' and M'(X,G,y).

(ii) If V(X)) <» and if there exists x € X with Vv ({x})> 0, then there exists N
X with v*(N)= o such that the one-point sets {y} € S and v*{y})=v*{x})
for all y € X N, where S is the Lebesgue completion of S with respect to v.

Thus we can take X= {xl,x .,xn} (say) with v*(xi)= v*(xj)= e for i#j, with

9ot
o <g€<® ., Then M(X,G,H) nad M'(X,G,}) are of type In. Besides, éDM and %—DM.
are the normalised relative dimension functions of M(X,G,y) and M'(X,G,1) res
pectively.

(iii)If v(X)= o and v*{x}) > o for some x ¢ X, then a result similar to (ii)holds

with X={xi}T and v*({xi})= v*({xj}) for i#j. (Note that v*({x})< «).Consequen

tly, M(X,G,) and M'(X,G,n) are of type I.

(iv) If v*({x})= o for each x ¢ X, then M(X,G,u) and M'(X,G,u) are of type II1 if

1 1
o(X) D. and v(X)DM' are

V(X)< © and of type IL, if V(X)=« . When w(X)< o« , M

the normalised relative dimension functions of M(X,G,u) and M'(X,G,u), respec

tively.

With the general construction established in the above, following [19] we now
give some examples of type II-factors.

EXAMPLES 6.1 (Type II-factors). Let X be the set X R or set X1= [o,1), the set
¢
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R mod 1. Let S=B(X), the o-algebra of all Borel sets in X and let U be the Borel
restriction of the Lebesgue measure.
We take G to be any one of the following additive groups.

() G = {m + nO:m,n € Z}, O an irrational number.

)
(8) Grat={all rational numbers in R }.
) C ot o {(B:mez, n=o,l,2,...}, where p is any given number 2,3,... (not
b}

necessarily prime!).

For g € G we define xg= x + g for x € X, and xg= x + g (mod D for x.EXl.
Then it can be shown that G is a free, ergodic (X,5,u)-group. Since U is transla-
tion invariané in X,, as well as in Xl’ we have that G is measurable with y = p.

Thus by Theorem 6.3, M(X, ,G,u) and M'(X,,G,u) are type II -factors, while M(Xl,G,

L) and M'(Xl,G,U) are type IIl—factors.

NOTE 6.1. Since the family of the groups Gy is uncountable, apparently we have

given above a continuum of type II, and type II -factors on a separable Hilbert

1
space. But, all the type IIl—factors given in Examples 6.1 are spatially isomorphic
to each other. (Vide Section 8).

7.-Construction of type III-factors. When the (X,S,p)-group G is non-measurable von
Neumann showed in [25] that the factors M(X,S,u) and M'(X,S,) of Notation 6.1 arc
of type III. The following result gives a sufficient condition for G to be non-
measurable.

THEOREM 7.1. Suppose G is a countable (X,S,p)-group which is free and ergodic. Let

Go= {g ¢ G:u(A)= p(Ag) for all A & S}. Then Go is a free (X,S,H)-group and is mea-

surable with y=y . If Go is ergodic and Go # G, then G is non-measurable.

THEOREM 7.2. If G is a free, ergodic, non-measurable (X,S,)-group,then the factors

M(X,G,1) and M'(X,G,W) of Section 6 (vide Notation 6.l1) are of type III.

Making use of Theorems 7.1 and 7.2, the following example of a type 1iI-

factor on a separable Hilbert space is given in [25].

¢
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EXAMPLE 7.1 (A type IlI-factor). Let X= R and S= B(R), the g-algebra of all Borel
subsets of R. Let U be the Borel restriction of the Lebesgue measure in R. We
take G to be the group of transformations{T(p,c): p>o0,p,0 rational}, where
T(P,0)x= px +0,x€ R
and the group operation of G is given by composition of transformations. Clearly,G
is a free (X,S,u)-group and is countably infinite. The group Go of Theorem 7.1 is
given by Go={T(p ,0):u(T(p,0)A)= u(a) for A e S}
={T(p,0):pu(A)= pn(A) for Ae S}

={T(l,5): g ratiomal}

and hence Go # G. Besides, Go is isomorphic to Grat (vide Examples 6.1) which is
ergodic and hence GO itself is ergodic. Therefore, by Theorem 7.1, G is non-measu

rable and hence, by Theorem 7.2, M(X,G,u) and M'(X,G,u) are type III-factors.

Note that M(X,G,u) and M'(X,G,u) are spatially isomorphic by Theorem 6.1 (iii).

Before proceeding further, we make some comments on [19] and [25]. In [19],Mu
rray and von Neumann gave the type classification theory of factors on H and cons-
tructed the factors M(X,G,u) and M'(X,G,u) assuming that G is an at most countable
(X,S,u)-group, which is free and ergodic such that p(Ag)= p(A) for all Ae S. In
other words, in the terminology of Theorem 6.3, they assumed v =1 and hence were
led to the construction of factors of type I and II only. At that time, they wor
dered whether there exists any type IIlI-factor at all. It was only in 1940, von
Neumann modified the construction given in [19] introducing the terminology of mea
surable and non-measurable (X,S,U)-group and thus obtained in [25]the construction
of factors of type I,II and III. These results have been described above in Section
6 and in the present section.
8.-Hyperfinite type IIl—factors. In [21] Murray and von Neumann answered affirmati
vely the question whether there exist at least two non-isomorphic type IIl-factorg

on H. This they achivied by studying the class of type IIl—factors known as approxi

¢
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mately finite type IIl-factors. The main results of [21] will be presented in this
section as well as in the next two sections. Here we restrict our study to isomor-

phism property of these factors and show that the type II -factors in Examples 6.1

1

are spatially isomorphic.
DEFINITION 8.1. A factor R on H is said to be hyperfinite (=approximately finite or
ATI= almost type I) if there exists an increasing sequence (Mi)T of discrete fac-

tors M, of finite type In (so that n, divides ni+1) such that R is the von Neumann
i
[0 0]
algebra generated by UMi' )
1

Murray and von Neumann use the terminology'approximately finite' and Dixmier

[9] calls it hyperfinite, which is also referred to as ATI by Connes.

The sequence (ni) involved in Definition 8.1 doesn't play any role in determi

ning the algebraic type of R when R is a type II -factor. In fact, the following

1

result is obtained in [21].

THEOREM 8.1. Hyperfinite type II.-factors exist on H and any two hyperfinite type

1
IIl—factors on separable Hilbert spaces are isomorphic.

In Theorem 6.3 we can guarantee that M(X,S,u) and M'(X,S,u) are hyperfinite
when G satisfies some more conditions. In fact, the following theorem  has been
given in [21].

THEOREM 8.2. Suppose in Theorem 6.3 the (X,S,u)-group G further satisfies one  of

the following conditions:

JThere exists a sequence G1 G2 ... of finite subgroups of G such that G=
(%) <

)

{UG ..
11

{%%) G is abelian.

Then the factors M(X,G,u) and M'(X,G,H) are hyperfinite type IIl—factors, whenever
they are of type IIl.
A detailed proof of Theorem 8.2 corresponding to the condition (*) is found

in [21], but the proof corresponding to (**) is pogtponed to a future publication,
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which however didn't take place. Nevertheless, later in 1963 Dye [11] obtained the

said result as a particular case of a more general situation.
Returning to the factors H(Xl,Ge), H(Xl,Grat) and H(Xl’crat,p) of Examples

6.1, we observe that they are hyperfinite type II. -factors by Theorem 8.2 as the

1

and Grat also satisfy (*)) and hence by Theorem

groups are abelian (while Gra
’

t

8.1 they are isomorphic. Now by Theorem XI of [19], Theorem XI of [20] and by the
isomorphism between these factors we deduce the following
COROLLARY 8.1. The factors H(Xl,G) of Examples 6.1 are spatially isomorphic hyper~

finite type IIlffactors, where G is any one of the groups 93’ Grat and G rat,p’

9.-A simple group~theoretic construction of type II -factors. In [2]1] Murray and

1

von Neumann gave a simplified version of the measure theoretic construction of Sec
tion 6, imposing a stringent condition on the group G to obtain type IIl-factors.

Before explaining this construction, we make the remark that this construction pla
yed a very crucial role in the works of Dusa McDuff [17,18] and Sakai [30,31] to

obtain a continuum of non-isomorphic type II. and type III-factors. Vide Sections

1
12 and 13.

Suppose X= {xo}, S={{ xo}, p } and u(P)= o, u({xo})= 1. Given a countably in-
finite group G, let X 8= X for all g € G, so that G is an (X,S,)-group. In this
case, HS reduces to the separable Hilbert space QZ(G), which is given by

2 2
2°(G)={ f:6+ C h that I _|f <
(&) suc at I Gl (g) ] }

with the inner product

Besides, in this case the unitary operators Ug ,Vg ,W of Definition 6.3 assume the
o o

~ A

simple forms Ug ,Vg W, respectively, where
o o

(Ugof)(g)= f(ggo)

A ._1
£ =
(Vgo ) (g) f(go g)




o -1
and (WE) (g)= f(g )
for g,» &8 € G and f ¢ QZ(G).

~

Then by Theorem 6.1(i), %g s Vg and % are unitary operators on RZ(G). Since
o o

the bounded S-measurable functions on X reduce to constant functions the von Neumann
algebras R({l) and R(ﬁ) of Theorem 6.1(ii) reduce to those generated by {Gg:g € G}
and {§g:g € G}, respectively. Let ﬁs denote them by '(G) and +(G), respectively .
Then (G) and * (G) are spatially isomorphic to each other by ﬁ and one 1is the
commutant of the other.Since these algebras play an important role in the construc

tion of type II, -and type III- factors of later sections, we give the following

1
NOTATION 9.1. °(G) and ' (G) denote the von Neumann algebras generated by {ﬁg:g £

G} and {§g:g € G}, respectively.

THEOREM 9.1. ( (G))'=" (G) and ( (G))'= 'i(G). Besides, ' (G) and (G) arc spatially

isomorphic and the spatial isomorphism is implemented by W.

Since X= {xo} with u({xo})= 1 and X 8= X_ for all g € G, evidently G is
neither free nor ergodic. Thus one is led to find some other conditions, nowon the
group G, to ensure that '.(G) and .(G) are factors. To this end, Murray and von
Neumann introduced the following concept in [21].

DEFINITION 9.1. A group G is called an infinite conjugacy class group (in abbrevia
tion, an ICC-group) is for each g # e the conjugacy class Cg={ h_lgh:h €6} is in
finite.

Obviously, an ICG-group is a non-commutative infinite group.

Now Wwe can state the following interesting
THEOREM 9.2. For a countable group G, #(G) and (G) are factors on the separable
Hilbert space RZ(G) if and only if G is an ICC-group. In this case, (G) and (G)

are type 1I,-factors. If G satisfies besides the condition (*) of Theorem 8.2,then

1

these are hyperfinite type IIl—factors.

As an application of the last part of the above theorem, we give below an

example of a hyperfinite type IIl-factor as a ‘NG .
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EXAMPLE 9.1. Suppose G is the subgroup of the permutation group of N formed by all

those permutations which leave all but a finite number of elements fixed. Then G

is an ICC-group and G= %Gn with an, where Gn is the subgroup of all those permuta
1

tions which leave all but {1,2,...,n} fixed. Consequently, by Theorem 9.2 the fac-

tors (G) and (G) are hyperfinite type IIl—factors.

10.-Example of a fion-hyperfinite type IIl—factor . All the type IIl-factors cons
tructed in the earlier sections turn to be hyperfinite and thus isomorphic to each
other by Theorem 8.1. Then the following question arises naturally: Does . there
exist any non—hyperfinite type IIl—factor on H? Murrray and von Neumman answered
this question affirmatively in [21] by introducing an isomorphism invariant called
the property and then constructing a factor on H failing the property . .

DEFINITION 10.1. We say that a type II ~factor M on H has the property '~ if for

1

each € >0 and for each finite set {Tl,Tz,...,Tn} of elements in M there exists a

unitary U= U(T ...,Tn) € M with TrH(U)= o and

10T

[[U'lTkU - 1,11 <€ for k= 1,2,...,n

1
where [[&]]= (TrM(A*A))/2 and TrM is the relative trace of M.

Here the relative trace Tr,, is an extension of DM to all hermitian elements in

M
M with TrM(I)= 1l and satisfying certain properties. (Vide [21]).
THEOREM 10.1.The property =~ 1is an isomorphism invariant. If M is a hyperfinite type
IIl-factor on H, then M satisfies the property ! . Thus all hyperfinite type IIT
factors on separable Hilbert spaces satisfy the property ' .

In [2]] Murray and von Neumann introduced a sufficient condition on the ICG-
group G to ensure that '{G) be not hyperfinite. Let us state this result.
THEOREM 10.2. Let G be a countable ICC-group and suppose there exists a set F G

with the following properties:

(i) There exists a 8 € G such that
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FU gng_l= G {e}
and

-1 -1
(ii) There exists a g, € G such that the sets F, ngg2 and 8 ng are disjoint.

Then the factors ' (G) and '/ (G) do not possess the property
As an application of Theorems 10.1 and 10.2 we give below the construction of

a non-hyperfinite type IIl—factor.

EXAMPLE 10.1 (A non-hyperfinite type IIl—factor). Let G be the free group generated
by two elements a and b. Clearly, G is a countable ICC-group. Let F be the set of
those g £ G which when written as a power product of a and b of minimum length end
with an, n= tl, t2,...It is an easy exercise to verify the properties (i) and
(ii) of Theorem 10.2 for the set F. Consequently, by Theorem 10.2 the type IIl-fqg
tors (G) and (G) do not satisfy the property 7 and hence are non-hyperfinite by
Theorem 10.1.
The above example, and Theorems 8.1 and 10.1 imply the following

THEOREM 10.3. There exist at least two non-isomorphic type IIl—factors on a separa

ble Hilbert space H, one being hyperfinite and the other non-hyperfinite.

Though Murray and von Neumann could provide more examples of non- hyperfinite
type IIl-factors in [21], they could establish the existence of just two non-

isomorphic type II,-factors in terms of the property | . However, their method and

1
ideas were exploited later by Dixmier and Lance [10] and Dusa McDuff [17,18], the
latter being successful in constructing even an uncountable family of non-isomor

phic type II.-factors on a separable Hilbert space. Vide Section 12.

1
11.-Pukansky's examples of two non-isomorphic type III-factors. Though von Neumann
constructed some type III-factors on a separable Hilbert space H in [25],he didn't
study any isomorphism invariant to obtain some non-isomorphic type III-factors.The
first contribution in this direction was due to Pukansky [28], who introduced an

isomorphism invariant called the property (L) and constructed two non~isomorphic

’
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type III-factors, one satisfying (L) and the other failing (L). Later, these exam-
ples played a fundamental role in the construction of an uncountable family of non-
isomorphic type III-factors given by Powers [27], Sakai [30] and Connes [6]. Vide
Sections 13,14 and 16.

Following Pukansky [28] and [32] we present the construction of these factors

of Pukansky. For details, the reader may refer to [32].

DEFINITION 11.1. A von Neumann algebra R on H is said to satisfy the property (L)

0 .in T

if there exists a sequence of unitary elements (Uk)T in R such that Uk u

and HU AU® - A ij* o as k > >,

k 'k
EXAMPLE 11.1 (Type ILI-factor M(p )w). Let S?n= {o0,1}, n ¢ N and let X= %@n. Let
n'l 1
. 1-p l+p <
o be the measure on P(Qn)deflned by un({o})= n and un({l})= n, where o <
2 2

6 < p < 1- § for some fixed & >o0. Let U ='Tun be the product measure on the corres
ponding o-algebra in X. Let G= {w=(wn)T:wn # o occurs for a finite number of n's
only}. Then, with respect to addition given coordinatewise mod 2, G is a countable
group. For g € G and w € X, let wg= wtg, where (wtg);= wi+ gi(mod 2). Then it can
be shown that G is a free, ergodic, non-measurable (X,S,u)-group. Consequently. by

G
Theorem 7.2, M(X,G,u) and M'(X,G,u)are type III-factors on the separable space H, .

1—pn==p and 1+ n = q for all n.

2 2

Besides, these factors satisfy the property (L) if

Qo
(Vide [28]). For later use, let us denote M(X,G,u) corresponding to (pn)1 by N(W \
.;n..~

EXAMPLE 11.2 (Type IIl-factor P ). Let G be the free group generated by two cle-
ments. Then G is countably infinite. For each g € G, let Xg={o,1}. Let Ug be the
measure defined by ug({o})= p and ug({l})= q with o < p<q and p+q= 1. Let X=

7. X and let (X,S,u) be the associated product measure space. Let
£¢eG

x # o for a finite number of g's only}.

Go={x=(xg)g €G g

Let G= {(x,g):x € Go,g £ G }. For each elements a =(xo,go)€ G, let us define the

transformation
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Ty:X>X given by

o
T x= xo0= (x +x )
o g8 88¢6
where x g + xZ= xg g + xZ(mod 2). Then these mappings Ta are bijective on X. For
o o
h h

) )
the law of composition af =(x,g )(y,h )= (x "+ y, g h)=r, where x = (x, ) >
o o oo hog gc G

G is a semigroup. Since G has the identity element (o,e) and the inverse of (x,g)

-1
in G is given by (x® ,g 1), we observe that G is a group. Also it can be shown

that G is a free, ergodic and non-measurable (X,S,u)-group. Consequently, the co-

rresponding M(X,S,u) of Theorem 7.2 is a type III-factor on the separable  space

HS . Pukanski 28] showed that this factor fails the property (L). For later use,

we shall denote this factor by P. (Note that in the study of Pukanski [28] or that

of Saks [32], the factor P is not distinguished for different pairs (Pl’ql) and
(Py»95))-

Since the property (L) is an isomorphism invariant, the above examples imply
the following
THEOREM 11.1. There exist al least two non-isomorphic type III-factors on a =epa
rable Hilbert space H, with one satisfying the property (L) and the other failing
it.
12.- A continuum of non-isomorphic type IIlmfactors. After the publication of ''On
Rings of Operators IV" in 1943, for many years were known only two non-isomorphic

type II,-factors. In 1963 J.Schwartz introduced an isomorphism invariant called the

1

property (P) and using (P) distinguished two non-isomorphic non-hyperfinite tyne

Lll—factors. After the publication of [34], many mathematicians got interested in

the construction of new non-isomorphic type II,~factors. Using the notions of cen-

1

tral and hyper-central sequences in a type II.-factor, Dixmier and Lance construc

1

ted two new examples of non-isomorphic type IIl-factors in [10]. Also were given

new type II.-factors by Wai-mee-Ching [4], Sakai [29] and Zeller-Meir [39]. Thus

1

were known nine non-isomorphic type II,-factors before the publications of [17]

1
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and [18] by Dusa McDuff.

In this section we briefly sketch some of the ideas used by Dusa McDuff [17,
18] and describe the construction of a continuum of non-isomorphic type IIl-factors
following Sakai [32]. For details of the proof, the reader is recommended to refer

to Sakai [32,pp.183-192].

Motivated by the hypothesis in Lemma 6.2.1 of [21] (vide Theorem 10.2 above).
Dixmier and Lance introduced in [10] the notion of a residual subgroup H of G,
according to which the hypothesis in the said lemma of [21] implies that {e} is a
residual subgroup of the ICC-group. G. Since it is not known whether the finite
product of residual subgroups is residual, Dusa McDuff defined in {[17] a much
stronger notion of strongly residual subgroups for which the said property holds
and considered strongly residual sequences of subgroups in G. Using these notions,

and proving many technically deep lemmas, she constructed an uncountable family of
type IIl-factors in [18].

Let Gl’ G2,...;H1,H2,...be'two sequences of groups. We denote by (Gl,Gz,...:
Hl’HZ"") the group generated by the Gis and the His with additional relations

that Hi’Hj commute elementwise for i#j and Gi’Hj commute elementwise for i £ j

Let L1=(Z 32 5032 , 2 ,...). Let Lk be defined inductively by Lk=(Z ,Z "";Lk-r

Lk_l...) for k>1.
n

Let T be a sequence of positive integers. Let M (T )= igl + Lp if 7 =(p] .

n .
n N i
Poy---); and M (m )= Z, + L forns<n and M (T )= L+ L forn >n ,if 7 =(p,.
2 n i=1 Py o n i=1 i o !
- ). Let G(m )= (z ,Z ,...;Ml(ﬂ ),Mz(ﬂ )...). Then one has the following
O

THEOREM 12.1. If ﬂl=(pi) and W2=(qi) are two sequences of positive integers such
that ﬂl # WZ as sets, then ’(G(ﬂl)) and (G(ﬂz)) (vide Notation 9.1) are non-iso

morphic type II,-factors. None of these factors is hyperfinite.

1

13.5akai’'s construction of uncountably many non-hyperfinite type III and type II-

¢
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factors. In the sep up of W*-algebras, Sakai [30,32] extended the notioﬁ<ﬁfcentral
sequences and using the type III-factor T of Section 11 and the ICC-groups G(m)of
Section 12 above constructed a continuum of non-isomorphic type III-factors and
deduced the existence of a continuum of non-isomorphic type 1I -factors. Let us

briefly sketch the construction of Sakai [32].

A B*-algebra W is called a W*-algebra if there exists a Banach space W, such
that W is the Banach space dual of W,. Let W denote a W*algebra in the sequel. The
weak*-topology ¢(W,W,) is called the o—topoiogy of W. A *-homomorphism ¢: w1 > w2
between two W¥-algebras Wl and W2 is called a W*-homomorphism if it is continuous
for the o-topologies of Wl and W2.

Given a W*-algebra W, there exists a faithful W*-representation ® of W into
L(K) of some Hilbert space K(K can be finite dimensional or of arbitrary dimension)
such that ®(W) is a *-subalgebra closed in the weak operator topology of L(K){(vide
Section 1.16 of Sakai [32]). Then we say that W has a faithful W*-representation

(9,K). Besides, when W contains the identity, then ¢®(W) is a von Neumann algebra

on K.

Let T={y:y a 0-continuous positive linear form on W}. For each } € T, let
awﬁx)= (w(x*x))% for x € W. The locally convex topology defined on W by the family
ﬁw:w £ T} of semi-norms is called the s-topology of W. If (Xn);) is a uniformly
bounded sequence in W, we say that (Xn) is a central sequence if XnX - XXn > o 1in

s-topology for all X € W.

From the theory of tensor products of von Neumann algebras (vide [32])we have
that P x M is a factor for any factor M and is of type 111, where TP is as 1in
Example 11.2.

Considering Aifﬁ’x '(G(ﬂi)), i= 1,2 as W*-algebras with identity and assuming
them to be isomorphic for two different sequences of positive integers ﬂl and ﬂ2

(where (G(7H)) are as in Section 12), Sakai [32] arrives at a contradiction after
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proving many intermediate lemmas, in which the above generalized notion of central

sequences plays a key role.

THEOREM 13.1 (Sakai [32]). Let ﬂl and ﬂz be two sequences of positive integers
which are different as sets. Let G(ﬂl) and G(ﬂz) be the ICC-groups constructed in
Section 12 above. Then P .x ,(G(ﬂl)) and P g};KG(WZ)) are non-isomorphic type III-
factors. Besides, these factors are non-hyperfinite (vide Definition 8.1). Thus

there exists a continuum of non-isomorphic non-hyperfinite type III-factors on a

separable Hilbert space.

NOTE 13.1. In the next section, following Powers [27] we also give the construction

of a continuum of non-isomorphic hyperfinite type III-factors.

Since P is of type III, P is isomorphic to P x L(H) for a separable space
H. Consequently, we deduce from Theorem 13.1 the following

THEOREM 13.2 (Sakai [32]). If H is separable and if T ﬂz,G(ﬂl) and G(ﬂz) are as

1 b
in Theorem 13.1, then L(H) x P(G(ﬂl)) and L(H) x (G(ﬂz)) are non-isomorphic type

II_-factors. Consequently, there exists a continuum of non-isomorphic type II -fac

tors on a separable Hilbert space.

For the details of this section the reader may refer to Sakai [32,pp.193-202].
14.-Powers'construction of a continuum of non-isomorphic hyperfinite type III-fac
tors. The construction of Powers [27] is based on the infinite product of a sequen

ce of type I, ,-factors, each one being considered as a C*-algebra with identity.The

2

reader may refer to [12] for details of the construction of infinite tensor products

of C*-algebras.

Suppose that Bn= B is a type I,~factor on a separable Hilbert space H for

2

each n ¢ N. Let (pn) be a sequence of positive numbers o < P, < %—. For (Y C

(a,B,r,8 complex numbers), let
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Then is a state (= positive linear from with pr H= 1) on Bn' Then let
P
n : n

¥

(s 0]
on XiB (vide Section 1.23,
1 n
1 n n 1

Chapter 1 of Sakai [32]).

= X ¢ be the infinite product state of (V¥ )7
(p_) p P

| [+ o]
It is known that the state W( ) induces a *-representation of A = X Bn on a
n 1

i i . .Th A " i I3
Hilbert space HW(pn) (vide p.40 of [32]).The von Neumann algebralZiﬂw(pn)( )) is

(s 0]
called the W*-infinite tensor product of (Bn)l by the infinite product state W(

p)
In this particular case, R is a factor.

1
If there exists a positive number & with § < P, <5 " § for each n, then it can

be shown that (FW(p )(A))"= R is a type III-factor and that R is spatially isomor-
n

phic to the factor M of Example 11.1.(Vide p.206 of [32]).

(pn)
When we take P~ A for all n with o < A<-l, the associated type III-factor

M(p ) is denoted by My and is called the Powers gactor of A.
n

Introducing an isomorphism invariant called the property LX’ Powers [27|obtai
ned the following

THEOREM 14.1. For Xl,kz €[o,%) with Al £ A their Powers factors MX and MX are

2’ 1 2
non-isomorphic hyperfinite type III-factors. Consequently, there exists an uncoun-
table family of non-isomorphic hyperfinite type III-factors on a separable Hilbert
space.

The reader may note the differénce bétween Theorems 13.1 and 14.1.
15.-ITPFI-factors. In [24] von Neumann observed that certain type III-factors could
be obtained as an infinite tensor product of finite type I-factors. But no proof
of his statement was given in any of his publications. Only in 1963, Bures [3]gave
the proof of the above assertion mlong with a partial type classification of these

infinite products. Such infinite tensor products of finite type I-factors are them

selves factors and are called ITPFI-factors.
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In the earlier section Qe saw that-the Powers factors My are ITPFI-factors of
special type,witfxthecoﬁstituent factors being of type_Iz. Analysing the work of
Powers [27], Araki and Woods studied in [2] the complete type classification of ge
neral ITPFI-factors by introducing the isomorphism invariants r_ and p. Without
going into details of a rigorous definition of an ITPFI-factor M, let wus simply
mention some of the principal results of Araki and Woods [2], reformulated in a

form comparable with the later results of Connes (vide the next section).

Let us denote the Powers factor My by Rx’ where A = T%;—so that x € (o,1) as
A varies in (O{%). We de’fit.'ne"RO as the type I -factor and R1 as the hyperfinite
type IIl
isomorphism). The asymptotic ratio set r, (M) for an ITPFI-factor M defined in

-factor on a separable Hilbert space H. (Note that these are unique upto

terms of the eigen values sets corresponding to the tracial states of the cons-
tituent factors is shown in [2] to be the same as the set {0 <x< o :MAUM x Rf(x)j’
where 'n' denotes 'isomorphic' and f(x)= x for o £x £1 and f(x)= x—1 for 1 < x
<« , This result sdggested'éhevdefinition,of r M={o0o <x<o MUVMx Rf(x)} for
an arbitrary factor M.

For two factors R1 and RZ’ it is known that R1 X R2 is also a factor,which is
of type III(respy., of type II) if Rlor RZ is of type I1II(respy., if

one of them is of type II and the other is semi-finite).

Araki and Woods [2] proved that r (M) is an isomorphism invariant and Araki
[1] showed that r_ (M) must be one of the sets {o}, {1}, So={o,1}, Sx={o,1,xn:ne Zi,
o x <1 and Sl= [0,2). (Here the original notation is changed in terms of the
invariant S of [6]).

THEOREM 15.1 ([2]). Except for the case So,ra§M)=ra$N) for two ITPFI-factors M and

N implies that M and N are isomorphic.

The other isomorphism invariant p(M) for an arbitrary factor M is given in

[2] as below:
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p(M)= {o £ x < x M}

oo n,
Reo ¥ Bea
Using the invariant p, is obtained in [2] the following interesting
THEOREM 15.2([2]). There exists a continuum of non-isomorphic ITPFI-factors in the

class S .
o

It is interesting to observe that all the Powers factors M; (o< ) <%0 belong to
the class So’ which are already known to be non-isomorphic ITPFI-factors. (Vide
Theorem 14.1).

Thus for the first time, after the publication of [21], one had identified fac
tors given by different constructions. The classification by ¥ and p was generali
zed later by Krieger [14,15,16] to factors constructed from ergodic transformations

For more information on ITPFI-factors the reader may refer to Woods [38].

16.Results of Connes [6] and Takesaki [36,37]. Using Tomita-Takesaki's theory of
modular Hilbert algebras and the non-commutative integration theory, Connes [6]
gave an isomorphism invariant T(M) for an arbitrary von Neumann algebra M and de-
duced from the following result Theorem l4.1 above and the non-isomorphism of the
non-hyperfinite family’ I(G) X)Mx,o < A <%q with G as in Example 10.1.

THEOREM 16.1([6]). If M is an ITPFI-factor, then 'I‘0 e T(M) if and only if

5

exp(%gl)e p(M), where. po(M) is the invariant given by Araki and Woods in [2].(Vide
Sectign 15.)

Another interesting result about T(M) given in [6] is the following.
THEOREM 16.2([6]). Every subgroup G of R is the set T(M) of a countably decomposa-
ble factor M. When G is countably infinite, M is a factor on a separable Hilbert
space. Besides, there exists a countably decomposable type ILI-factor M such that
T(M)= R.

In [6] Connes gave another isomorphism invariant S(H)_for a factor M and

showed that M is semi-finite if and only if S(M)={1}. He also proved thzt tHe inva-

riant T(M) doesn't determine S(M), in the sense that two factors Hl and M2 with
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T(Ml) # T(MZ) can have S(M1)= S(Mz).
THEOREM 16.3([6]). For an ITPFI-factor M of type III, S(M)=r (M), where x (M) is

the asymptotic ratio set of M(vide Section 15).

Connes [6] also gave an’examples of a non-ITPFI-factor M for which S(M)#raﬂn)
Also is given in [6] a non-hyperfinite ITPFI-factor, contrary to the factors MA of
Powers.
The most important results of Connes [6] are those which characterize type
III-factors. In this direction , he introduced the following
DEFINITION 16.1. Let M be a factor and A €[o,l]. We say that M is of type 11T, if
S(M)= {o0,1} for A= o; S(M)={o,1,kn:n € Z }for o<\ < 1;

and S(M)= [o,0) for )= 1.

Since o ¢ S(M) for A e[o,l], it follows that every type III)-factor is necesa
rily of type III. Connes [6] proved the following result in the reverse direction.
THEOREM 16.4([6]). For every countably decomposable factor M of type III there co
rresponds a unique A €[o,1] such that M is of type III, so that every type 1IIl-fac
tor M on a separable Hilbert space is of type IIIA for somebunique}\e[o,l].

He also gave the following theorem of characterization of type I1I,~factors
for ) elo,l).

THEOREM 16.5([6]).
(i) All factors M of type III) for A €(o,l) can be realized as the crossed product

of a type II_factor by a suitable automorphism O of .

(ii) A factor M of type IIIo is the crossed product of a von Neumann algebra . of
type Ila)with nonatomic centre by a trace diminishing automorphism C of

which is ergodic on the centre of

It is known from [13] that a result similar to (1) and (ii)above doesn't held

for type IIIl—factors.
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The work of Connes [6] has many interesting other results, which we omit here
for lack of space.Besides, Theorem 16.5 is a remarkable achievement in the classifi-
cation theory of type ITII-factors and the work of Connes [6] is so important and

original that it fetched him the Fields medal of that decade.

Finally, we include the structure theorem of arbitrary type I1I-von Neumann

algebras obtained by Takesaki [36] independent of Connes [6].

THEOREM 16.6([36]). A von Neumann algebra R of type III is uniquely expressable as
the crossed product of a von Neumann algebra RO of type II, by a one-pardmeter au-

tomorphism group which leaves a trace of Ro relatively invariant, but not invariant
For details of this section refer to [6], [36] and [37].

Finally we observe that so far no structure theory of type IIlfactors is

known, even though distinct uncountable families of non-isomorphic type IIffactors

have been constructed by different author-. Vide [5,18,31].
REFERENCES

l.-H.Araki, A classification of factors, II, Publ.RIMS. Kyoto Univ.Ser.A,4(1969),
585-593.

2.-H.Araki and E.J.Woods, A classification of factors, Publ.RIMS,Kyoto Univ.Ser.A,
3(1968),51-130.

3.-D.Bures, Certain factors constructed as infinite tensor products, Comp.Math. 15
(1963),169-191.

4.-W.M.Ching, Non-isomorphic non-hyperfinite factors, Can.J.Math. 21(1969), 1293-
1308.

5.-W.M.Ching, A continuum of non-isomorphic non-hyperfinite factors, Comm. Pure
Appl.Math.23(1970),921-938.

6.-A.Connes, Une classification des facteurs de type III, Ann.Ec. Norm.Sup,6(1973),

133-252.




7.-A.Connes, Groupe modulaire d'une algébre de von Neumann C.R.Acad. Sc.Ser.A
(1972), 1923-1926.

8.-A.Connes, Structure theory for type III factors, Proc.Intl.Congr.Math.1974 Van-
couver, Vol.II,87-91.

9.fJ.Dixmier, Les algebres d'operateurs 1l'espace hilbertien, 2nd ed.Paris,Gauthier
Villars, 1969.

10-J.Dixmier and E.C.Lance, Deux nouveaux facteurs de type IIl’ Invent. Math.17
(1969), 226~-234.

11-H.A.Dye, On groups of measure preserving transformations II Amer.J.Math:85(196$
551-576.

12-A.Guichardet, Tensor product of C*-algebras, Part. II, Mat.Institut,Aarhus Univ.
Lecture notes N® 13(1969).

13-R.Herman and M.Takesaki, States and automorphism groups of operator algebras,
Commun.Math.Phys. 19(1970),142-160.

l4-W.Krieger, On the Araki-Woods asymptotic ratio set and non singular transforma-
tions of a measure space, Lecture Notes in Math.Springer Verlag, N2 160
(1970).

15-W.Krieger, On non singular transformations of a measure space I, Z-Wahrscheinli
ckeitstheorie verw-Gel., Bd.II,(1969).

16-W.Krieger, On a class of hyperfinite factors that arise from null recurrent Mar
kov Chains, J.Funct.Anal.7(1971),27-42,

17-D.McDuff, A countable infinity of II1 factors, Ann.Math.90(1969),361-371.

18-D.McDuff, Uncountably many II., factors, Ann.Math.90(1969),372-377.

1

19-F.J.Murray and J.von Neumann, On rings of operators, Ann.Math.37(1936),116-229.

20-F.J.Murray and J.von Neumann, On rings of operators II, Trans.Amer.Math.Soc. 41
(1937),208-248.

21-F.J.Murray and J.von Neumann, On rings of operators IV, Ann.Math.44(1943), 716-

808.




35

22-M.A.Naimark,Normed rings, Noordhoff, 1959.

23.J.von Neumann, Zur Alggbra der Funktionaloperatoren und Theorie der normalen
Operatoren, Math.Ann.102(1929/30),370-427.

24-J.von Neumann, On infinite direct products, Comp.Math.6(1938),1-77.

25-J.von Neumann, On rings of operators III,Ann.Math.41(1940),94-161.

26-T.V.Panchapagesan, Introduction to von Neumann algebras, (to be published in No
tas de Matemitica, Univ.de Los Andes-Venezuela).

27-R.T.Powers, Representations of uniformly hyperfinite algebras and their associa
ted von Neumann algebras, Ann.Math.86(1967),138-171.

28-L.Pukinsky, Some examples of factors, Publ.Math.Debrecen 4(1956),135-156.

29-S.Sakai, Asymptotically abelian II1 factor,Publ.RIMS. Kyoto Univ.4(1968),299-307.

30-S.Sakai,An uncountable family of non-hyperfinite type III factors, Functional
Analysis (Edited by C.0.Wilde),Academic Press,1970,65-70.

31-S.Sakai, An uncountable number of IIl and II_ factors, J.Funct.Anal.5(1970),236
246.

32-S.Sakai, C*-algebras and W*-algebras, Springer Verlag, 1971.

33-J.T.Schwartz, W*-algebras, Gordon & Breach,1967.

34-3.T.Schwartz, Two finite, non-hyperfinite, non-isomorphic factors, Comm. Pure.
Appl.Math.16(1963),19-26.

35-M.Takesaki, Tomita's modular Hilbert algebras and its applications, Lecture No-
tes in Maths.N2 128,Springer Verlag (1970).

36-M.Takesaki, Duality for crossed products and the structure of von Neumann alge-
bras of type III,Acta.Math.131(1973),249-310.

37-M.Takesaki, Automorphisms and von Neumann algebras of type IIl, Proc.Symposia in
Pure Math.38(1982) Parte 2, 111-135.

38-E.J.Woods, ITPFI factors-a survey, Proc.Symposia in Pure Math.38(1982)Part.2.,25
41,

39-G.Zeller-Meir, Deux autres facteurs de type II Invent.Math.7(1969),235-242.

1’

4




GENERALIZATION OF A THEOREM OF ALEXANDROFF
BY
T.V.PANCHAPAGESAN*

The classical theorem of Alexandroff [1,p.590] states that
a bounded regular complex valued additive set function uy defined
on an algebra A of subsets of a compact topological space is
g-additive. Also it is known that such a set function u admits
a uniqﬁe regqular o-additive extension to the 0-algebra genera
ted by A. See Theorems III.5.13 and IITI.5.14 of Dunford and
Schwartz [ 7]. The first result was generalized by Dinculeanu
and Kluvanek [2,Theorem 3] for a regular locally convex space-
valued additive set function yu defined on a ring of subsets of
a locally compact space. In the present ﬁote we give an abstract
set theoretic generalization of the above classical " theorems
for an additive G-valued set function y, when G is a Hausdorff
abelian topological group and u satisfies, among other things,
certain regularity property defined in terms of two fixed
classes of sets f}éndwnu From this abstract study, we also
deduce new results for G-valued additive set functions defined

on rings of sets in arbitrary topological spaces.

l.-(%,t)—Alexandroff regularity and og-additivity. In the se-

quel, G denotes an abelian Hausdorff topological group, with

{(*)Supported by the C.D.C.H.T. project C-409 of the Universidad de Los An-
des, Mérida, Venezuela.

AMS Subject Classification: 28C
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its operation denoted by +. B is a base of closed symmetric
neighbourhoods of 0 in G and R is a ring of subsets of a set
© (#8) , unless otherwise stated.y is a G-valued additive set
function on R."% and=ﬁ are two fixed non-void families of sub-

sets of Q.

NOTATION 1.1. If AcCQ and W is a neighbourhood of 0 in G, we
write A ¢ Rw(u) to mean that p(E) ¢ W for all E ¢ R with EC

A.

DEFINITION 1.2. The G-valued additive set function u is said
to be q/j—Alexandroff (reSp.il—Alexandroff) reqgular onR if given
E ¢R and a neighbourhood W of 0 in G, there exists U e‘ﬁ and
A £ R(resp. K E'K'and B € R) such that E¢C U ¢ A with A\E €
Rw(u)(resp.B<:.K C E with ENB ng(u)). We say that u is(%,ﬁﬁ—
Alexandroff regular on R if it is both "‘3 -Alexandroff and L-

Alexandroff regular.

We note that g e if u is I}Alexandroff regular on R
and that Q e*g if R is an algebra in & and u 1is qS—Alexandroff

regular on R. At this stage we don't impose any condition on

Ior onﬁ.

By the additivity of u the following result holds.

PROPOSITION 1.3. The G-valued additive set function y on R is
(g,fJ—Alexandroff regular on R if and only if for each E ¢ R
and W € B there exists K EJ:,U Eﬁ ,A,B € R such that B < K <«

E < UCA with ANB ¢ Rw(u).
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DEFINITION 1.4. We say that-;t has the ?-c.c.p.(i.e. I/ has the
countable compactness property relative to ‘9 ) if for each K EL, every

countable covering of K by members of% has a finite subcovering

THEOREM 1.5.Let ube a G-valued (%,I;) ~Alexandroff regular addi-
tive set function on R. If“% is closed for intersection and :(,

has the *,j-c.c.p., then y is o-additive.

od
PROOF. Let {Ei}i be a disjoint sequence in R with E= UE, € R.
1

Let W € B. Then there exists a finite family (qi)];of continuous
R

guasinorms on G and € >o such that W€=f\ Bq (0,e)C W, where
’ 1 i
Bq (o0,e)= {x eG:qi(x) < g} By the hypothesis of reqularity there
i

exists K EI, U eqf,‘,A,B €R such that BC KC EC U <A with
A\NB ¢R_(H). Besides, for each i1 there exists U. e"%, A, ¢ R
W€/4 i i
- — . R = .
such that E; < U, C A; with Ai\ E; ¢ we/(u) , 1,2,..Since
i+3

£ 2
d and R are closed for intersection, by replacing Ui by U N Ui

and Ai by AN Ai’ we shall assume further that EiC; UiC Ai . A.

) g% m
As Ivhas the 'ta—c.c.p. there exists m such that Kc. UUi' Then
n n n 1
for n zm, we have B < UA,. Now, UA.\ BeR with UA.\ BCA\Bso
1 1 1 1 1 1
n n n
that UA;\ B ¢ Rw(u). If D= (UAi)\ (UEi), let H,= A/\ E;and F, =
1 €/, 1 1
H.\ U H. with H = §. Then
1 . . (o}
J<1
n n
H(D)= LN U, E,))= Tu(DNF.)
11 i 1 i

n
= §{uwf\Hi)-1nDnH£W(p_Hy}
J <1
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n
£ W . C W .
£ £
1 /21+2 /4
Consequently,
n n
H(E) - Zu(E;)= W(E) - u(UEi)
1 1
n
= UW(E) - u((UAi)\ D)
1
n
= yu(E) - u(B) - u(UAi\ B) + u(D)
1
€ WgC. W.
Since W is closed and G is Hausdorff, u(E)= ?u(Ei).

1
The following result is now immediate from the above

theorem and from Theorem XI.3.6(2) of Dugundji [6].

THEOREM 1.6. Let y be a G-valued additive set function on a
ring R of subsets of a topological space X and let‘% be the
family of all open subsets of X. Ifli is the family of all
countably compact (or compact) subsets of X or ifJ; is the fa-
mily of all closed subsets of X when X is countably compact and

if u is (3,IJ—Alexandroff regular on R , then i is ¢g-additive.

REMARKS 1.7. Theorem 1.6 gives an improved version of the
theorem of Alexandroff (Theorem III.5.13 of [7]) for G= ¢,since
4 1s not required to be bounded and X is not assumed to be
compact. The result of von Neumann [8, Theorem 10.1.20] on a
ring of sets in a topological space is also a particular case

of the above theorem. Finally, Theorem 3 of Dinculeanu and
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Kluvanek [2] is also generalized to G-valued additive set func

tions in the above theoremn.

2.—(&,X0-Alexandroff regularity of the g-additive extension.Su
ppose U is a o—-additive exhausting G-valued set function on a
ring R of subsets of O with p(R) contained in a sequentially
complete set in G. Then it is known from Drewnowski [5] that U
admits a unique g-additive extension I to S(R), the o-ring ge-
nerated by R. The object of this section is to give a suffi-
cient condition to ensure that the (%,Id—Alexandroff regulari-

ty of u imply that of § on S (R).

To start with,we recall some definitions and results

from Drewnowski [3,4,5], which play a key role in the sequel.

A topology Ton R is called a ring topology, if the opera
tions (A,B)> AAB and (A,B) ~ANB from (R,7) x (R,7) ~ (R,T)are
continuous. A ring topology 1 on R is called an FN-topology if
for each t-neighbourhood U of @ there exists a T1-neighbourhood

%/ of ¢ such that for each A ¢\, {B:BCA, B ¢ R} U

If up:R +G is additive and B is a base of closed symmetric
neighbourhoods of 0 in G, then {Rw(u):w € B}is a base of neigh
bourhoods of § for an FN-topology I'(u) on R, which is the
coarsest FN-topology on R with respect to which u is continuous
(See 1.9 of [3]). [(u) is called the FN-topology induced by

u on R,
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A set function up:R - G is said to be exhausting if u(En)
- 0, whenever {En}T is a disjoint sequence in R. An FN-topolo
gy T on R is said to be order continuous if {En};)Cl R, E_«w @

n

imply E > @ in the topology T.

The following result is immediate from Theorems 8.3, 8.4

and 8.5 of [5].

THEOREM 2.1. (Drewnowski). Suppose A is a o-additive exhausting
G-valued set function on the ring R. Then there exists a unique
order continuous FN-topology M3~ on S(R) such that P(Amir =
{"(}), where ["(X) is the FN-topology induced by ) on R. Besides,

R is I()) "-dense in S (R).

Let XA be as in Theorem 2.1. Then, for E ¢ S(R),there
exists a net {Ea}in R such that E  »E in the topology ["(:)} . If
the range of A is contained in acomplete set H C G, then M(E) =
1&mxa(Ea) exists and belongs to H. Besides, the set function
on S(R) is well defined, extends X and is og-additive on S(R)
Further, such a g-additive extension X of X to S(R) is unique.
(See Theorem 9.2 of [5]). Finally, by Remarks 1 on p.411 of

[5], it suffices to assume that H is sequentially complete for

the above results to hold. Thus we can state the following

THEOREM 2.2 (Drewnowski). Let X:R -G be g-additive and exhausting
with A(R) contained in a sequentially complete set H in G. Then
there exists a unique ¢-additive extension X of A to S(R),with

A(S(R)) € H. Besides, for E ¢ S(R),
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A(E)= lim X (E )
o a
whenever the net {Ea}c;12 converges a E in the topology (}) .

In the sequel, unless otherwise stated, u is a G-valued
c~additive exhausting set function on the ring R with u(R) con-
tained in a sequentially complete subset H of G. {i denotes the
unique c-additive extension of u to S(R)..RO denotes thé class

(E= UE :E_ ¢ R for each n }.
L non

LEMMA 2.3. Suppose {2 £€S(R). Given E € S(R) and W € B, there exists

{En}l C R such that E Ctlen with (tlJEn) \E ¢ S(R)w(u)-

PROOF. Choose W € B such that W, + W, C W. By the result 4.30f
[4] , the condition (*) on v.92 of Sion [9] is equivalent to the
exhausting property of u, since by hypothesis the range of u is
contained in a sequentially complete set. Since I is unique on

S(R), by Theorem 3.3 of Sion [9] we have
~ .~ +
i(E)= lim{{i(a):a € RO(E)}

where R;(E)={a gRO:E & o} 1s directed by o £ Bif and only if

o DF. Thus there exists ay € R;(E) such that
ila) = p(E) € W, (1)

+ . ..
for o 2z ajsa € R_(E). Let F ¢ S(R) with ECF Ca . By a simi-
o

lar argument applied to F, there exists Bo € R+(F) such that
o

g) - fi(F) & W, (2)
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for 82 By B € Rg(F). Clearly, a N Bo € RZ(E)/\ RZ(F). Conse-

quently, by (1) and (2) we have

ﬁ(ao(\ BO) - u(E) ¢ W,

and

u(aol\ BO) - U(F) € Wo

so that -{i(F) - {i(E)e W. This shows that there exists {En}j (

R =°°" q O v o
such that o ?En’ E C EEn and(TEn)\ E ¢ S(R)W(U)

REMARKS 2.4. The hypothesis‘that Q e S(R)isredundant in Lemma
2.3, since Theorem 3.3 of [9] can be shown to be wvalid with
suitable modifications by considering the hereditary o-ring ge

nerated by R, when S(R) is not a g-algebra.

LEMMA 2.5. Given W ¢ B and E,F in R with EC F and F\E eRw(u),

then F\ E ¢ S(R)w(ﬁ).

PROOF. Let A ¢ S(R) with A C F \E. Let Aa+ A in the topology
1 (1)~ , where {Aa} is a net in R. Then A_N(F\E) » AN(F\ E)=A
in r%u)j since | (p)~is a ring tovology on S(R). Consegquently,

by Theorem 2.2

i(a)= l%xm WA _N(FNE)) e W= W.

Thus F\E ¢ S(R)W(ﬁ).

THEOREM 2.6. Suppose u is a G-valued o-additive and exhausting
set function on the ring R with p(R) contained in a sequentially

complete set in G. Suppose the family%ofsubsets of @ is * closed

¢
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for countable unions.

(1)

If u is ‘%—Alexandroff regular on R, then the c-additive

extension §I of yu is‘%—Alexandroff regular on S(R).

(11) If 9 €S (R),{ON U:U’éé}cQLand u is4H—Alexandroff regular on

R, then ﬁjs{g,LJ—Alexandroff regular on S(R).

PROOF .

(1)

A

Let E ¢ S(R) and let WeB. Choose W € B such that W + W _
W. Then there exists a finite family (qi)f gf continuous

quasinorms on G and an € > o such that W€= {j Bq(o,e) < W.

By Lemma 2.3 and Remarks 2.4, there exists (En)j‘; R such

that E< UE  and

1 n (i‘?En) \VE e S(R)A(T) (1)
By hypothesis, for each n there exists Uneq%, An € R  such
that En.C:[%1C'Ah and An\ En > Rwe/ (u). If U= TUn,Umm
2n+1
. £ =
by hypothesis on 7§, U qu. If A= UAn, then A ¢ S(R) and E-
1 _
o . ©
UE_ C UCA. If Fe S(R) with FC A\NUE_, then F= UF"\(A *E ).
10 1 n 1 n'n

Now, by Lemma 2.5

H(FYMANE)) € W
n n E/2n+1

for each n. Let B = F!\(An\ En) and
n
H= UB,. Then

U(H )= Zu(B,\ U B.) (where B = §)
n 1 k i< k )




n

= I{J(B,) - (B, {\ U B.)}
1 k k j<kj
n’\ ~ ~
€ ZWE/ ) C W, ¢ W
1 oK
Consequently,
H(F)= lim{i(H_ ) € W (2)

as W is closed. Thus for B & S(R) with B AN\E we have

B= BA(ANUE ) U B "\((UE )\ E)
1 B 1 0

so that {i(B) ¢ W+ WC W by (1) and (2). Therefore, | i&

“%—Alexandroff regular on S(R).

(1i) Let Q € S(R) and{Q\U:U fg}cx;If E € S(R) and W € B, then
by (i) there exists U eqa and A ¢ S(R) such that O@NE . U
CA with AN (Q\E) ¢ S(R)W(ﬁ). Then Q\NA CQ\NU C E, i-U
j: and E N (Q2\ A)= A\ (Q\E) ¢ S(R)w(ﬁ). Hence [ is (%,L)—

Alexandroff regular on S(R).

Combining Theorems 1.5 and 2.6 we obtain the following

THEOREM 2.7. Let p be a G-valued exhausting additive set func
tion on the ring R with uw(R) contained in a sequentially com-
plete set in G. Suppose the family{,) isa lattice of sets closed for
countable unions and the family}L has the\%—c.c.p. If u is (E,
Iw)—Alexandroff regular on R, then u has a unique o-additive ex
tension i on S(R) and { isL%—Alexandroff regular on S(R). If
& ¢ S(R) and {Q\U:U sf%]rvl;, then U 1is further e%,lﬁ— Alexan

droff regular on S(R).
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The following result is immediate from the above theorem

and Theorem 1.6.

THEOREM 2.8. Let u be a G-valued exhausting additive set func
tion on a ring R  of subsets of a topological svace X, with
p(R) contained in a sequentially complete set in G. Suppose‘é

is the family of all open sets in X andl; is a family of sub
sets of X having the hCg—c.c.p. If u is z%,iq—Alexandroff regu-
lar on R, then u has a unique c-additive extension @ on S (R)
and {I is J%—Alexandroff regular on S(R). If X is countably com
pact, we can takeJi to be the family of all closed subsets of
X. If X is countably compact, X ¢ S(R) and]i= {CcX:C closed!,

then I is C%,i)—Alexandroff regular.

REMARKS 2.9. Since a bounded complex valued additive set func-
tion on a ring of sets is necessarily exhausting, Theorem
II1.5.14 of [7] mentioned in the outset is indeed a very special

case of Theorem 2.8.
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