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Abstract

In this paper we prove that the controllability for evolution equations in Banach spaces is not
destroyed, if we perturb the equation by a ”small” unbounded linear operator. This is done by
employing a perturbation principle from linear operator Theory. Finally, we apply these to a
control system governed by a partial parabolic equation.
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1 Introduction
In this work we study an abstract infinite dimensional control system of the form
7 =Az+ B(t)u(t), 2(t) € Z, u(t)eU, t>0, (1.1)

where Z, U are Banach spaces and t — B(t) : IR — L(U, Z) is bounded continuous in the strong
operator topology of L(U, Z). A is the infinitesimal generator of a Cyp -semigroup {T'(t; A)}:>0 and
the control function u belongs to the space of functions L%(0,t;; U).

Necesary and sufficient conditions for the controllability of the system (1.1) can be found in [1],
[2].

Here we are interested in answer the following question: If the control system (1.1) is control-
lable, then for which class of unbounded linear operators P on Z the perturbed system

2 =(A+ P)z+ B(t)u(t), t>0. (1.D)p

is also controllable?. It is easy to prove that if P is a bounded linear operator, which is small
enough in the uniform topology of L(Z), then the equation (1.1), is also controllable. But, if P is
unbounded this result is not true in general.

In this paper we shall answer this question for a very general class of unbounded linear operators
P(A), such that L(Z) C P(A)(see section 3).

One of the goals in this work is to prove the following statement: If for some Py € P(A) the
equation (1.1)p, is controllable according to Definition 2.1, then there exists a neighborhood NV (F)
of Py such that for all P € N (F,) the equation (1.1), issalso controllable.

* This research was partially supported by CDCHT-ULA



2 Unbounded Perturbation of the Controllability for Evolution Equations

2 Preliminaries

Now, we are ready to give the concept of controllability for the non-autonomous system (1.1). For
all 20 € Z and admissible control u € L%(0,t1;U), t; > 0 the equation (1.1) has a unique mild
solution given by

z(t, 20,u) = T(t; A)zo + /OtT(t — s; A)B(s)u(s)ds, 0<t<t. ‘ (2.1)

Definition 2.1 We shall say that the system (1.1) is exactly controllable on [0,%;], ¢; > 0, if for
all 2,2 € Z there exists a control u € L%(0,t; U) such that the solution z(t) of (2.1) corresponding
to u, verifies: z(t;) = 2.

One can say that z; is reachable from zp on time t; > 0.
Consider the following bounded linear operator

G:I*(0,t;U) = 2, Gu= /0 "Dt — 5 A)B(s)u(s)ds. 2.2)

Proposition 2.1 The system (1.1) is controllable on [0,t1] if and only if, the operator G is onto,
that is to say
GL*(0,t,;U) = GL* = RanGL?* = Z.

2.1 Perturbation Principle

The results presented in this section follow from a combination of Theorem 19 in [9] pg. 31 and
chapter XIII of [5]. It is well known that, if A is the infinitesimal generator of a Cp— semigroup
{T'(t; A)}i>o0 in the Banach space Z and P is a bounded linear operator in Z (P € L(Z)), then
A + P is the infinitesimal generator of a Cg-semigroup {T'(¢; A + P)}s>0 which is given by the
following formula B

¢
T(t; A+ P)z = T(¢; A)z+/ T(t— s;A)PT(s; A+ P)zds, z€ Z. (2.3)
0

Now, we shall see that: if P is an unbounded linear operator which is not too irregular relative to
A, then A + P is the infinitesimal generator of a Cyp-semigroup
{T(t; A+ P)}:>0, but, the formula 2.3 is not true in general.

We shall denote by D(S) the domain of an operator S in a Banach space W, L(W) the space
of bouded and linear operator defined on W and o(S) the spectrum of the linear operator S. With
these notation in mind, we will consider the following class of unbounded linear operators: If A
is the infinitesimal generator of a Co-semigroup {T(t; A)}s>0 we denote P(A) the class of closed
linear operators P satisfying the conditions

(I) D(4) € D(P),

(II) for each t > 0, there exists a constant h(t) > 0 such that
IPT (8, A)z|| < R(®)l2ll, Yz € D(A),

(I1]) the integral [ h(t)dt exists.
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Remark 2.1 A is bounded, if and only if A € P(A).
The following Theroem can be found in [9]. pg 631.

Theorem 2.1 Let A be the infinitesimal generator of a Cosemigroup {T'(t; A)}i>0 in Z. If P €
P(A), then A+ P defined on D(A + P) = D(A) is the infinitesimal generator of a Cy-semigroup
{T(t; A+ P)}s>0. Furthermore, )

T(t; A+ P)z=_ S.(t), (2.4)
0

where ,
So(t) =T(t; A) and S,(t)z= / T(t—s;A)PS,_1(s)zds, n>1, z€ Z,
0

and the serie (2.4) is absolutely convergent in the uniform norm of L(Z), uniformly with respect to
t in each finite interval. For each n and z the function S,(t)z is continuous for t > 0.

The following facts can be found in [9].

(a) Uso T(¢; A)z € D(P),

(b) the mapping z = PT(t; A)z, z € D(A), has a unique extension to a bounded operator defined
in on Z. In order to simplify the notation, we will call this extension PT(t).

(c) PT(t)z is continuous in ¢t > 0 at each 2z € Z. If wg = lim;0, log ||T(¢)||/t, then

log [PT()]| _

lim sup

wo.
t—o0 t

(d) if R(X) > wp, then

PR(); A)z = / * e MPT(1)2dt, 7€ Z;
0

where R(A; A) = (A - AI)~L
(e) If w > wo, then there exists M, < oo such that

IT@N < Mue, and [|PT(®)]| < Mue*, ¢ >0.

(f) forall B> o0 5
/ IPT(t)||d¢ < oo.

(h) If 5= [ e~“||PT(t)||dt < 1, then

ISn(t)]| < Mye**y™, n > 0.
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Proposition 2.2 Let A be the infinitesimal generator of a Co-semigroup {T'(t; A)}i>0 of type wo.
Define the function

1
4P Py) = [ NP1 = POT (5 A)lde, Py, Py € P(A), (2.5)
and for a fized w > wq the function .
§4(Py, Py) = /0 e~“!|(Py — Py)T(t; A)||d¢ Pi, P, € P(A). (2.6)

Then 84(Py, P2) and d4(Py, P;) are equivalent metrics on P(A). i.e., there ezist constants My
and m 4 such that

mada(Pr, Py) < da(P1, P) < Mabs(Py, P), P, P, e P(A).

Remark 2.2 If P — P, is bounded, then
1
da(P P) < ([ I AlIa)(Pr = Pl

Theorem 2.2 The function P € P(A) — T(t; A+ P) € L(Z) is continuous. i.e.,

i tLA+P)-T( A+ R)|| =
dm T A+ P) = T(5 A+ R =0,

uniformly with respect to t in each interval of the form [0,8], B> 0.
Furthermore. If 64(P, Po) < 1, then there ezists a constant M = M(P,) such that

JA(Pa PO)

. _ . < 2y Y
IT(54+P) = Tt A+ POl < T 1520

Me“t, t>0.

3 Main Results

From the foregoing section we have that (P(A),d4) is a metric space endowed with the metric d4.
Now, we are ready to study the following family of control systems.

2 =(A+P)z+ Bt)u(t), t>0, Pe (P(A),da). (3.1)p

Theorem 3.1 If for some Py € (P(A),da) the linear control system (3.1)p, is controllable on
[0,t1], then there ezists a neighborhood N (Py) of Py such that for each P € N(P,) the linear
control system (3.1)p is also controllable on [0, t,].

Proof Without lose of generality, we shall suppose that pp = 0. Next, consider the following linear
and bounded operator

4 ¢
Gp : L*(0,t4;U) = Z, Gpu=/lT(t—s;A-}—P)B(s)u(s)ds. (3.1)
0
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From proposition 2.1, it is enough to prove that Gp is onto for all P in a neighborhood A (0) of
zero. Since (1.1) is controllable on [0, ¢;] the operator G given by (2.2) is onto. i.e., RanG = Z.
It is well known from linear operators theory that; if RanG = Z, then there exists a number
a > 0 such that for all W € L(L?(0,ty,U), Z) with |W ~ G|| < @, we have that RanW = Z.
Now, using Theorem 2.2 we get that

‘

ty
IGpu=Gull = I [(T(t- 54+ P) = T(t - 5 ) Bls)u(s)ds|
5A(P, 0) t 2 \
AV T Me¥ B
s Men [ Bl u(e) s
5A (P’ 0) wiy
A M Bl allu]
Hence
6A(P’ 0) 13
- —————Me“"||B|| .
Then we can take 64 (P,0) small enough such that
64(P,0) why
TTID,O)MG ”B”Lz < a. (32)
ie.,
a
5a(P,0) < =r. (3.3)

|| Bllz2 Mexp(wt;) + a
Therefore, the neighborhood A (0) is given by

N(0) = {P € P(A) : 64(P,0) < r}. (3.4)

4 Applications

In this section we shall present an application of Theorem 3.1 to a control system governed by
a partial differential equation of parabolic type. More precisely, we shall consider the following
control system

2t = Zggge +a(2)2; + b(z, t)u(z,t), t>0, 0<z<1, (4.1)
2(0,t) = 2z(1,t) = 25:(0,t) = 2,.(1,¢) = 0. (4.2)
Where a belongs to the space C[0, 1] of continuous functions with the sup-norm and b: [0, 1] x Ry —

IR is a continuous and bounded function.
Let Z = L%(0,1) and consider the operators Az = Zzzga with domian D(A) which consists of

D(A)={z€ Z:Az€ Z; 2(0) = 2(1) = 2;2(0) = 2z;-(1) = 0},
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P,z = a(-)z;, z € D(B) which consists of
D(A)={z€ Z:P,z€ Z},

and B(t)u(z) = b(z,t)u(z), u€ Z.
The operator A generates a Co-semigroup {T'(t; A)}:>0 on the space Z, which is given by the
following formula: :
o 4.4 1
T(t; A)z=) 2™ " 'sin wz/ sin nmy.2z(y)dy, (4.3)
n=1 0
and it is easy to show that
M|la|
t1/4

BT (t; A)2|| < llzll, z€ D(A), t>o. (4.4)

Therefore, the system (4.1) -(4.2) can be written as follow
2= (A+ P)z+ B(t)u(t), t >0, acC[0,1]. (4.4),
We suppose that the unperturbed system
2 = Az + B(t)u(t), t >0, (4.5)
is controllable on [0,¢;], t; > 0. From (4.4) we get that P, € P(A) and

1
da(Ps,0) = /0||PaT(t;A)||dt

L dt
M||a||f0 74
4M

= ——lall.

3

IN

Hence, if the system(4.5) is controllable on [0, ¢;], then there exists a neighborhood A (0) of zero in
the space C[0, 1] such that for each a € A'(0) the system (4.4), is also controllable on [0, ¢,].
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