

NOTAS DE MATEMATICA

UNBOUNDED PERTURBATION OF THE CONTROLLABILITY FOR EVOLUTION EQUATIONS

POR

HUGO LEIVA

Universidad de los Andes Facultad de Ciencias Departamento de Matemática

Unbounded Perturbation of the Controllability for Evolution Equations

HUGO LEIVA

Notas de Matemática

Serie: Pre-Print No. 188

Mérida - Venezuela 1999

Unbounded Perturbation of the Controllability for Evolution Equations *

HUGO LEIVA

Abstract

In this paper we prove that the controllability for evolution equations in Banach spaces is not destroyed, if we perturb the equation by a "small" unbounded linear operator. This is done by employing a perturbation principle from linear operator Theory. Finally, we apply these to a control system governed by a partial parabolic equation.

Key words. evolution equations, controllability, perturbation principle.

AMS(MOS) subject classifications. primary: 93B05; secondary: 93C25.

1 Introduction

In this work we study an abstract infinite dimensional control system of the form

$$z' = Az + B(t)u(t), \quad z(t) \in Z, \quad u(t) \in U, \quad t > 0, \tag{1.1}$$

where Z, U are Banach spaces and $t \to B(t) : \mathbb{R} \to L(U,Z)$ is bounded continuous in the strong operator topology of L(U,Z). A is the infinitesimal generator of a C_0 -semigroup $\{T(t;A)\}_{t\geq 0}$ and the control function u belongs to the space of functions $L^2(0,t_1;U)$.

Necesary and sufficient conditions for the controllability of the system (1.1) can be found in [1], [2].

Here we are interested in answer the following question: If the control system (1.1) is controllable, then for which class of unbounded linear operators P on Z the perturbed system

$$z' = (A+P)z + B(t)u(t), \quad t > 0.$$
(1.1)_P

is also controllable?. It is easy to prove that if P is a bounded linear operator, which is small enough in the uniform topology of L(Z), then the equation $(1.1)_p$ is also controllable. But, if P is unbounded this result is not true in general.

In this paper we shall answer this question for a very general class of unbounded linear operators $\mathcal{P}(A)$, such that $L(Z) \subset \mathcal{P}(A)$ (see section 3).

One of the goals in this work is to prove the following statement: If for some $P_0 \in \mathcal{P}(A)$ the equation $(1.1)_{P_0}$ is controllable according to Definition 2.1, then there exists a neighborhood $\mathcal{N}(P_0)$ of P_0 such that for all $P \in \mathcal{N}(P_0)$ the equation $(1.1)_p$ is also controllable.

^{*}This research was partially supported by CDCHT-ULA

2 Preliminaries

Now, we are ready to give the concept of controllability for the non-autonomous system (1.1). For all $z_0 \in Z$ and admissible control $u \in L^2(0, t_1; U)$, $t_1 > 0$ the equation (1.1) has a unique mild solution given by

$$z(t, z_0, u) = T(t; A)z_0 + \int_0^t T(t - s; A)B(s)u(s)ds, \quad 0 \le t \le t_1.$$
 (2.1)

Definition 2.1 We shall say that the system (1.1) is exactly controllable on $[0, t_1]$, $t_1 > 0$, if for all $z_0, z_1 \in \mathbb{Z}$ there exists a control $u \in L^2(0, t_1; U)$ such that the solution z(t) of (2.1) corresponding to u, verifies: $z(t_1) = z_1$.

One can say that z_1 is reachable from z_0 on time $t_1 > 0$.

Consider the following bounded linear operator

$$G: L^2(0, t_1; U) \to Z, \quad Gu = \int_0^{t_1} T(t - s; A) B(s) u(s) ds.$$
 (2.2)

Proposition 2.1 The system (1.1) is controllable on $[0, t_1]$ if and only if, the operator G is onto, that is to say

$$GL^{2}(0, t_{1}; U) = GL^{2} = RanGL^{2} = Z.$$

2.1 Perturbation Principle

The results presented in this section follow from a combination of Theorem 19 in [9] pg. 31 and chapter XIII of [5]. It is well known that, if A is the infinitesimal generator of a C_0 - semigroup $\{T(t;A)\}_{t\geq 0}$ in the Banach space Z and P is a bounded linear operator in Z ($P\in L(Z)$), then A+P is the infinitesimal generator of a C_0 -semigroup $\{T(t;A+P)\}_{t\geq 0}$ which is given by the following formula

$$T(t; A+P)z = T(t; A)z + \int_0^t T(t-s; A)PT(s; A+P)zds, \quad z \in Z.$$
 (2.3)

Now, we shall see that: if P is an unbounded linear operator which is not too irregular relative to A, then A + P is the infinitesimal generator of a C_0 -semigroup $\{T(t; A + P)\}_{t>0}$, but, the formula 2.3 is not true in general.

We shall denote by $\mathcal{D}(S)$ the domain of an operator S in a Banach space W, L(W) the space of bouded and linear operator defined on W and $\sigma(S)$ the spectrum of the linear operator S. With these notation in mind, we will consider the following class of unbounded linear operators: If A is the infinitesimal generator of a C_0 -semigroup $\{T(t;A)\}_{t\geq 0}$ we denote $\mathcal{P}(A)$ the class of closed linear operators P satisfying the conditions

- (I) $\mathcal{D}(A) \subseteq \mathcal{D}(P)$,
- (II) for each t>0, there exists a constant $h(t)\geq 0$ such that

$$||PT(t,A)z|| \le h(t)||z||, \quad \forall z \in \mathcal{D}(A),$$

(III) the integral $\int_0^1 h(t)dt$ exists.

HUGO LEIVA

Remark 2.1 A is bounded, if and only if $A \in \mathcal{P}(A)$.

The following Theroem can be found in [9]. pg 631.

Theorem 2.1 Let A be the infinitesimal generator of a C_0 semigroup $\{T(t;A)\}_{t\geq 0}$ in Z. If $P\in \mathcal{P}(A)$, then A+P defined on $\mathcal{D}(A+P)=\mathcal{D}(A)$ is the infinitesimal generator of a C_0 -semigroup $\{T(t;A+P)\}_{t\geq 0}$. Furthermore,

$$T(t; A+P)z = \sum_{0}^{\infty} S_n(t), \quad t \ge 0,$$
 (2.4)

where

$$S_0(t) = T(t;A)$$
 and $S_n(t)z = \int_0^t T(t-s;A)PS_{n-1}(s)zds$, $n \ge 1$, $z \in Z$,

and the serie (2.4) is absolutely convergent in the uniform norm of L(Z), uniformly with respect to t in each finite interval. For each n and z the function $S_n(t)z$ is continuous for $t \geq 0$.

The following facts can be found in [9].

- (a) $\bigcup_{t>0} T(t; A)z \subseteq \mathcal{D}(P)$,
- (b) the mapping $z \to PT(t; A)z$, $z \in \mathcal{D}(A)$, has a unique extension to a bounded operator defined in on Z. In order to simplify the notation, we will call this extension PT(t).
- (c) PT(t)z is continuous in t>0 at each $z\in Z$. If $\omega_0=\lim_{t\to\infty}\log\|T(t)\|/t$, then

$$\limsup_{t \to \infty} \frac{\log \|PT(t)\|}{t} \le \omega_0.$$

(d) if $R(\lambda) > \omega_0$, then

$$P\mathcal{R}(\lambda; A)z = \int_0^\infty e^{-\lambda t} PT(t)zdt, \quad z \in Z;$$

where $\mathcal{R}(\lambda; A) = (A - \lambda I)^{-1}$.

(e) If $\omega > \omega_0$, then there exists $M_\omega < \infty$ such that

$$||T(t)|| \le M_{\omega}e^{\omega t}$$
, and $||PT(t)|| \le M_{\omega}e^{\omega t}$, $t \ge 0$.

(f) for all $\beta > o$

$$\int_0^\beta \|PT(t)\|dt < \infty.$$

(h) If $\gamma = \int_0^\infty e^{-\omega t} ||PT(t)|| dt < 1$, then

$$||S_n(t)|| \leq M_{\omega} e^{\omega t} \gamma^n, \quad n \geq 0.$$

Proposition 2.2 Let A be the infinitesimal generator of a C_0 -semigroup $\{T(t;A)\}_{t\geq 0}$ of type ω_0 . Define the function

$$d_A(P_1, P_2) = \int_0^1 ||(P_1 - P_2)T(t; A)|| dt, \quad P_1, P_2 \in \mathcal{P}(A), \tag{2.5}$$

and for a fixed $\omega > \omega_0$ the function

$$\delta_A(P_1, P_2) = \int_0^\infty e^{-\omega t} \|(P_1 - P_2)T(t; A)\| dt \ P_1, P_2 \in \mathcal{P}(A).$$
 (2.6)

Then $\delta_A(P_1, P_2)$ and $d_A(P_1, P_2)$ are equivalent metrics on $\mathcal{P}(A)$. i.e., there exist constants M_A and m_A such that

$$m_A \delta_A(P_1, P_2) < d_A(P_1, P_2) < M_A \delta_A(P_1, P_2), P_1, P_2 \in \mathcal{P}(A).$$

Remark 2.2 If $P_1 - P_2$ is bounded, then

$$d_A(P_1, P_2) \le (\int_0^1 ||T(t; A)|| dt) ||(P_1 - P_2)||.$$

Theorem 2.2 The function $P \in \mathcal{P}(A) \to T(t; A+P) \in L(Z)$ is continuous. i.e.,

$$\lim_{d_A(P,P_0)\to 0} ||T(t;A+P) - T(t;A+P_0)|| = 0,$$

uniformly with respect to t in each interval of the form $[0, \beta], \beta > 0$.

Furthermore. If $\delta_A(P, P_0) < 1$, then there exists a constant $M = M(P_0)$ such that

$$||T(t; A+P) - T(t; A+P_0)|| \le \frac{\delta_A(P, P_0)}{1 - \delta_A(P, P_0)} M e^{\omega t}, \quad t \ge 0.$$

3 Main Results

From the foregoing section we have that $(\mathcal{P}(A), d_A)$ is a metric space endowed with the metric d_A . Now, we are ready to study the following family of control systems.

$$z' = (A+P)z + B(t)u(t), \quad t > 0, \quad P \in (\mathcal{P}(A), d_A). \tag{3.1}_P$$

Theorem 3.1 If for some $P_0 \in (\mathcal{P}(A), d_A)$ the linear control system $(3.1)_{P_0}$ is controllable on $[0, t_1]$, then there exists a neighborhood $\mathcal{N}(P_0)$ of P_0 such that for each $P \in \mathcal{N}(P_0)$ the linear control system $(3.1)_P$ is also controllable on $[0, t_1]$.

Proof Without lose of generality, we shall suppose that $p_0 = 0$. Next, consider the following linear and bounded operator

$$G_P: L^2(0, t_1; U) \to Z, \quad G_P u = \int_0^{t_1} T(t - s; A + P) B(s) u(s) ds.$$
 (3.1)

HUGO LEIVA ______5

From proposition 2.1, it is enough to prove that G_P is onto for all P in a neighborhood $\mathcal{N}(0)$ of zero. Since (1.1) is controllable on $[0, t_1]$ the operator G given by (2.2) is onto i.e., $\operatorname{Ran} G = Z$.

It is well known from linear operators theory that; if $\operatorname{Ran} G = Z$, then there exists a number $\alpha > 0$ such that for all $W \in L(L^2(0,t_1,U),Z)$ with $\|W-G\| < \alpha$, we have that $\operatorname{Ran} W = Z$.

Now, using Theorem 2.2 we get that

$$||G_{P}u - Gu|| = ||\int_{0}^{t_{1}} (T(t - s; A + P) - T(t - s; A))B(s)u(s)ds||$$

$$\leq \frac{\delta_{A}(P, 0)}{1 - \delta_{A}(P, 0)} Me^{\omega t_{1}} \int_{0}^{t_{1}} ||B(s)|| ||u(s)|| ds$$

$$\leq \frac{\delta_{A}(P, 0)}{1 - \delta_{A}(P, 0)} Me^{\omega t_{1}} ||B||_{L^{2}} ||u||_{L^{2}}.$$

Hence

$$||G_P - G|| \le \frac{\delta_A(P,0)}{1 - \delta_A(P,0)} M e^{\omega t_1} ||B||_{L^2}.$$

Then we can take $\delta_A(P,0)$ small enough such that

$$\frac{\delta_A(P,0)}{1 - \delta_A(P,0)} M e^{\omega t_1} ||B||_{L^2} < \alpha. \tag{3.2}$$

i.e.,

$$\delta_A(P,0) < \frac{\alpha}{\|B\|_{L^2} M \exp(\omega t_1) + \alpha} = r. \tag{3.3}$$

Therefore, the neighborhood $\mathcal{N}(0)$ is given by

$$\mathcal{N}(0) = \{ P \in \mathcal{P}(A) : \delta_A(P, 0) < r \}. \tag{3.4}$$

4 Applications

In this section we shall present an application of Theorem 3.1 to a control system governed by a partial differential equation of parabolic type. More precisely, we shall consider the following control system

$$z_t = z_{xxxx} + a(x)z_x + b(x,t)u(x,t), \quad t > 0, \quad 0 < x < 1, \tag{4.1}$$

$$z(0,t) = z(1,t) = z_{xx}(0,t) = z_{xx}(1,t) = 0.$$
 (4.2)

Where a belongs to the space C[0,1] of continuous functions with the sup-norm and $b:[0,1]\times \mathbb{R}_+ \to \mathbb{R}$ is a continuous and bounded function.

Let $Z = L^2(0,1)$ and consider the operators $Az = z_{xxyx}$ with domian D(A) which consists of

$$D(A) = \{ z \in Z : Az \in Z; \ z(0) = z(1) = z_{xx}(0) = z_{xx}(1) = 0 \},$$

 $P_a z = a(\cdot) z_x, \quad z \in D(B)$ which consists of

$$D(A) = \{ z \in Z : P_a z \in Z \},$$

and $B(t)u(x) = b(x,t)u(x), u \in \mathbb{Z}$.

The operator A generates a C_0 -semigroup $\{T(t;A)\}_{t\geq 0}$ on the space Z, which is given by the following formula:

$$T(t;A)z = \sum_{n=1}^{\infty} 2e^{-n^4\pi^4t} \sin \pi x \int_0^1 \sin n\pi y \cdot z(y) dy,$$
 (4.3)

and it is easy to show that

$$||P_aT(t;A)z|| \le \frac{M||a||}{t^{1/4}}||z||, \quad z \in D(A), \quad t > 0.$$
 (4.4)

Therefore, the system (4.1) -(4.2) can be written as follow

$$z' = (A + P_a)z + B(t)u(t), \quad t > 0, \quad a \in C[0, 1].$$

$$(4.4)_a$$

We suppose that the unperturbed system

$$z' = Az + B(t)u(t), \quad t > 0,$$
 (4.5)

is controllable on $[0, t_1]$, $t_1 > 0$. From (4.4) we get that $P_a \in \mathcal{P}(A)$ and

$$d_{A}(P_{a}, 0) = \int_{0}^{1} ||P_{a}T(t; A)|| dt$$

$$\leq M||a|| \int_{0}^{1} \frac{dt}{t^{1/4}}$$

$$= \frac{4M}{3} ||a||.$$

Hence, if the system (4.5) is controllable on $[0, t_1]$, then there exists a neighborhood $\mathcal{N}(0)$ of zero in the space C[0, 1] such that for each $a \in \mathcal{N}(0)$ the system (4.4)_a is also controllable on $[0, t_1]$.

HUGO LEIVA 7

References

[1] R.F. Curtain and A.J. Pritchard, "Infinite Dimensional Linear Systems", Lecture Notes in Control and Information Sciences, Vol. 8. Springer Verlag, Berlin (1978).

- [2] R.F. Curtain and A.J. Pritchard, "An Abstract Theory for Unbounded Control Action for Distributed Parameter Systems", SIAM. J. Control and Optimization. Vol. 15; No 4, July 1997.
- [3] Dunford and Schwartz "Linear Operators General Theory", Part I. Wiley Classics Library. (1988)
- [4] E. Hille and R. S. Phillips "Functional Analysis and Semi-Groups". AMS. Vol. 31. Edition (1985).
- [5] D.Hinrichsen and A.J.Pritchard, "Robust Stability of Linear Evolution operators on Banach Spaces", report Nr.269(1992), Institut f ür Dynamische Systeme F.M.I Universit ät Bremen, Germany.
- [6] R.Johnson and M.Nerurkar, "On Null Controllability of Linear Systems with Recurrent coefficients and constrained Controls", to appear in the Journal of Dynamics and Differential Equations (1992).
- [7] R.Johnson and M.Nerurkar, "Stabilization and Linear Regulator Problem for Linear Non-autonomous Control Processes", submitted for publication (1991).
- [8] V.I. Korobov and R. Rabakh "Exact Controllabity in Banach Spaces", A.M. Gorki Kharkov State University. Translated from Differentsial nye Uravheniya, Vol. 15 No 12, pp. 2142-2150, December (1979).
- [9] Dunford and Schwartz "Linear Operators General Theory", Part I. Wiley Classics Library. (1988)

Universidad de Los Andes, Facultad de Ciencias, Departamento de Matemáticas, Mérida 5101 - Venezuela

E-mail: hleiva@ciens.ula.ve