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Existence of Bounded Solutions of a Second Order System with
Dissipation *
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Abstract
In this note, we study the following second order system of ordinary differential equations with
dissipation
u’' +cu' +dAu+ kH(u) = P(t), ue R*, t€ R,

where ¢, d and k are positive constants, H : IR® — IR" is a locally Lipschitz function and
P : R — IR" is a continuous and bounded function. A is a n x n matrix whose eigenvalues are
positive. Under these conditions, we prove that for some values of ¢, d and k this system has
a bounded solution which is exponentially asymptotically stable. Moreover; if P(t) is almost
periodic, then this bounded solution is also almost periodic. These results are applied to the
spatial discretization of very well known second order partial differential equations.

Key words. differential equation, bounded solutions, stability.
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1 Introduction

The following second order system of differential equations in IR™ has been studied by Alonso and
Ortega in [2]

v+ cu' + Au+VG(u) = P(t), ve R", t€ R, (1.1)
where ¢ > 0 is a constant, A is a n X n symetric semidefinite positive constant matrix, P is a
continuous function and bounded, and G € C?(IR"). They were interested in the existence of a

bounded solution of (1.1) which is exponentially asymptotically stable. For the sake of convenience,
we formulate here the main result of that work.

Theorem 1.1 Let A;(A) > 0 be the smallest eigenvalue of the matriz A and assume that there
ezist non-negative constants a and b such that

al, < D*G(£) < bl,,, V€€ R™, (1.2)

b< a+c2+2c\/a+ A1(A).

Then (1.1) has a unique bounded solution which is ezponential asymptotically stable.
Moreover; if P(t) is T-periodic, then such a solution # also T-periodic.

with a + A1(A) > 0 and

* This research was partially supported by CDCHT-ULA



2 EXISTENCE OF BOUNDED SOLUTIONS

For the proof of Theorem 1.1 they used the method of guiding functions and a quadratic Lyapunov
function. That result can be applied to a spatial discretization of the following very well known
partial differential equations:

Example 1.1 The Sine-Gordon Equation with Dirichlet boundary conditions

{Uu—i—cUt—dUm+kSinU= p(t,z), 0<z <L, te R, (1.3)

U(t,0)=U(t,L) =0, te R,

where ¢, d and k are positive constants, p: IR x [0, L] = IR is continuous and bounded.
For each N € IN the spatial discretization of this equation is given by

{u§/+cu§+d5—2(2u,~—u,~+1—u;_l)—i—ksinu;: pi(t), 1<i<N, teR, (1.4)

up = un+1 = 0.

This discrete version of the equation (1.3) can be studied for several reasons. First, they represent
a simple scheme that might be used to simulate equation (1.3) nume

rically. Second, the partial differential equations are usually derived as continuous approrimation
of discrete systems. Another reason, could be purely mathematical. This system can be written in
the vector form (1.1), where A is the following matriz

2 -1 o --- 0
1 2 -1 .- 0
dé? T (1.5)
0 - -1 2 -1
0o .- 0 -1 2

§=L/(N+1) and G(€) = -k N, cos¢;.
Example 1.2 The suspension bridge model proposed by Lazer and Mckenna(see, [{], [5]).

Utt+CUt+dezrz+kU+= p(t,z), 0<I<L’ tER, (1 6)
U(t,0=0U(t,L)= Urs(t,0) = Uss(t, L)=0, teR, .
where ¢,d and k are positive constants, p : IR X [0, L] = IR is continuous and bounded.
Also, the discrete version of the equation (1.6) can be written in the vector form (1.1), where

A 1is the following matriz

[ 5 -4 1
-4 6 -1 1
1 -4 6 -4 1

ds™* oo (1.7)
1 -4 6 -4 1
1 -4 6 —4
\ A -4 5)

with § = L/(N + 1) and G(€) = (k/2) TN, (&)
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In this note, we shall study the following second order system of differential equations in R™
u" +cu' +dAu+kH(u) = P(t), v€ R*, t€ R, (1.8)

where ¢, d and k are positive constants, H : R* — IR"™ is simplely a locally Lipschitz function
and P € Cy(IR; R"), the space of continuous and bounded functions. A is a n x n matrix whose
eigenvalues are positive. Here we have changed the function VG € C'(IR; R™) by the locally
Lipschitz function H and dropped the hypothesis (1.2) of Theorem 1.1.

Of course that, the discrete versions of the partial differential equations (1.3) and (1.6) can be
written in the form of our system (1.8), where the matrix A is given respectively by (1.5) and (1.7),
which have simple and positive eigenvalues.

Under these conditions, we prove that there exist £ > 0, d > 0 and ¢ > 0 such that the equation
(1.8) has one and only one bounded solution u(t) which is exponentially asymptotically stable.
Moreover, is P(t) is almost periodic, then such a solution is also almost periodic(see Theorems 3.1,
3.2 and Lemma 3.1 in section 3).

Our method is very simple, we just rewrite the equation (1.8) as a first orden system of ordinary
differential equations and find the exponential bounds for the solutions of the linear part of this
system. Next, we use the variation constant formula and some ideas from [10] [11] to find a formula
for the bounded solutions of (1.8). From this formula we can prove the exponential stability easily.
Finally, our method can be apply in the case that the equation (1.8) is an abstract second order
differential equation in a Hilbert space H with A been an unbounded operator with the following
properties:

A is a self-adjoint operator with the spectrum o(A) consisting of isolated eigenvalues 0 < A; <
Az < -+ < Ay — 00 each one with finite multiplicity v; equal to the dimension of the corresponding
eigenspace and
a) there exists a complete orthonormal set {¢;x} of eigenvector of A.

b) for all z € D(A) we have
o] Y5 [ee]
Az = Z Aj Z <z, Pk > k= Z A Bz,
j=1 k=1 j=1
where < -, > is the inner product in H and
Vs
Ejz = Z <, 05k > k-
k=1
So, {E;} is a family of complete orthogonal projections in H and z = > j=1 Ejz, z€H.

c) —A generates an analytic semigroup {e~4*} given by

)
e Aty = Z e_’\ftEja:.
7=1

¢
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2 Preliminaries Results

Before we prove the main Theorems of this work, we shall prove some preliminaries results to be
use in the next section. The equation (1.8) can be written as a first order system of ordinary
differential equations in the space W = IR™ x IR™ as follow:

w' + Aw+ kH(w) =P(t), weW, te R, . (2.1)

where v = v’ and

U 0 0 0 -1
w:(v)’H:(H(u))’P:(P(t))andA:(dA c])' (2.2)

In this section, we shall study the linear part of the equation (2.1):
w+Aw=0, weW, teR. (2.3)

From now on, we shall suppose that each eigenvalue of the matrix A is positive and has multiplicity
v; equal to the dimension of the corresponding eigenspace. Therefore, if 0 < A} < A2 < -+ ); are
the eigenvalues of A, we have the following:

a) there exists a complete orthonormal set {¢;} of eigenvector of A in IR".

b) for all ¢ € IR™ we have

] Y5 1
Az = Z/\j Z < T, Pk > Pk = Z AjEjz, (2.4)
1=1 k=1 1=1

where < -,- > is the inner product in IR™ and

Vs
E;z = Z <z,Pik> ik (2.5)
k=1

So, {E;} is a family of complete orthogonal projections in R and z = Z§-=1 Ejz, z € R"
c) the exponential matrix e~4* is given by

l
e =" e ME;. (2.6)

i=1

Theorem 2.1 Suppose that ¢ # 2,/dX\;, j=1,2,...,1. Then the exponential matriz e~A* of the
matriz —A given by (2.2) can be written as follow

1
e~ Aty — Z{em(j)th(j)w-i- epz(j)tQ2(j)w}, weW, teR, (2.7)
Jj=1
where
o —cty /e —4dX;
p(3) = 5 y JEL2,001 (2.8)

and {Q:(j) :1 =1, 2}§-=1 s a complete orthogonal system of projections in W.
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Proof Define the following complete orthogonal system of projections in W
~ _( E; 0 .
E’_(O E,j), i=12,...,L (2.9)

Then; if we project the equation (2.3) on the space Ran(E;) (the range of E;), we obtain the
following family of systems ’

v—-—v=0 .
(Sj){ Voot diumg I h2el

Henceforth, the solution w(t) of the system (2.3) passing through the point wg at ¢t = 0 is given by
! !
w(t) = e_‘Atwo = Zij(t) = Z w;(t), (2.10)
j:l i=1

where w;(t) is the solution of the system (S;) such that w;(0) = E;w(0) = E;wo.
On the other hand, the system (S;) can be written as follow

y' = B;y, y€Ran(E;), j=1,2,...,1,

0 1
B’_(—d)\j —c)'

w;i(t) = ertwj(O) = ertijo, i=12,...,1L

where

Hence,

Clearly that the eigenvalues of the matrix B; are given by

B —cty/c? — 4d);

P(])— D) y 1=12,...,L

Since ¢ # 2,/dAj, j =1,2,...,1, then the p;, s are simples. Thus, there exist a complete system
of orthogonal projections {P;(5)}%, in IR? such that

eBit = en )t p, () + e”’(j)th(j), i=12,...,L
Moreover, we can compute these projections

1 -1
)= T B PO, D)= (- D),
c —4d)\j

Pi(5) =
,/cz—4d)\j

Therefore, from (2.10) we get that the solution w(t) of the linear equation (2.3) is given by

l
w(t)e™*wy = Z {e”l(j)tPl () E;wo + eP2(i)tP2(j)E'jwo} , woeW, teR.

Jj=1 P)

Then, putting Q;(j) = P:(j)E; we obtain the result. 0
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Remark 2.1 We have abused of notation in the proof of Theorem 2.1, by consider 2 X 2 matriz
B = (bij)2x2 as an operator acting in IR" x IR"; what we really mean is:

B[ ulp bulp
barlpr ba2lppn |-

Corollary 2.1 The spectrum o(—.A) of the matriz — A is given by

—ct4y/c% — 4d);
o(—A) = {2V L =121

- ’

2
Corollary 2.2 Under the hypothesis of Theorem 2.1 we have that

le=| < e™?t, t >0, (2.11)
where
—ct4/c? — 4dA;
0>-8=-0(cd)= maz{Re(pj) = Re ( — 5 ]) 7=12,..,0l 1= 1,2.}.

Proof From the formula (2.7) we get that

l
leAtw|2 = 3 {e2Re@ON)Q; (j)w]? + 2R Qy (j)w?}
1=1

l
< e {]1Qi () wll? + 11Q2(5)wl?}
J=1
= e P w|? weW, t>0.
Therefore, ||e~4|| < e~#t, ¢t > 0. 0

3 Main Results

In this section we shall prove the main Theorems of this paper, under the hypothesis of Theorem

2.1(c# 2\/dX;, j=1,2,...,1).
The solution of (2.1) passing through the point wo at time ¢t = ¢y is given by the variation
constant formula

w(t) = e AC—t0yy 1 [ e~AE=9) (_k31(u(s)) + P(s)}ds, t e R (3.1)

to

We shall consider W, = Cy(IR, W) the spﬁce of bounded and continuous functions defined in IR
taking values in W = IR™ x IR". W, is a Banach space with suprem norm

lwllo = sup{||w(®)|lw : t € R}, w e W,.
A ball of radio p > 0 and center zero in this space is givgn by

BY={weW,:|wt)s <p, teR})



HUGO LEIVA

Lemma 3.1 Let w be in Wy. Then, w is a solution of (2.1) if and only if w is given by

w(t) = /_ ; e~ A=) {_kH(w(s)) + P(s)}ds, t€ R.

(3.2)

Proof Suppose that w is a solution of (2.1). Then, from the variation constant formula (3.1) and

the uniqueness of the solution of (2.1) we get that

w(t) = e~ A=) y(tg) + te"'A(t"){—k’H(w(s))+P(s)}ds, t > to.

to

On the other hand, from (2.11) we obtain that
le™ At~ w(to) || < et |[w(to)||, ¢ > to,
and since ||w(t)|| < M, t € IR, we get the following estimate
lem A0 w(to) | < MePE5), ¢ > 4,

which implies that

Jim e 4w (to) || = .

Therefore, passing to the limit in (3.3) when ¢y goes to —oo we conclude that
w(t)= [ ; e~ A=) (_kH(w(s)) + P(s)} ds, ¢ € R.
Suppose that w is a solution of the integral equation (3.2). Then
w(t) = /_ 000 e~ AU=3) {_kH(w(s)) + P(s)} ds
o+ /0 e A=) {=kH(w(s)) + P(s)}ds.

On the other hand, we have that

0

I /_ (; e~At=9) {_kH(w(s)) + P(s)} ds|| < / P (kR + Ly} ds =

where R,, and L, are constants such that
[H(w(s)]| < Bu, |P(s)l| < Ly, s€R.
Hence, the following improper integral is well defined

wo = /_0 e™At=2) (—kH(w(s)) + P(s)} ds,

and

w(t) = e A"y, + /0 e At-) {=fH(w(s)) + P(s)} ds.

This concludes the proof of the lemma.

(3.3)
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Theorem 3.1 For p > 0 and k > 0 there ezist d,c > 0 such that the equation (2.1) has one and
only one solution w(-) which belong to the ball Bf,. Moreover, this bounded solution is exponentially
asymptotically stable.

Proof For the existence of such solution, we shall prove that the following operator has a unique
fixed point in the ball Bg, T: Bg — Bg

t
(Tw)(t) = / e~ A=) {_kH(w(s)) + P(s)} ds, t € R. (3.4)
Consider R = sup,¢p, ||H(w)|| and L = sup . g [|P(s)|| and put M = kR+L. Then, forall w € Bg

we get

1
meslmemm@=%.

From corollary 2.2, we can choose ¢ and d such that
M kR+ L

Blcd ~ pled =P (39)

then Tw € Bg, w € Bg.
Now, we shall prove that T is a contraction mapping. In fact, for w;, ws € Bg we have that

t
ITwi(®) - Twa@ S [ e P4kL,llwa(s) = wa(s)ds,

where L, is the Lipschitz constant of # in the ball
Byp = {w e W :||w]| < 2p}.
So,

kL
| Twr — Twals < Tpllwl — wa|ls.

Hence; if we choose ¢ and d such that
kL,
B(c,d)

then, T is a contraction mapping. Therefore, T has a unique fixed point wy in Bg. i.e.,

<1, (3.6)

wy(t) = (Twy)(t) = / t e~ A=) {_kH(wy(s)) + P(s)} ds, t € R,

—00

and from Lemma 3.1 wp(t) is solution of the equation (2.1).

To prove that wy(t) is exponentially asymptotilly stable, we shall consider any other solution
w(t) of the equation (2.1) such that ||w(0) — ws(0)|| < &. Then, ||w(0)]| < 2p. As long as ||w(t)||
remains less than 2p we get the following estimate:

) = wo)ll < ™4 (w(0) = wn(0))+ [ A {kH(u(s)) ~ kA(wn(s))}ds]

t [}
A e Pk, ||lw(s) — ws(s)||ds.

IN
o
|
2
T
S
|
§
e
+
S—
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Theorem 3.2 Consider a function H such that H(0) = 0 and
|H(U1) — HU2)|| < L||Uy — Ue|, Ur, U2 € R™ 3.7)
Suppose p > 0 big enough such that

0 < L, = sup [|P(5)] < (B(erd) — kL. C @)
selR

Then the eqﬁation (2.1) has one and only one solution wy(t) which belong to the ball BS in W.
Moreover, this bounded solution is the only bounded solution of the equation (2.1) and is ezpo-
nentially stable in the large.

Proof For the existence of such solution, we shall prove that the following operator has a unique

fixed point in the ball B:’,, T: B:’, — Bf’,

(Tw)(t) = /t e~ AU=) {_kH(w(s)) + P(s)} ds, t€ R.

— 00

In fact, for w € Bf, we have

E o, kL)p+ L
ITw@ll < [P kue)) + 1,3 < ERLE L
The condition (3.8) implies that
kLp+ L
kLp+ L, < Bp < L+—”<p

B

Therefore, Tw € Bg for all w € Bs.
Now, we shall see that T is a contraction mapping. In fact, for all w,,w; € Bf’, we have that

(s kL
ITw1(t) — Twa(t)]] < / e Pk L|jwi(s) — ws(s)||ds < 5 o - walls, t€R.

Hence,
s = Twalle < SENTws = walls, w0 € B
The condition (3.8) implies that
0<pB-kL < kKL< <= I%L<1.

Therefore, T has a unique fixed point w; in B}

wn(t) = (Tun)(t) = [ A=) (k{0 () + P(s))} ds, 1€ B,

—00
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Then,

™ lw(t) — wp(®)|| < [|(w(0) - wy(0))]] + /Ot e kL,||lw(s) — ws(s)||ds.
Hence, applying the Gronwall’s inequality we obtain
() - ws(B)]] < L (w(0) — wy(O))Il, 0 <t < tr.
From (3.6) we get that kL, — 8 < 0 and therefore
o) - ws(®)ll < @w(0) - wiO))ll < &, 0<e<t.

If |lw(t)|| < 2p on [0,¢;) with ¢; been the maximal time with this property, then either ¢; = oo

or ||lw(t1)|| = 2p. But the second case contradicts this computation, therefore the solution w(t)
remains in the ball B;, of center zero and radio p in W for ¢t > 0.
Hence,

[lw(t) = wa(®)]] < e®Eo=P)||(w(0) — ws(0))]], t > 0.
This concludes the proof of the theorem. 0

Remark 3.1 The discrete version (1.4) of the partial differential equation (1.3) can be interpreted
as a model for the motion of a system of n linealy coupled pendulums with linear damping and
external forces acting on the system; where c is the coefficient of friction and k refers to the length
of the pendulums. In the same way, in the equation (1.6) k represents the spring constant of the
restoring force due to the cables. In these examples, we can say more about the bonded solutions.
In fact, we shall prove that this bounded solution is global and ezponentially asymptotically stable
in large.



HUGO LEIVA 1

From Lemma 3.1, wy is a bounded solution of the equation (2.1). Since condition (3.8) holds for
any p > 0 big enough independent of kL < (¢, d), then wy is the unique bounded solution of the
equation (2.1).

To prove that ws(t) is exponentially stable in the large, we shall consider any other solution
w(t) of (2.1) and consider the following estimate

lw(t) = we@)ll < [le™* (w(0) — wy(0 +/ 409 {kH(w(s)) — kH(ws(s))} dsl|

€A (w(0) — wy (0))]| + / A=)k L[ (s) — wy(s)]|ds.

IA

Then,
e we) - ws@)] < 6w ~ wsO) + [ KL fw(s) - ws(s)ds.
Hence, applying the Gronwall’s inequality we obtain
lw(t) — ws(®)]| < e*E2=PH)|(w(0) = wa ()], t > 0.
From (3.8) we get that kL — 8 < 0 and therefore wy(t) is exponentially stable in the large. 0

Corollary 3.1 The bounded solution wy(-, P) given by Theorem 3.2 depends continuously on P €
Cy(R, R™).

Proof Let P, P2 € Cy(IR, R") and wy(+, P,), ws(+, P2) be the bounded functions given by Theorem
3.2. Then

w(, 1) —wp(, P) = t Ak {H(wi(s, P2)) = H(ws(s, Pr))} ds

[ e
i

+ —AW=9)k {Py(s) — P1(s)} ds.
Therefore,
kL
lws (-, Pr) — ws(+, P)ls < Fllw( y P1) — we(-, P2)lls
1
+ E”Pl — P|ls.
Hence,
1
lws (-, P1) — ws (-, P2)|ls < 5o TP — Palle.

We conclude this work with the following lemma about almost periodicity of the bounded
solutions of the equation (2.1).

Lemma 3.2 If P(t) is almost periodic, then the unique Bounded solution of the system (2.1) given
by Theorems 3.1 and 3.2 is also almost periodic.
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Proof To prove this lemma, we shall use Theorema 1 in the Appendix of [6] which said that. A
function f € C(IR; BN) is almost periodic (a.p) if and only if the Hull H(f) of f is compact in the
topology of uniform convergence.

Where H(f) is the closure of the set of translates of f under the topology of uniform convergence

H(f)y={fr:TeR}, [f(t)=flt+7)telR. .

Since the limit of a uniformly convergent sequence of a.p. functions is a.p., then the set A, of a.p.
functions in the ball B,’; is closed, where p is given by Theorem 3.1 or 3.2.

Claim. The contraction mapping T given in Theorems 3.1 and 3.2 leaves A4, inva-

riant. In fact; if w € A,, then f(t) = —kH(w(t)) + P(t) is also an a.p. function. Now, consider the
function

FO) = @w)@) = [ A (—kHw(s) + ()} ds

t
= / eAt=9) f(5)ds, t € R.
—00
Then, it is enough to establish that H(F) is compact in the topology of uniform convergence. Let
{F;,} be any sequence in H(F). Since f is a.p. we can select from {f; } a Cauchy subsequence
{fT,‘]_ }, and we have that

t+’l’k].

F, (t)=F(t+m,) = / AU =9) ) g

-0

t
= / e"“(t")f(s + 7%, )ds.

Hence,
1
1Py @) = Fo @1 < [ e 955+ 71,) = £+ 75, s
t . 1
< ”kaj - f’rk'-“b /;oo e Pl=)ds = E”f’rk_’ - f’rk(- lo-

Therefore, {FTkJ} is a Cauchy sequence. So, H(F) is compact in the topology of uniform conver-
gence, F'is a.p. and TA, C A,.
Now, the unique fixed point of T in the ball Bz lies in A,. Hence, the unique bounded solution
wp(t) of the equation (2.1) given in Theorems 3.1 and 3.2 is also almost periodic. 0
Although the following corollary follows from the fact that every periodic function is a.p., we
shall give here a direct proof.

Corollary 3.2 If P(t) is periodic, then the unique bounded solution of the system (2.1) given by
Theorems 3.1 and 3.2 is also periodic.

Proof Suppose that P is periodic of period 7 and let w; be the unique solution of (2.1) in the
ball BS. Then, w(t) = wy(t + 7) is also a solution of the equation (2.1) lying in the ball B, and
by the uniqueness of the fixed point of the contraction 4napping T in this ball, we conclude that
wi(t) = wy(t+1), teR. 0
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