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Abstract
In this paper we study the following abstract second order differential equations with dissipation
in a Hilbert space H
v’ + cu' +dAu+ kG(u) = P(t), ue H, t€ R,

where ¢, d and k are positive constants, G : H — H is a Lipschitzian function and P : R — H is
a continuous and bounded function. A : D(A) C H — H is an unbounded linear operator self-
adjoint, positive definite and has compact resolvent. Under these conditions we prove that for
some values of d, ¢ and k this system has a bounded solution which is exponentilly asymptotically
stable. Moreover; if P(t) is almost periodic, then this bounded solution is also almost periodic.
These results are applied to a very well known second order system partial differential equations;
such as, The Sine Gordon equation, The suspension bridge equation proposed by Lazer and
Mckenna, etc.

Key words. differential equations, bounded solutions, stability.
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1 Introduction

In this paper, we study the existence and the asymptotic behavior of the bounded solutions of the
following abstract second order differential equation with dissipation

v+ cu' + dAu+kG(uv) = P(t), v€ H, t€ R, (1.1)

where H is a Hilbert space, ¢, d and k are positive constants, P : IR — H is a continuous and
bounded function, and G : H — H is a Lipschitzian function. i.e., there exists L > 0 such that

|G(U1) = GUa)|| < L||Us ~ Vs, Ur,Us € H. (1.2)

A:D(A) C H — H is an unbounded linear operator, self-adjoint, positive definite and has compact
resolvent. Under these conditions stated on A it follows that:
The spectrum o(A) of A consisting of isolated eigenvalues

0< A1 <A< <Ay 0

* This research was partially supported by CDCHT-ULA



2 EXISTENCE OF BOUNDED SOLUTIONS

each one with finite multiplicity v; equal to the dimension of the corresponding eigenspace and
a) there exists a complete orthonormal set {¢;x} of eigenvector of A in H.

b) for all z € D(A) we have

o) Y o0
Az =) XD <z,8ik > dik = YA Ejz, . (1.3)

j=1 k=1 7=1
where < -, > is the inner product in H and
V5
Ejz =) <,0ik > bjk-
k=1

So, {E;} is a family of complete orthogonal projections in H and

)
z:ZEjz, z € H.
i=1

c) —A generates an analytic semigroup {e~4*} given by

o0
e~ Atz = Ze_'\ﬂE‘jz, reH.

1=1
Many very well known system of partial differential equations can be written in the form of system
(1.1):
Example 1.1 The Sine-Gordon Equation with Dirichlet boundary conditions

(1.4)

U+ cUi — dUgz + ksinU = p(t,z), 0<z<L, te R,
U(t,0)=U(t, L) =0, € R,

where ¢ and k are positive constants, p : IR x [0, L] = IR is continuous and bounded. In this case we
take: H = L?(0,L) and A¢ = —¢,, with domain D(A) = H2NH}. G(u) =sin v and P(t) = p(t, -)

Example 1.2 The suspension bridge model proposed by Lazer and Mckenna(see, [4], [5]).

{ Uyt +CUt+dUzz;xz+kU+ = P(tyz), 0<z<L, teR, (1 5)

U(t10) = U(ta L) = Uz’z‘(t’o) = Um,(t, L) =0, te R,

where ¢, d and k are positive constants, p: IR X [0, L] =& IR is continuous and bounded. In this case
we take: H = L2(0,L) and A¢p = —¢yyz, with domain

GU)=U* and P(t) = p(t,-).
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Example 1.3 We consider a system of Sine-Gordon equation occurring in the
Josephson junctions (see M. Levi [10])

Ui + cUp — dAU + ksinU + k(U - V) = pi(t, 2),
Vit + cVi — dAV + ksinV + k(V - U) = pa(t, z), (1.6)
U(t,z) =V(t,z) =0 on 9Q x R.

)

where Q is a smooth bounded domain in IR™. In this case we take H = L%(Q) x L?(Q), A(¢1,¢2) =
(-A¢y, —A¢;) with domain D(A) = (H(Q) N HE(Q))2.

A finite dimensional version of the system (1.1)( H = IR™ and A — n X n matrix) has been studied
in [2], [9] and [8], where they proved the existence of a bounded solution of this equation, which
is exponentially stable, and applied those results to the spatial discretization of the systems (1.4)
and (1.5).

Under the above conditions, we prove that for some ¢ > 0, d > 0 and k£ > 0 the equation (1.1)
has one and only one bounded solution u(t) which is exponentially asymptotically stable. Moreover,
if P(t) is almost periodic, then such a solution is also almost periodic(see Theorem 3.1 and Lemma
3.2 in section 3).

Our method is very simple, we just rewrite the equation (1.1) as a first orden system of abstract
ordinary differential equations. Next, we prove that the linear part of this equation generates a
Co-group which decays exponentially to zero. After that, we use the variation constans formula for
the mild solutions of (1.1) and some ideas from [14] [15] to find a formula for the bounded solutions
of (1.1). From this formula we can prove the existence and the stability of the bounded solution
easily. Finally, we prove the smoothness of this bounded solution(see Theorem 3.2).

2 Preliminaries Results

Before we prove the main Theorems of this paper, we shall prove some preliminaries results to be
use in the next section. The equation (1.1) can be rewritten as a first order system of ordinary
differential equations in the space W = H x H as follow:

w + Aw + kG(w) = P(t), weW, te R, (2.1)

where v = ' and

U 0 0 0 -1
w:(v),g=(mw),P=(Pm) mdA=(¢4C£). (2.2)

is an unbounded linear operator with domain D(A) = D(A) x H.
In this section we shall study the linear part of the equation (2.1); that is to say, the equation

w+Aw=0, weW, teR. (2.3)

To this end, we shall define the following family of complete orthogonal family of projections in W

R E;, 0 !
@:(01&),J=Lw”. (2.4)
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and consider the family of 2 x 2 matrices

B; = ( d/\(; "i ) (2.5)

Aw = ZBjij, w € D(A). ' (2.6)
=1

Then, from (1.3) we get that

On the other hand, the eigenvalues of the matriz B; are given by

ct+y/c? — 4d);
_f] j=1,2,. (2.7)

b A

p(j) =

which are simples if ¢ # 2\/dX;, j=1,2,....
Therefore, there exists a complete system of orthogonal projections { P;(j)}%, in R? such that
eBit = e U)tp () + e”2U)t Py (). ’

Moreover, we can compute these projections

1

P(j) = —=——=(B; - p20) ),
2 _dadr; F
-1

h(j) = m(Bj—Pl(j)Imﬁ-

Now, if we put

cty/c? — 4dA;

a = a(c,d):ma.x{Re(pj)=Re (%]) :7=1,2,.... i=1,2.},
cty/c? — 4dA;

g = ﬁ(c,d):min{Re(pj)zRe (:——2———'1) :j=1,2,.... i=1,2.},

we get the following estimates

lle= 85| e Pt t>0, j=1,2,... (2.9)

e, t<0, j=1,2,.... (2.10)
Hence, from (2.9)-(2.10) we can easily prove that —.A generates a Cp-group {e“““}teR given by

<
<

lle=55*]

[e o]
e Aty = Ze_Bftij weW, te R. (2.11)
=1

Finally, putting Q:(j) = R(j)E’j we obtain a complete system of orthogonal projections in W and
e Atw =Y {e01Q (j)w + 2NQy(j)w}, weW, teR.
j:l ¢

So, we have proved the following Theorem.
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Theorem 2.1 Suppose that c # 2\/dX;, j=1,2,.... Then, the operator —A generates a Cy-group

e~At given by

e =3 {en0Q(jlw+ e Qu(j)w}, weW, teR,

i=1
cty/c? — 4dA;
=V i=1,2,....
2

)

where

_ p(s) =
and {Q:(j) : i = 1,2}52, is a complete orthogonal system of projections in W.
Corollary 2.1 The spectrum o(—.A) of the matriz — A is given by

—cty/c? — 4dA;
o(—A) — l i=1,2..}.

- b

2
Corollary 2.2 Under the hypothesis of Theorem 2.1 we have that
le™¥| < e, t>0,
le™l < e, ¢<0,

where «, B are positive numbers and

—c+ c2 - 4d);
- = -pB(c,d) = maz Re(p;) = j=12,.... 1=

—c+ c2 4dM;
—a = -—afc,d)=min Re(p;) = j=1,2,.... 1=1,2.3.

Proof From formula (2.12) we get that
leAtwl? = 3= {eReCa6NQ; (j)w|[? + 2ReC-21)Qy (j) w2}
Jj=1

< e {1QiG)wl? + 11Q2 (7)wl*}
7=1

= e Pw|?, weWw, t>0,
Therefore, ||e~4t|| < e=P%, t > 0. Analogously, we prove the other inequality.
Corollary 2.3 The initial value problem

w + Aw =0
w(to) = wo, wo € D(A),

has the unique solution

w(t) = e—A(t_to)’wO = Z {e_p‘ (j)(t—to)Ql(jjwo + e—p2(j)(t-to)Q2(j)w0} .

71=1

1,2.},

(2.12)

(2.13)

(2.14)
(2.15)

(2.16)
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3 Main Results

In this section we shall prove the main Theorems of this paper, under the hypothesis of Theorem
2.1(c#2/dx;, j=1,2,...).

Definition 3.1 (Mild Solution) For mild solution w(t) of (2.1) with initial condition w(¢p) = wo €
W, we understand a function given by :

w(t) = e~ Aty 4+ /t te'A(t_’){—k(](w(s))+’P(s)}ds, t € R. (3.1)

We shall consider W, = Cy(IR, W) the space of bounded and continuous functions defined in R
taking values in W = H x H. W, is a Banach space with suprem norm

[wlls = sup{llw(®)llw : t € R}, w e W.
A ball of radio p > 0 and center zero in this space is given by
Bb={weWs:|lw(t)|s < p, t€R}).

Lemma 3.1 Let w be in Wy. Then, w is a mild solution of (2.1) if and only if w is given by

t
w(t) = / e=At=9) {_kG(w(s)) + P(s)}ds, t€ R. (3.2)
Proof Suppose that w is a mild solution of (2.1). Then,
t
w(t) = e~ At0)y(te) + [ e A=) {_kG(w(s)) + P(s)}ds, t> to. (3.3)
to

On the other hand, from (2.14) we obtain that
lle™ 4w (to)|| < ePE=)|wto)[l, ¢ > to,
and since ||w(t)|| < M, t € IR, we get the following estimate
[le= A=ty (to) || < Me=Pl=0) ¢ > 4y,

which implies that

: —A(t—to) _
Glim lle™4uto)]| = 0.

Therefore, passing to the limit in (3.3) when ¢y goes to —oco we conclude that
w(t) = /_ tw e~ A=) {_kG(w(s)) + P(s)}ds, te€ R.
Suppose that w is a solution of the integral equation (3.2). Then
w(t) = /_ 000 e~ A=) {—kG(w(s)) + P(s)} ds

+ —/Ot e~ Alt=9) {-kG(w(s)) + P(s)} ds.



HUGO LEIVA 7

On the other hand, we have that

0 0
[ A0 (kG w(e) + Po)}asll < [ e (kR + Ly bdo = SR,
where R,, and L, are constants such that
IG(w(s))ll < Ru, [[P(s)| <Ly, s€R.
Hence, the following improper integral is well defined
0
wo= [ A=) {—kG(w(s) + P(s)) ds,
and ,
w(t) = e~ A=y 4 /0 e=A0=9) {_kG(w(s)) + P(s)} ds.
This concludes the proof of the lemma. 0

Theorem 3.1 Consider a function G satisfying (1.2). Suppose p > 0 big enough such that

0 < Lp + k|G (0)]| = sup [|IP(s)|| + kIG(0)]| < (B(c,d) — kL)p. (3.4)
s€

Then the equation (2.1) has one and only one mild solution wy(t) which belong to the ball B in
Ws.

Moreover, this bounded solution is the only bounded solution of the equation (3.1) and is ezpo-
nentially stable in the large.

Proof For the existence of such solution, we shall prove that the following operator has a unique
fixed point in the ball Bf,, T: Bf, - Bz

(ru)(e) = [ too e A=5) (_kG(w(s)) + P(s)} ds, ¢ € R.

In fact, for w € Bz we have

kL)p + k||G(0)]| + Ly
5 .

ol < [P hilw()] + HIGO)+ Ly <

The condition (3.4) implies that

ELp + KGO+ L, _

kLp + k||G(0)|[+ Ly < Bp < 5

Therefore, Tw € Bz for all w € Bz.
Now, we shall see that T" is a contraction mapping. In fact, for all wy, w, € Bz we have that

t ‘ kL
[Twn()) = Twa (O < [ e =kLlwi(s) - wa(s)llds < = wy = wally ¢ € R
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Hence,
kL

wy = Twa|lp <
Il 1 5

|| Twy — wallp, wi,ws € Bf,.

The condition (3.4) implies that

0<f-kL <= kL <} <= I%L<1.

Therefore, T. has a unique fixed point w; in Bf,

t
wh(t) = Twn)(®) = [ e A {~kG(uy(s)) + P(s)}ds, te R,
From Lemma 3.1, wy is a bounded solution of the equation (3.1). Since condition (3.4) holds for
any p > 0 big enough independent of kL < f3(c, d), then wy is the unique bounded solution of the
equation (3.1).

To prove that wy(t) is exponentially stable in the large, we shall consider any other solution
w(t) of (3.1) and consider the following estimate

lw(®) —ws®l < lle™**(w(0) — ws(0)) +/0te'““t") {kG(w(s)) — kG (ws(s))} dsl|

IA

P (w(0) ~ ws O+ [ e IkLfw(s) - wi(s)ds.
Then, ,
¢ lw(t) — wp(®)]l < [|(w(0) — ws(0))]] +/0 e kL||w(s) — ws(s)lds.
Hence, applying the Gronwall’s inequality we obtain
lw(®) — wp(®)| < e*Ee=P|(w(0) — wy(0)]], t > 0.
From (3.4) we get that kL — 3 < 0 and therefore w;(t) is exponentially stable in the large. 0

Corollary 3.1 The bounded solution wy(-, P) of (3.1) given by Theorem 3.1 depends continuously
on P e Cy(R,H).

Proof Let P, P, € Cy(IR, H) and w;(-, P1), ws(-, P,) be the bounded functions given by Theorem
3.1. Then

we( Pr) —wy(, Po) = /_too e A=)k {G(wi(s, P)) — G(ws(s, P1))} ds
+ /_t e A=)k {P)(s) — Pi(s)} ds.
Therefore,

lws(-, P) — we(+, P2)|ls < —|lws(:y Pr) — we (-, P2)l[o
¢

1
+ E”Pl — B|js.
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Hence,

”wb(', Pl) - wb(', P2)“b < — ”P] Pz”[,.

ﬂkL

We conclude this part with the following lemma about almost periodicity of the bounded solu-
tions of the equation (3.1).

)

Lemma 3.2 If P(t) is almost periodic, then the unique bounded solution of the equation (3.1) given
by Theorem 3.1 is also almost periodic.

Proof To prove this lemma, we shall use the following well known fact, due to S. Bohr. A function
f € C(R;W) is almost periodic (a.p according to S. bohr) if and only if the Hull H(f) of f is
compact in the topology of uniform convergence.

Where H(f) is the closure of the set of translates of f under the topology of uniform convergence

Hfy={fr:Te R}, f@t)=ft+7), t€R.

Since the limit of a uniformly convergent sequence of a.p. functions is a.p., then the set A, of a.p.
functions in the ball Bf, is closed, where p is given by Theorem 3.1.

Claim. The contraction mapping T given in Theorem 3.1 leaves A, inva-

riant. In fact; if w € A,, then f(t) = —kG(w(t)) + P(t) is also an a.p. function. Now, consider the
function

FO = (Tu)©) = [ A0 (hgw(s) + Ps)} ds

1
= / e~ A=) f(s)ds, t € R.

Then, it is enough to establish that H(F) is compact in the topology of uniform convergence. Let
{F:.} be any sequence in H(F). Since f is a.p. we can select from {f, } a Cauchy subsequence
{ka, }, and we have that

/tﬂki e A=) £(5)ds

-0

F‘ka (t) = F(t+ Tk,‘)

t
= / e~ A=) f(s+ Tk, )ds.

Hence,

t
I Fr, () — Fr @)1 < / lle= A+ £ (s + 1) = £ (s + ) llds

-0

IN

b e 1
| fr, = frig llo /_ooe Bt=3)gs — E”ffkj ~ fre,lls-

Therefore, {FTk } is a Cauchy sequence. So, H(F) is compact in the topology of uniform conver-
gence, F is a.p. and TA, C A,.

Now, the unique ﬁxed pomt of T in the ball Bb lies in A,. Hence, the unique bounded solution
wy(t) of the equation (3.1) given in Theorem 3.1 is also almost perlodlc 0O
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3.1 Smoothness of the Bounded Solution

In this part, we shall prove that the bounded solution wy(t) of the equation (3.1)(mild solution of
(2.1)) is also a solution of the equation (2.1).

Theorem 3.2 Under the hypotheses of Theorem 3.1. If G and P are of C' class, then wy(t)
satisfies (2.1) and
w(+) € Cy(IR; D(A)).

Moreover, if wy(t) = (us(t), vs(t))T, then vp(t) = uj(2),
s € Co(IR; D(A)), € Co(R; D(A?)), ufl € Cy(IR; H),

and
uy + cuy + dAuy + kG (up) = P(t), t€ R.

Proof Define the function F(t) = —kG(wy(t)) + P(t). Then

where f(t) = —kG(us(t)) + P(t), ws(t) = (us(t), vs(t))” and f € Cy(IR; H).

Now, consider the second order equation
" +cu' +dAu= f(t), ve H, te R. (3.5)

Then, from Proposition 1.3 in [13], pg 182, the equation (3.5) admits a unique solution u which
satisfies

u € Cy(R; H), v € Cy(R; H).

Therefore, w(t) = (u(t), u'(t))7 is a bounded solution of the integral equation

t
w(t) = e At w(te) + [ e AV F(s)ds, t € R.

to

Then, taking limit as ¢y, goes to —oo we get that

w(t) = /_ tooe_A(t")F(s)ds= / ' e~ A9 {_kG(w(s)) + P(s)} ds.

Hence, wy(t) = w(t) = (u(t), v'(t)). so,
F(®) = ~kG(u(®) + P(t) and [ € CL(R; H).
Then, using the second part of Proposition 1.3 in [13], pg 182, we get that
v € Cy(R; D(A)), v € Cy(IR; D(A?)) and u” € Cy(IR; H).

As an application of these results we can consider the Sin-Gordon equation with Dirichlet
boundary condition (1.4). In the same way, one can con$ider many others examples like (1.5) and
(1.6).
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Corollary 3.2 If in the system (1.4) the function t — p(t,-) € L%(0,L) is of C! class, then for
some values of ¢, d and k the system (1.4) admits a unique solution u such that

u€ Cy(R;H*NHY), v € Cy(R;H}) and u" € Cy(R; L*(0,L)).
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