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Abstract

In this paper some generalizations of fixed point theorems are ob-
tained using the w-distance on a metric space.

Introduction.

In 1996, O.Kada-T. Suzuki-W. Takahashi [6] introduced the concept of
w-distance on a metric space, gave some examples, properties of w-distance
and they improved the Caristi’s fixed point [1], Ekeland’s e-Varational Prin-
ciple [5] and the non convex minimization theorem according to Takahashi
[14]. Finally, using the concept of w-distance proved a fixed point theorem in
a complete metric space. This theorem generalize the fixed point theorems
of Subrahmanyan [11], Kannan [7] and Ciric [2].

In the same year Suzuki-Takahashi [13] gave another properties of w-
distance and using this notion they proved a fixed point theorem for set
valued mappings on complete metric spaces which are related with Nadler’s
Fixed Point Theorem [9] y Edelstein’s Theorem [4]. Finally, they gave a
characterization of metric completeness.

In 1977, Suzuki [12] gave another properties of w-distance which
generalize some of them [6], he proved several fixed point theorems which
are generalizations of the Banach Contraction Principle and Kannan’s Fixed
Point Theorem and moreover discuss a characterization of metric complete-
ness.

1.- Preliminares.

*This work was supported by C.D.C.H.T.-ULA under proyect C-903-98-05-B. 1991
Mathematical Classification: 47H10, 54E50.




2 Generalizations of some Fixed Point Theorems.

Throughout this paper, we denote by N the set of positive integers, by
R the set of real numbers and R* = [0, +00).

Definition 1.1.
Let (M,d) be a metric space. Then a functionp : M x M — [0,+00) is
called a w-distance on M if the following are satisfied:

wy.- p(2,2) < p(,y) +p(y, 2) for any z,y,2 € M.
wq.- For any z € M, p(z,:) : M — [0,+00) is lower semicontinuous.

w3.- For any e > 0, exists § = §(e) > 0 such that p(z,z2) < 6 and p(2,y) < 6
imply d(z,y) <, for any z,y,2 € M.

The metric d is a w-distance on M. Some other examples of w-distance are
given in [6] and [14]. The following results are crucial in the proof of our
theorems. The next lemma was proved in [6].

Lemma 1.1.

Let (M, d) be a metric space and let p be a w-distance on M. Let z,, and y,
be sequences in M, let o, and f3,, be sequences in [0,+00) converging to 0,
and let x,y,z € M. Then the following hold:

L.- If p(zn,y) < a, and p(x,,2) < B, for anyn € N, then y = 2. In
particular, if p(z,y) = 0 and p(z,2) = 0 then y = z;

2.- If p(2n,yn) < ap and p(zn, 2) < B, for any n € N, then y, converge
to z;

3.- If p(xn,2m) < an for any n,m € N with m > n then z, is a Cauchy
sequence;

4.- If p(y,2,) < ap for any n € N, then z,, is a Cauchy sequence.

The following result is proved in [6].

Lemma 1.2

Let (M,d) be a metric space, let p be a w-distance on M, and let q be a
Junction from M x M into [0,+00) satisfaying (wy) and (w2) in the definition
of w-distance. Suppose that p(z,y) < q(z,y) for every z,y € M. Then q is
also a w-distance on M. In particular, if ¢ satisfies (wy) and (w2) in the
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definition of w-distance and d(z,y) < q(z,y) for every x,y € M, entonces
q es una w-distance on M.

Definition 1.2. Lete € (0,400). A metric space (M, d) is called e-chainable
[4] if for every z,y € M there exists a finite sequence zg,zy,...,T, and
d(zi ziy1) <€ 1=0,1,..,n— 1. Such sequence is called an €-chain in M
joining x and y.

The following result was proved in [13].

Lemma 1.3.
Let € € (0,+00) and let (M,d) be an e-chainable metric space. Then the
function p: M x M — [0,+00) defined by

k-1
p(z,y) = inf{z d(zi,%i+1) : To, ..., Tk 15 an € — chain joining ¢ and y}
=0

1s a w-distance on M.
2.- Fixed Point Theorems.
In [13] we found the following,

Definition 2.1.

Let (M, d) be a space metric and let T be a mapping from M into itself. We
say that T is a w-contraction if there is a w-distance p on M and k € [0,1)
such that for every z,y € M,

p(Tz, Ty) < kp(z,y).

In the case of p=d, T is called a contraction.

It is clear that if Ty, T, : M — M are w-contractions then Ty Ty : M - M
is also a w-contraction and hence the set of all w-contractions defined from
M into itself is a semigroup.

Now we introduced the following,
Definition 2.2.

Let (M, d) be a space metric with a w-distance p on M and let T : M - M
be a mapping. Then,
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a.- An element x € M is w-asymptotic regular for T if

lim p(T"z, T"*'y) = 0; for any y € M

n—oo
b.- T is w-asymptotic regular if all elements z € M
are asymptotic regular for T.

c.- Two elements ¢ and y of M are w-asymptotic equivalent under T, if

.

lim p(T"z, T"y) = 0.
n— 00

It is clear that this definition extend their respective notions, (see [10]).
The following result is generalization of Banach Contraction Principle.

Theorem 2.1.
Let (M, d) be a complete metric space, let T be a mapping from M into itself
and suppose that T is a w-contaction. Then,

a.- There ezxists a unique z € M such that Tz = z.

b.- The point z satisfies p(z,z) = 0.

c.- {T*(z)},n € N converge to z for anyz € M.

d.- p(T"z,2) < %p(z,Tz) forallz e M.

e.- T is w-asymptotic regular.

f.- Each two elements z,y € M are asymptotic equivalente under T'.

Proof.
Since T' is a w contraction there ezist a w-distance p on M and k € [0,1)
such that

p(Tz,Ty) < kp(z,y), Vz,y € M.

Let z € M and define ¢, = T"z, for any n € N. Then we have, for any
n € N,
P(Zn, Tny1) < k°p(z, T2) (1)

For any m and n with m > n we have

n

P(en 2m) € ~rp(z, T) ©
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By lemma 1.1, z, is a Cauchy sequence in M. Since M is complete, z,

converges to some point 2 € M so
Tz — 2

Since 2, — z and p(z,,-) is lower semicontinuous, we have
kn
P(#n, 2) <liminf p(zn, 2m) < —p(2, T2)

that is,

n

1-k

p(T"z, 2) < p(z,Tz)

and lemma 1.1,
nll’moop(a:n, z) =0.
On the other hand,
p(zna TZ) = P(Tl‘n—l,TZ) < kp(zn-lv Z)
50

lim p(z,,T2)=0.
n—0o0

From (6), (7) and lemma 1.1 we conclude

Tz=z

Further,

p(z,2) = p(Tz,Tz) < kp(z,2)
and hence

p(z,2) = 0.

If y="Ty then

p(2,y) = p(T2,Ty) < kp(2,y)
hence

p(z,y) =

3)

(6)

(9)

(10)
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So, from (9), (10) and lemma 1, z = y. Therefore, a fized point of T is
unique.
From (1) we have

p(T"z, T"'z) < k"p(z, Tz).
Hence for allz € M

lim p(T"z, T""'z) = 0.

n—o0

~ Thus all elements of M are w-asymptotic regular under T so T is w-
asymptotic regular.
Finally, let z,y € M, z # y and

p(T e, T"y) < k"p(z,y).
Thus, for any z,y € M

lim p(T"z,T"y) =0

n—oo

and = and y are w-asymptotic equivalent under T. [

It is clear that theorem 2.1 is a generalization de Banach Contraction
Principle.

Theorem 2.2.

Let (M, d) be a complete metric space and let T be a mapping from M into
itself such that T™ is a w-contraction for some m € N. Then T has a unique
fized point.

Proof.

Since T™ 1is a w-contraction for some m € N there exists a w-distance p on

M and k € [0,1) such that
p(T™z, T™y) < kp(z,y)

forallz,ye M.
By theorem 2.1, there exists a unique z € M such that T™z = z for some
m € N and

Tz=T(T"z)=T"(Tz)

it follows that z = Tz. [ |
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Remark.
In case that p = d we have the Chu-Diaz’s theorem [3].
The nexzt results are generalizations of Maia’s theorem [8] and [10].

Theorem 2.3.
Let M be a non empty set and d, p two metrics on M and T : M - M a

mapping. Suppose that,

a.- p(z,y) < q(z,y) for any z,y € M, where p and g are w-distance on .
M defined from d and p respectively.

b.- (M,d) is a complete metric space.
c.- T: (M, p) = (M, p) satisfies
q(Tz, Ty) < kq(z,y)

foranyz,ye€ M and 0 < k < 1.

Then there exists z € M such that z = Tz. Further the point z satisfies
q(z,z) = 0 and hence p(z,z) = 0.

Proof.

Let z € M. From (c) the sequence z,, = T"z,n € N is a Cauchy sequence
in (M, p) and by (b) it converges to a point z € M. The rest of the proof is
stmilar to that of theorem 2.1. [ |

Now using the lemma 1.2 we get a generalization of theorem 2.3.

Theorem 2.4.
Let (M, d) be a metric space, p: M x M — [0,+00) a w-distance on M and
T: M — M a mapping. Suppose that,

a.- Let g be a function from M x M into [0,400) satisfaying (w;) and
(we) in the definition of w-distance such that

p(z,y) < q(z,y)
foralz,ye M.
b.- (M,d) is a complete metric space.
c.- T: M — M satisfies
q(Tz, Ty) < kq(z,y)
foralz,ye M and 0 <k < 1.
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Then there exists z € M such that Tz = z. Moreover, the point z satisfies
q(z,2) =0 and p(z,2) = 0.

Proof. By (a) and lemma 1.2 we have that q is a w-distance on M. The
remain of the proof is equal to theorem 2.35. [

In [4] Edelstein introduced the following,

Definition 2.3.
Let (M,d) be a metric space. A mapping T : M — M is called (e, k)-
uniformly locally contractive if there exist a € > 0 and k with 0 < k < 1 such
that

d(z,y) < e > d(Tz,Ty) < kd(z,y)

for eachz,y € M.
The following theorem gives a generalization of the Felstein’s fized point
theorem on an e-chainable metric spaces.

Theorem 2.5.
Let € € (0,400) and let (M,d) be a complete an e-chainable metric space.
Suppose that a mapping T : M — M 1is (¢, k)-uniformly contractive. Then
T has unique fired point .
Proof.
Define a function p from M x M into [0,400) as follows:
k-1
p(z,y) = inf{z d(zi, zit1) : {Toy ..., Tn} 15 @ € — chain linking z and y}.
=0

From lemma 1.3, p is a w-distance on M. We prove that T satisfies the
following condition:
p(Tz, Ty) < kp(z,y),

foranyz,ye M and 0 <k < 1.
Given z,y € M and any e-chain {zo,...,2,} with x9 = ¢ and z, = y,
we have d(z;,z;41) <€, t=0,1,...,n — 1, and hence

d(Tz;,Txiy1) < kd(zi, zi+1) < ke < €,i=0,1,....,n — 1,

so Tzo,Txy,...,Tx, is a e-chain joining the points Tx and Ty and

n—1 n—1

p(Tz,Ty) <Y d(Tz0,Tzit1) < kY _ d(20,Tit1).
1=0 1=0
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{z0, ..., 2} being an arbitrary e-chain, we have p(Tz,Ty) < kp(z,y). Hence
by theorem 2.1(a), T has a unique fized point z € M, i.e., Tz = z. [
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