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Abstract 

For Banach space valued functions, the concepts of P-measurability, 
A-measurabiqlity and m-measurability are defined, where P is a &ring 
of subsets of a non void set T ,  A is a a-subadditive submeasure on a ( P )  
and m is an operator valued measure on P .  Various characterizations 
are given for P-measurable (resp. A-measurable, m-measurable) vector 
functions on T.  Using them and other auxiliary results proved here, 
the basic theorems of [6] are rigorously established. 

1. Introduction. The first author developed a theory of integration for 
Banach space valued functions with respect t o  an operator valued measure 
(a-additive in the strong operator topology) in a series of papers as cited in 
[17], and among them the papers [6] and [7] are fundamental. This theory 
has many interesting features which are not shared by other Lebesgue-type 
integrals. For example, there are four distinct L1 spaces here; in contrast 
t o  the abstract Lebesgue integral and Bochner integral, all the integrable 
functions cannot be defined through convergence in measure (see Remark 
12); this integral is a complete generalization of the abstract Lebesgue in- 
tegral in the sense of Remark 11; it can be used t o  represent certain types 
of operators which arise naturally in analysis (see [8]); etc. Though this 
work is very interesting, it is not widely known due t o  its inaccessibility t o  
readers. In fact, his papers have been written briefly lacking details in the 
proofs of many theorems and there are many results simply stated without 
proof, which are indispensable either for the development of the theory or 
for distinguishing it from other Lebesgue-type integration theories. More- 
over, there is a lacuna in the proofs of some of the basic theorems of [6]. 

The aim of the present paper and the succeeding one [9] is t o  provide 
proofs of the unproved results mentioned in [6,7] (one such important result 

'The research was done before the demise of I .  Dobrakov. 



2 A generalized Pettis measurability criterion and integration of vector functions 

is the the stronger version of Pettis measurability criterion), t o  clarify the 
statements made in the proofs of certain theorems of [6,7], to  give rigorous 
proofs of the theorems whose original proofs have a lacuna and t o  strengthen 
the statements of some of these theorems, and finally, t o  discuss in detail 
some of the the distinguishing features of the theory through examples which 
are much simpler than those given in [6,7]. We hope that  these two papers 
will be very helpful to  the interested readers to  understand the theory of 
integration developed in [6,7] and in other papers cited in [17]. 

The set up of &-rings is used as the integral representation theorems giv- 
en in [8] are for a-rings and 6-rings. Moreover, using some of the ideas of 
[6,7] and of Thomas [20], the second author has studied a generalization of 
the Bartle-Dunford-Schwartz integral of scalar functions (see [I]) when the 
a-additive measure is defined on a 6-ring with values in a quasicomplete 
locally convex Hausdorff space. This integral defined on 6-rings plays a key 
role in another work of the second author which generalizes the results of 
[15,16] t o  Radon vector measures treated in [2Cl]. In this context we would 
like to  remark that  Thomas' work [20] is based on the locally compact ver- 
sion of Theorem 6 of Grothendieck [ l l ] .  But, contrary to  Remark 2 on 
p.161 of [ l l ] ,  the techniques of Grothendieck [ l l ]  are not powerful enough 
t o  obtain the said version. In fact, his techniques can be used t o  prove the 
said version if and only if the locally compact Hausdorff space is further a- 
compact (see [19]). However, the said version for arbitrary locally compact 
Hausdorff spaces with many more equivalent statements has recently been 
proved in [18] and hence the work of Thomas [20] remains valid. 

In Section 2 we fix notation and terminology and state some definitions 
and results from the literature, sometimes with their proof. In Section 3, 
following the techniques of [14] and in the set up of a-rings, we obtain the 
Kelley-Srinivasan measurability criterion (see Lemma 3) without using the 
Bochner integral unlike the original proof in [14]. We give a detailed proof 
of Theorem 1 which is essentially Corollary 1.5 of [14] (not proved in [14]) 
and which gives several characterizations of P-measurable vector functions 
in the set up of a-rings, including a stronger version of Pettis measurability 
criterion (which is stated without proof on p.518 of [6]). 

In Section 4 we introduce the concept of A-measurability (resp. m- 
measurability) for Banach space valued vector functions and using Theorem 
1, we obtain in Theorem 2 a generalization of Theorems 111.6.10 and 111.6.1 1 
of [lo] for these functions. One of these characterizations is a generalized 
Pettis measurability criterion. We give a direct proof of Theorem 3 which 
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is the same as the last part of Theorem 2, t o  the effect tha t  the set of al- 
l A-measurable (resp. m-measurable) vector functions is closed under the 
formation of a.e. sequential limits. Using Theorem 1 we prove the two un- 
proved results on convergence in measure and semivariation mentioned on 
p.519 of [6] (see Proposition 8).  

In Section 5 we prove the Egoroff-Lusin theorem for a continuous sub- 
measure and obtain an analogue of Pettis theorem on absolute continuity for 
u-subadditive submeasures. In Section 6 we establish rigorously Theorems ' 

1, 2, 10, 14 and 15 of [6] rectifying the lacuna in the original proofs (thanks 
t o  Theorems 1 and 3 we can define integrability not only for m-measurable 
functions which are not necessarily P-measurable, but also strengthen the 
statements of some of these theorems). Using Theorem 2 we deduce that  the 
Bartle-Dunford-Schwartz integral in [I] is a particular case of the integral 
treated here (see Remarks 5 and 8). We also give a strengthened version of 
Theorem 14 of [6] and using Proposition 8 we provide a detailed proof of 
Theorem 13 of [6]. 

2. Pre l iminar ies .  In this section we fix notation and terminology and 
give some definitions and results from the literature. 

T denotes a non void set. P (resp. S )  is a 6-ring (resp. a a-ring) of 
subsets of T. u ( P )  denotes the a-ring generated by P. X ,  Y are Banach 
spaces over K, ( K  = R or C), with norm denoted by ( . I .  L (X,  Y) de- 
notes the Banach space of all continuous linear maps U : X + Y ,  with 

IUI = (Uxl. The dual X *  of X is the Banach space L(X,  K). 

DEFINITION 1. An additive set function y : P + X is called a vec- 
tor measure. It is said to  be a-additive if ly ( U r  E;) - Cy y (E;) ( + 0 as 
n + oo, whenever (E;)? is a disjoint sequence in P with UT E, E P. Then 
r ( U F  Ei) = CT (Ed.  

DEFINITION 2. A family (yi) ; ,=~ of X-valued u-additive vector mea- 
sures defined on the a-ring S is said t o  be uniformly u-additive if, given 
E > 0 and a sequence En \ 8 of members of S, there exists no such that  
 SUP;^^ Iyi(En)( < E for n 2 no. 

The following result, known as the Vitali-Hahn-Saks-Nikodym theorem, 
plays a crucial role in the definition of the integral of vector functions in 
Section 6. We shall refer t o  it as VHSN. 
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PROPOSITION 1 (VHSN). Let yn : S + X ,  n E N, be a-additive 
and let limn yn(E)  = y ( E )  exist in X for each E E S. Then (yn)T are u- 
niformly a-additive and consequently, y is a a-additive vector measure on S. 

The first part of the above theorem is given for a-algebras in Theorem 
1.4.8 of [4]. However, the result is easily extended t o  a-rings by an argument 
of negation. The last part is obvious. 

DEFINITION 3. A set function X : S + [0, w ]  is called a submeasure 
if A ( 0 )  = 0 and is monotone and subadditive. A submeasure X on S is said 
to  be continuous (resp. a-subadditive) if X(En) \ 0 whenever the sequence 
En \ 0 in S (resp. if X(Uy En) 5 C y  X(En) for any sequence (En)y in S). 

DEFINITION 4. Let y : P + X be a vector measure. Then the semi- 
variation llyll : a(P) + [0, oo] of y is defined by 

for E E a(P). We define Ilyll(T) = sup{llyll(E) : E E a(P)}.  
The supremation 7 of y is defined by 

y ( E )  = s u p { $ a i y ( E n  Ei) 

for E E a ( P )  and we define y(T) = sup{y(E) : E E ~(p)} .  

: (E,): c Pdisjoint, ai E K, a ;  ( l r  E R I 

By Proposition 1.1.11 of [4] which holds also for rings of sets and by 
Theorem 1.2.4 of [4] which is vaild for a-rings too, we have the following 

PROPOSITION 2. Let y : o(P) + X be a a-additive vector measure. 
Then: 

(i) y(E) ( I ly 1 J(E) 5 4y(E)  for E E a(P), and moreover, Ilyl l(T) < w. 

(ii) 1 ( y  1 1 ,  7 : a ( P )  + [O, w) are continuous submeasures. 

By Proposition 1.3.1 of Bombal [3] which holds for a-rings too, we have 
the following 

PROPOSITION 3. Let yn : S + X ,  n E N, be uniformly a-additive. 
Then, given a sequence (Ek)? c S with Ek \ 0 and 6 > 0, there exists ko 
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such that Ilynll (Ek) < 6 for all n and for k > ko .  

DEFINITION 5. A set function m : P + L(X,  Y) is called an operator 
valued measure if m(-)x  : P + Y is a a-additive vector measure for each 
x t X ;  in other words, if m is a-additive in the strong operator topology of 

L(X1 Y) . 

DEFINITION 6. Let m : P + L ( X , Y )  be an operator valued mea- 
sure. Then we define the semivariation m ( E )  and the scalar semivariation 

' 

Ilmll(E) for E t a ( P )  by 

and 

m ( ~  n E;)x; : (E;); C P disjoint, x; t X ,  lx;l < 1, r t N 

We define m ( T )  = sup{m(E) : E t a ( P ) )  and Ilmll(T) = sup{llmll(E) : 
E t a ( P ) ) .  

m ( E )  = { $ a i m ( E  n E;) 

Remark 1. For an operator valued measure m on P, Ilmll(E) < m ( E )  
and Ilmll(E) = 0 if and only if m ( E )  = 0 for E t a ( P ) .  

: ( 4 ) ;  c Pdisjoint, a; t K ,  a i l  5 1, r t N . i 

It is easy to  deduce the following result from Definition 6. 

PROPOSITION 4. Let m : P + L ( X , Y )  be a n  operator valued mea- 
sure. Then m and llmll are a-subadditive submeasures on a ( P ) .  

DEFINITION 7. A function s : T + X is said t o  be a P -  simple function 
if the range of s is a finite set of vectors (x;)? such that  s-'({x;)) t P for 
each x; # 0, i = 1 , 2 ,  ..., n. Then an X-valued P-simple function s is of the 
form s = X;XE~,  (E;); C P being disjoint and x; # 0, i = 1 , 2 ,  ..., r. 

Notation 1. S(P, X )  = {s : T + XI s P-simple) is a normed space un- 
der the operations of pointwise addition and scalar multiplication with norm 
( 1  ) I T  given by llsllT = maxt,g Is(t)l. For a bounded function f : T + X 
and A C T ,  l I f l l A = S u P t ~ ~ I f ( t ) I .  
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Notation 2. Following Halmos [12], for a function f : T + X ,  N (  f )  
denotes the set {t E T : f ( t )  # 0). 

DEFINITION 8. Let m : P + L(X, Y) be an operator valued measure. 
For an X-valued P-simple function s = C'; x,X,y,, with x; # 0 for all i 
and with (E,); disjoint in P, we define JE sdm = C; m ( E  n Ei)xi E Y for 
E E a ( P )  and we define ST sdm = JN(s) sdm. 

Note that the above integrals are well defined. 

The following result is immediate from Definitions 6 and 8. , 

PROPOSITION 5. Let m : P + L(X,  Y) be an operator valued measure 
and l e t s  E S ( P , X ) .  Then: 

(ii) If Y(-) = J(.) sdm, then y : a ( P )  + Y is u-additive. 

3. Stronger version of Pettis measurability criterion. Using a 
theorem of representation for Bochner integrable functions Kelley and S- 
rinivasan [14] characterized X-valued P-measurable functions as a-simple 
functions with respect to  P.  Employing the techniques of [14] we give a di- 
rect proof of this characterization, avoiding the use of Bochner integrals and 
in the set up of a-rings. Then we pass on t o  obtain several characterizations 
of these functions, including the stronger version of the Pettis measurability 
criterion (which is stated without proof on p.518 of [6]). These characteri- 
zations are given in Corollary 1.5 of [14] but the corollary is not proved. 

DEFINITION 9. Let M ( P ,  X )  = { f : T + XI there exists a sequence(s,)~ 
C S(P, X )  such that s,(t) + f ( t )  for all t E T). The members of M (P, X )  
are called X-valued P-measurable functions. When X = K ,  we denote 
M ( P ,  K )  by M (P). (In [6] X-valued P-measurable functions are called 
measurable functions.) 
Let us recall from 520 of Halmos [12] that a function f : T + lK is a (P ) -  
measurable if N ( f )  f l  f - I  (B) E a ( P )  for each Bore1 set B in K. Then 
by Theorem 20.B of Halmos [12], such a function f is the pointwise lim- 
it of a sequence (s,)? of u(P)-simple functions. As N (  f )  E u ( P )  and 
P is a &ring, there exists an increasing sequence (E , ) r  in P such that 
N( f )  = U;" En. Then SnX,y, are P-simple and converge pointwise to  f in 
T. Thus f E M ( P ) .  Conversely, if f E M ( P ) ,  then by Theorem 20.A and 
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ex.9 in $18 of Halmos [12], it follows that  f is a(P)-measurable in the sense 
of Halmos. Thus we have the following 

PROPOSITION 6. A scalar function on T belongs to M(P) if and only 
if it is a(P)-measurable in the sense of Halmos [12]. 

Following Kelley and Srinivasan [14], we give the following definition. 

DEFINITION 10. If f : T + X is of the form f = Cy X;XE~ where ' 

( E i ) r  C P and C r  [xi l x ~ ~  (t) < co for each t E T, then f is called an 
X-valued a-simple function with respect to  P. 

If the sets (E,)r and vectors ( x , ) r  can further be chosen so that  (Ei)r 
is a disjoint sequence in P and x, # 0 for all i ,  then f is called an X-valued 
P-elementary function. 

LEMMA 1. If f : T + X has separable range and if f -' ( ~ ( x ,  r)) n 
N ( f )  E a ( P )  for all x E X and for all real r > 0, then f is the uniform lim- 
it of a sequence of X-valued p-elementary functions belonging to M(P, X ) .  
(Here B(x ,  r )  = {y E X : 1x - yl 5 r}). 

Proof. Let D = {w, : n E N, w, # 0) be dense in f (T). Let A,,  = {t E 
T : I f  (t) - wnl 5 :} n N (f)  for n ,  p E N and let B , ,  = An,p\ U,,, Ai,,. 
Then (Bn,p)E=' are disjoint in a(P). Since D is dense in f ( T )  we have 
N ( f )  = Ur=l Bn,p for each p. Particularly, N ( f )  E a ( P )  and hence there 
exists a disjoint sequence (Fn) in P such that  Uy F, = N ( f ) .  Let g,,, = 

Ci,j<n wiXFinBJ,p and let f p  = CTm=l wnX~,,,nF,. Then (gn,p)E==l are p- 
simple and converge pointwise t o  fp on T. Thus the P-elementary functions 
fp belong t o  M (P, X )  and clearly, fp + f uniformly on T. 

LEMMA 2. Suppose f : T + X has separable range and x* f E M(P) 
for each x* E X*. Then f is the uniform limit of a sequence of X-valued 
P-elementary functions. 

Proof. Let D be a countable set of nonzero vectors in X such that  
D 3 f (T).  Let xo E X and let Xo be the closed linear subspace spanned 
by D U {xo). Then by Theorem 2.5 of [13] there exists a sequence (x:)r 
in the closed unit ball of XG such that  1x1 = sup, /xE(x) 1 for each x E Xo. 
Consequently, (x:)r is total in Xo and hence N ( f )  = Uy N (x: f ) .  Then by 
hypothesis and Proposition 6 it follows that  N ( f )  E a ( P ) .  Moreover, for a 
real r > 0, we have f - ' (B(x0,r ) )  n N ( f )  = ~ ~ [ { ( ~ ~ f ) - ~ ( B ( x ~ ( x ~ ) , r ) ) } ~  
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N ( f ) ]  E a ( P ) .  Since so  is arbitrary, the result follows from Lemma 1. 

The following lemma is a consequence of Theorem 1.4 of [14]. We modify 
the proof of the said theorem avoiding the  use of the  Bochner integral. 

LEMMA 3 (Kelley-Srinivasan [14]). Suppose f : T + X is the uniform 
limit of a sequence of P-elementary functions on T .  Then f is a-simple 
with respect to P. Consequently, f is P-measurable. 

Proof. Clearly f satisfies the hypothesis of Lemma 2 and hence, as 
shown in the  proof of the said lemma, N (  f )  E a ( P )  and N ( f )  = Uy Bn 
where Bn = N ( f )  n f - ' (B(0,n))  = {t E T : 0 < Jf(t) l  5 n)  E a ( P ) .  If 
En = {t E T : n - 1 < I f  (t)l 5 n) ,  then ( E n ) r  is a disjoint sequence in 
u ( P )  and N (  f )  = U'p En. Clearly, f = C,M==, fxEn, and for each n ,  by 
hypothesis ~ X E ,  is the  uniform limit of a sequence ( f p ) ) ~ ,  of X-valued 
P-elementary functions on T vanishing outside En. Then we can choose a 

(n) M (n) M (n) 1 1  subsequence (fkr of ( f k  )azl  such tha t  llfi:il - fk r  ) I T  < p . p  for 
r = l , 2 ,  .... Then 

and the series converges uniformly t o  fxEn and is absolutely convergent for 
each t E T. Moreover, from the above representation we have 

Let = ("1 and g!") = ("1 
fk, 

(n) .  Then g!") are X-valued P -  
f k r + l  - fk r  

elementary functions vanishing on T\En, and hence there exist disjoint se- 

quences (E!;))Z, of subsets of En belonging t o  P and of non zero vectors 

( 2 1 ; ) ) ~ ~  in X for r = 1 , 2 ,  ... such tha t  g!"' = xgl x$)~~!;) .  Thus 

and 
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for t c T .  Clearly, the series is absolutely convergent for each t c T ,  and 
(n)  (n)  hence we can rewrite fxEn = Egl  x j  xA (n)  with ( A j  ) a sequence of sub- 

3 

sets of En belonging t o  P with Egl ~ x j " ) l ~ ~ , ( n )  ( t )  < n+ 2 for t E T . Thus 
(n )  E,"=' x j  x ~ , ( ~ )  is a a-simple function with respect t o  P .  Since En are dis- 

joint, f ( t )  = f xEn ( t )  = E z l  Egl  x j" )xA  in) ( t )  for t c T and the se- 
ries is absolutely convergent for each t c T .  Thus f is an X-valued a-simple 

(n)  function with respect t o  P .  Moreover, f ( t )  = lim, EFZl Ey=;"=l x j  xA,ln) ( t )  3 

for t c T and hence f c M ( P ,  X )  . 

Using the above lemmas we prove the following theorem which is essen- 
tially Corollary 1.5 of [14]. 

THEOREM 1. Let P be a 6-ring of subsets of T and let f : T + X be 
a vector function. Then the 

following conditions are equivalent: 

( i)  f is P-measurable. 

(ii) ( T h e  s t ronger  vers ion  o f  Pe t t i s  measurabi l i ty  cr i ter ion)  

f has separable range on T 

and is weakly P-measurable (i.e. x* f is P-measurable for each x* E 
X * ) .  

(iii) f has separable range on T and f -' ( G )  n N (  f )  E a ( P )  for each open 
set G i n  X .  

(iv) f has separable range on  T and 

f -' ( E )  n N (  f )  E a ( P )  for each Bore1 subset E 

of x.  
(v) f is the uniform limit of a sequence of X-valued P-elementary 

functions. 

(vi) ( T h e  Kel ley-Sr inivasan measurabi l i ty  cr i ter ion)  f is an X-valued 
a-simple function. 

Consequently, the set M ( P ,  X )  of all X -valued 
P-measurable functions is closed under the formation of 
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sequential pointwise limits on T .  

Proof. While the implication(i)+(ii) is obvious, 
(ii)+(i) by Lemmas 2 and 3. 

(i)+ (iii) Clearly, f (T)  is separable. Let 
( s k ) y  C S ( P ,  X )  such tha t  sk( t )  + f (t) for each t E T. Let G be a non 

void open set in X .  
Let Gn  = {x E G\{O) : B ( x , i )  C G\{O)). Then G\{O) = UYG,.' 

Then f-'(G\{O)) = f-'(G,) = UrZl Uz=l n;P=, s i '  (Gzn). In fac- 
t,. f (t) E Gn implies that  B(f  (t),  k) C G\{O) and hence there exists ko 
such tha t  sk(t) E B (  f (t) ,  &) for k 2 ko and hence B(sk( t ) ,  &) c G\{O) 
so that  sk(t) E Gzn for k 2 ko. Since s k  are P-simple, it follows that  
f -' (G) n N (  f )  = f -' (G\{O)) E a ( P )  and hence (iii) holds. 

By a routine argument one can show that  (iii)+(iv). If (iv) holds, then 
f ( T )  is separable and N ( f )  n f - ' (B(x , r ) )  E a ( P )  for r > 0 and x E X .  
Then by Lemma 1, (v) holds. Clearly (v)+(vi)+(i) by Lemma 3. Finally, 
by Proposition 6 the  last part is immediate from (ii). 

This completes the  proof of the  theorem. 

Remark 2. The results mentioned without proof in paragraphs 4 and 5 
of Section 1.2 on p.518 of [6] are the same as the equivalences among (i),(ii) 
and (iii) of the  above theorem. 

The following proposition is mentioned without proof in the second para- 
graph of Section 1.2 on p.518 of [6] and used in the proof of Theorem 14 of [6]. 

PROPOSITION 7. Let f E M ( P ,  X ) .  Then I f  ( a )  1 E M ( P ) .  More- 
over, there exists a sequence ( s n ) y  C S ( P ,  X )  such that sn( t )  + f (t) and 
Isn(t)I 7 If(t)l f o r t  E T .  

Proof. Let ( u n ) y  c S ( P ,  X )  such that  un(t)  + f ( t )  for t E T. Then 
Iun(.)l + I f  (.)I in T and hence by Proposition 6, I f  (.)I is a(P)-measurable. 
Therefore, by 

Theorem 20.B of Halmos [12] there exists a non decreasing sequence 
( h n ) y  of nonnegative a(P)-simple functions such that  hn(t) 7 I f  (t)l for 
t E T. Since N ( f )  E a ( P ) ,  there exists ( E n ) y  C P such that  En 7 N ( f ) .  
Then +, = hnxE, are P-simple and +,(t) 7 1 f ( t ) l  for t E T. Define 
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s, (t) = for t E N (f)  n N(un)  and sn(t)  = 0 otherwise. Clearly, 
an 

the sequence (s,)? satisfies the conditions of the proposition. 

4. A generalized Pettis measurabi l i ty  cri terion.  In this section 
we introduce the concept of X-valued A-measurable (resp. m-measurable) 
functions where X is a a-subadditive submeasure on a(P) (resp. m : P + 
L(X,  Y) is an operator valued measure), and using Theorem 1 we character- 
ize these functions in Theorem 2, thereby generalizing Theorems 111.6.10 and 
111.6.11 of Dunford and Schwartz [lo] (see Remark 4). As a consequence, we 
deduce that  the class of all X-valued A- measurable (resp. m-measurable) 
functions is closed under the formation of a.e. sequential limits. Theorem 2 
also permits us t o  show that  the Bartle-Dunford-Schwartz integral of [I] is 
a particular case of the integral defined in Section 6 (see Remarks 5 and 8).  

The results about convergence in measure-m and in semivariation m s- 
tated without proof on p.519 of [6] are needed t o  prove Theorem 13 of [6] 
and hence they are treated in Proposition 8. 

DEFINITION 11. Let S be a a-ring of sets and let X : S + [0, m] be a a- 
subadditive su bmeasure. The generalized Lebesgue completion (briefly, GL- 
completion) s of S with respect t o  X is defined by s = {Eu N : E E S, N c 
M E S with X(M) = 0). The generalized Lebesgue completion (briefly, 
GL-completion) 1 of X with respect t o  S is defined by J(E U N )  = X(E) 
where E U N E s with E and N as above. 

LEMMA 4. Let S be a a-ring of sets and X : S + [0, w] be a a -  
subadditive submeasure on S. Then the GL-completion s of S with respect 
to X is a a-ring containing S and the GL-completion 1 of X is well defined, 
extends X and is a a-subadditive submeasure. 

Proof. Since X is monotone, a-subadditive and A ( @ )  = 0, the proofs of 
Theorem 13.B of [12] and 

Theorem 111.5.17 of [lo] can be combined t o  prove the present lemma. 
The details are left t o  the reader. 

Remark 3. If X is a positive measure on a a-ring S, then the Lebesgue 
completion of S with respect t o  X and of X with respect t o  S coincide with 
their respective GL-completions. 

DEFINITION 12. Let P be a 6-ring of subsets of T, X : a(P) + [0, w ]  
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be a a-subadditive submeasure and f : T + X .  Then: 

(i) A sequence ( f n ) y  of X-valued functions on T is said t o  converge t o  
f X-a.e. in T if there exists N E a ( P )  with X(N) = 0 such that  
fn( t )  + f (t) for all t E T \ N .  

(ii) f is said t o  be X-measurable if there exists a sequence ( s n ) r  c S ( P ,  X )  
such that  limn sn( t )  = f (t) X-a.e. in T ;  in other words, if there exists 
a set M E a ( P )  with X(M) = 0 such that  fxTiM is P-measurable. , 

(iii) f is said t o  have X-essentially separable range on T if there exists a 
set N E a ( P )  with X(N) = 0 such that  f ( T \ N )  is separable. 

(iv) f is said t o  be weakly X-measurable if x* f is X-measurable for each 
x* E X*.  

Suppose m : P + L ( X , Y )  is an operator valued measure. Note that  
m ( E )  = 0 if and only if Ilmll(E) = 0 for E E a ( P )  and by Proposition 4 
llmll and m are u-subadditive submeasures on a ( P ) .  Thus with X = m or 
X = llmll in the above definition, we note that  an X-valued function f on 
T is m-measurable if and only if it is Ilm))-measurable and in that  case, we 
say that  f is m-measurable; we say that  fn + f m-a.e. if fn + f m-a.e. 
(equivalently, 1 1  m((-a.e.) in T. 

LEMMA 5. Let P be a &ring of subsets of T and let X : a ( P )  + [0, oo] - 
be a u-subadditive submeasure. Let a ( P )  and be the GL-completions of 
a ( P )  and A,  respectively. 

Then: 
- 

(i) A scalar function f on T is X-measurable if and only if it is a ( P ) -  
measurable (in the sense of Halmos [12]). 

- 
(ii) If f ,  g : T + ZK are equal X-a.e. in T and if g is a(P)-measurable, 

then the same holds for f also. 

(iii) Suppose f ,  fn : T + ZK, n = 1,2 ,  ..., are X-measurable and fn + f 
X-a.e. in T. Then f is X-measurable. 

Proof. The proof is similar t o  the classical case and so we leave it t o  the 
reader. 
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The following theorem is a generalization of Theorems 111.6.10 and I- 
11.6.11 of Dunford and Schwartz [lo] and Corollary 1.5 of Kelley and S- 
rinivasan [14] (i.e. Theorem 1 above) t o  X-valued A-measurable (resp. m- 
measurable) functions on T .  

THEOREM 2. Let P be a 6-ring of subsets of T. Let A : S = u ( P )  + 
[0, co] be a u-subadditive submeasure, or let A = m or llmll where m : P + 
L(X,  Y) is an operator valued measure. Let f : T + X .  Then the following 
conditions are equivalent: 

(ii) ( A  generalized Pettis measurab i l i ty  cr i ter ion)  f has A-essentially 
separable range on T and is weakly A-measurable. 

(iii) f has A-essentially separable range on T and f -' (G) n N (f)  E S for 
each open set G in X .  

(iv) f has A-essentially separable range on T and f -'(E) n N (f)  E S for 
each Bore1 subset E of X .  

(v) There exists a set M E S with A(M) = 0 such that  f x T \ ~  is the 
uniform limit of a sequence of P-elementary functions on T. 

(vi) ( A  generalized Kelley-Srinivasan measurabi l i ty  cr i ter ion)  There 
exists a set M E S with A(M) = 0 such that  f xT\M is a u-simple func- 
tion with respect t o  P. 

Consequently, the set M(P, X,A) of all X-valued A-measurable func- 
tions is closed under the formation of A-a.e. sequential limits in T .  When 
X = m or Jlmll, M ( P ,  X,A) is denoted by M ( P ,  X , m ) .  

Proof. 

( i ) ~ ( i i )  By hypothesis there exists M E S such that  A(M) = 0 and such 
that  f ~ ~ \ ~  is P-measurable. Then by (i)+(ii) of Theorem 1 f ( T \ M )  is 
separable and x* f x T \ ~  is S-measurable for each x* E X*.  Consequently, 
x* f is S-measurable and hence x* f is A-measurable by Lemma 5(i). Thus 
(ii) holds. 

( i i ) ~ ( i )  By hypothesis and Lemma 5(i) there exists M E S with A(M) = 
0 such that  f ( T \ M )  is separable and x* f is S-measurable for each x* E X *. 
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Then by Theorem 1 it follows that fxTiM is S- measurable and hence 
there exists a sequence (s,)? of X-valued S-simple functions converging 
pointwise to  fxTiM in T .  Then N (  f xTiM) = N ( (  f (xTiM) E s and hence 
N(fxTiM) = E U N ,  where E E S and N C H E S with X(H) = 0. Let 
(En)? c P such that En 7 E. Let U, be S-simple such that s, = u, 
X-a.e. in T ,  for n = 1 ,2 ,  ... Let w, = U,XE,. Then (w,)? are P-simple and 
converge to  fxTiM X-a.e. in T and hence f is X-measurable. Thus (i) holds. 

(i)+(iii) Let M E S with X(M) = 0 such that  fxTiM E M(P, X) .  Then ' 
by (i)+(iii) of Theorem 1 we have f (T \M)  is separable and 

(f XT\M)-' (G) n N(f  XT\M) E S and consequently, f -' (G) n N (  f )  E S 
for all open sets G in X .  Hence (iii) holds. By a routine argument, one can 
show that  ( i i i ) ~ ( i v )  . 

( i v ) j ( i )  By hypothesis there exists M E S with X(M) = 0 such that  
f (T\M) is separable and f-'(E) n N (  f )  E s for all Bore1 subsets E of X .  
Hence N ( f )  n f-'(E) n (T \M)  E S. 

Then by the equivalence of (i) and (iv) of Theorem 1, fxTiM is S -  
measurable. Therefore, there exists a sequence (s,)? of S-simple functions 
converging pointwise t o  fxTiM on T. Then following an argument similar 
to  that in the proof of (ii)+(i),  we conclude that  f is X-measurable and 
hence (i) holds. 

( i)+-(v) Since there exists M E S with X(M) = 0 such that  fxTiM is P -  
measurable, by ( i ) ~  (v) of Theorem 1, (v) holds. (v)+(vi) j ( i )  by Lemma 
3 applied t o  fxTiM. By Lemma 5(iii) the last part is immediate from the 
equivalence of (i) and (ii). 

This completes the proof of the theorem. 

Remark 4. Clearly the above theorem subsumes Theorem 3.5.3 of [13], 
Theorem 2, 56 of [5] and Theorems 111.6.10 and 111.6.11 of [lo]. 

The proofs of the said theorems of [5] and [lo] make use of the Egoroff 
theorem which is not available for countably subadditive submeasures. How- 
ever, thanks to  the ingenious techniques of Kelley and Srinivasan [14], we 
are able to  generalize the above mentioned classical theorems to  X-valued 
X-measurable (resp. m-measurable) functions when X is a a-subadditive 
submeasure (resp. when m is an operator valued measure). 
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Remark 5. Let v : C + X be a-additive, where C is a a-algebra of 
subsets of T. If we define m ( E ) ( a )  = a .  v ( E )  for a E K, then m : C + 
L ( K ,  X )  is an operator valued measure and it is well known that  m = I IvI I .  
If p is the control measure of v, then p ( E )  = 0 if and only if IIvII(E) = 0 
and hence if and only if m ( E )  = 0. 

Therefore, the Lebesgue completion C* of C with respect to  p as in Sec- 
tion IV.10 of [lo] coincides with the GL-completion of C with respect t o  m 
and then Theorem 2 implies that  a scalar function is v-measurable according , 
t o  the definition on p.322 of [lo] if and only if it is m-measurable in our sense. 

Because of the importance of the last part of the above theorem in the 
theory of integration of vector functions, we state it as a separate theorem 
and also prove it directly. 

THEOREM 3. Let A be a a-subadditive submeasure on a ( P )  (resp. m be 
a n  operator valued measure on P). Then M ( P ,  X ,  A)  (resp. M(P,  X ,  m)) 
is closed under the formation of A-a.e. (resp. m-a.e.) sequential limits. 

Proof. It suffices t o  prove the  proposition for A. Let (fn)F=l c M ( P ,  X ,  A) .  
If fo : T + X and if fn + fo A-a.e. in T, then there exist (Ni)Zo c a ( P )  
with A(Ni) = 0 for i = 0 , 1 , 2 ,  ... such that  fn(t)  + fo(t) for t E T\No 
and f n x T \ ~ ,  E M ( P , X )  for n E N. If N = UrZo Nnl  then N E a ( P ) ,  
A(N) = 0, ( ~ ~ x T \ N ) ?  C M ( P j X )  and f n ( t ) ~ ~ \ ~ ( t )  -) ~ o ( ~ ) x T \ N ( ~ )  for 
t E T. 

Therefore, by the  last part of Theorem 1 we conclude tha t  fOxT\N E 
M ( P ,  X ) .  Since A(N) = 0, we conclude that  fo is A-measurable in T. 

DEFINITION 13. Let m : P + L(X,  Y) be an operator valued measure 
and let f ,  fn : T + X , n  E I?, be m-measurable . Then (f,)? is said t o  
converge t o  f in measure-m (resp. in semivariation m) if, for each q > 0, 
limn+, Ilmll({t E T : I fn(t)  - f (t)l > q}) = 0 (resp. limn,, m({t E T : 
( fn (t) - f (t) 1 > 7))  = 0). Similarly, as in Halmos [12], the concepts of 
fundamental in measure-m (resp. in semivariation m), and almost uniform 
convergence in measure-m (resp. in semivariation m )  are defined. 

The proofs of the two results mentioned in the first two paragraphs on 
p.519 of [6] are based on Theorem 1 and as these results are indispensable 
for proving Theorem 13 of [6], the following proposition treats these results. 

PROPOSITION 8. Let m : P + L(X,  Y) be an  operator valued measure 
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and let f, : T + X ,  n E N ,  be m -  measurable. Then: 

(i) If (f,)? is fundamental in measure-m (resp. in semivariation m), 
then there exist a subsequence (f,,)& and an m-measurable function 
f : T + X such that f,, + f almost uniformly in measure-m (resp. 
in semivariation m) in T. Consequently, f,, + f m-a.e. in T. 

(ii) If ( f,)Y converges to an m-measurable function f : T + X in measure- 
m o r  in semivariation m in each set E E P, then there exists a sub- , 
sequence (f,,)? converging to f m-a.e. in T. 

Proof. Let v = llmll or m. Then by Proposition 4 v is a a-subadditive 
submeasure on a ( P ) .  

(i) By hypothesis and the a-subadditivity of v there exists M E a(P) 
with v (M)  = 0 such that  (fnxTiM)Y are P-measurable. 

Let 6 > 0 and let En,p(~)  = {t E T \ M  : I f,(t) - fp(t)l 2 E ) .  Proceeding 
as in the proof of 

Theorem 22.D of Halmos [12], we can construct a subsequence (nk)rZl  
1 of N such that  v(E,,,(&)) < & for n ,  p 2 nk. Defining Ek = En,,,,+, ( F ) ,  

let F k  = Ui>k E;. 
Then E,; Fk E a(P) for all i, k. Then as in the proof of the said theorem 

of Halmos [12] it can be shown that  ( f,,) is Cauchy for uniform convergence 
on T\M\Fk for each k and consequently, as X is complete, lim; f,, (t) = f (t) 
(say) exists in X for each t E T \ M \ F k .  Moreover, as v is a-subadditive, 
v(Fk) 5 & for each k and hence ( f n i ) Z l  is almost uniformly Cauchy 
(in v) in T \ M .  Let N = ngl Fk. Then v ( N )  = 0 and hence m ( N )  = 
0. If we define f ( t )  = 0 for t E M U N ,  then f : T + X and as seen 
above, fni(t) + f ( t )  for t E U g l ( T \ M \ F k )  = T \ M \ N .  In other words, 
fnixT\M\N converges pointwise t o  f x T i M \ ~  in T and hence by Theorem 1, 
f xT\MiN is P-measurable. 

Since v ( M  U N )  = 0, we conclude that  f is v-measurable and (f,,)? 
converges to  f v-a.e. in T. 

(ii) Let fo = f .  Take M as in the proof of (i) so that  fnxT\M,n E 
N U {O), are P-measurable. Let F = U Z o ( T \ M )  n N (  f,). Then F E 
a(P). Choose an increasing sequence (Fk)? c P such that  F = Uy Fk. 
By hypothesis and (i) ,  there exist a subsequence (fl , ; )gl  of (f,)?, a set 
N1 E a(P) n Fl with v(Nl) = 0 and a P n (Fl\N1)-measurable function g 
such that  fl,; + g almost uniformly in v in Fl. 
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Then by adapting the proofs of Theorems 22.B and 22.C of Halmos [12], 
we conclude that f = g v-a.e. in Fl and consequently, there exists N1 c Fly 
N1 E a(P) with v ( ~ 1 )  = 0 such that fl,;(t) + f ( t )  fo r t  E F ~ \ N ~ .  

Repeating the argument with the subsequence ( f1,;)E1 we get a subse- 
quence (f2,;)g1 and a set N2 c F2, N2 E a(P) with v(N2) = 0 such that 
f2,; (t) + f (t) for t E F ~ \ N ~ .  Repeating this process successively, in the nth 
stage we obtain a subsequence (fn,;)El of (fn-l,;),"=l and a set Nn C Fn, 
~n E a(P) with v(Nn) = 0 S U C ~  that fn,;(t) + f (t) for t E F,\N~. Let , 
N = Uy Nn. Then N E a(P), v(N)  = 0 and the diagonal sequence ( fnln)T, 
which is a subsequence of ( fn)yl converges to f pointwise in F \ N .  Since 
T = F U  M and  MU N )  = 0, (ii) holds. 

5. Submeasures  which are continuous o r  a-subadditive.  Im- 
portant results such as the Egoroff theorem and the Egoroff-Lusin theorem 
(resp. Pettis theorem on absolute continuity of measures ) are generalized to 
continuous (resp. a-subadditive) submeasures. The Egoroff-Lusin theorem 
and Pettis theorem are used in Section 6. 

PROPOSITION 9. A continuous submeasure X defined on a a-ring S is 
a-subadditive. 

Proof. Since X is monotone, it suffices to show that X(Uy En) < CT X(En) 
for any disjoint sequence (En)? C S. For such a sequence, let E = Uy En 
and let Fn = Up=, Ek. Then Fn \ 0. As X is finitely subadditive, we 
have X(E) < X(Ek) + X(Fn). Taking the limit as n + oo, we have 

X(E) < X(En) since X is continuous and Fn \ 0. 

In the proof of the classical Egoroff theorem with respect to  a finite pos- 
itive measure p ,  only the continuity from above and the a-subadditivity of 
p are used. Thus, in the light of Proposition 9, we can adapt the proof 
of the classical Egoroff theorem to generalize it to  the case of continuous 
submeasures. Thus we have: 

THEOREM 4 (Egoroff). Let X : S + [0, oo] be a continuous submeasure 
on the a-ring S and let f ,  fn : T + X, n E N ,  be S-measurable. 

If fn + f A-a.e. in T, then, given E > 0, there ezists a set E, E S such 
that X(E,) < E and fn  + f uniformly on T\ E,. 

From the above theorem we deduce the following result, known as the 
Egoroff- Lusin theorem. 



18 A generalized Pettis measurability criterion and integration of vector functions 

THEOREM 5 (Egoroff-Lusin). Let P be a 6-ring of subsets of T and 
let X : a(P) + [0, oo] be a continuous submeasure. Let f ,  fn : T + X ,  
n = 1,2,  .. be P-measurable and suppose fn(t) + f (t) for t E T.  If 
F = Ur=l N(f,), then there exist N E a(P) with X(N) = 0 and a se- 
quence (Fk)y C P with Fk 7 F \ N  such that f, + f uniformly on every 

Proof. By applying the Egoroff theorem successively with c = $ in ' 

the nth step, we can construct a decreasing sequence (Gn)y  c a(P) such 
that X(Gn) < and fn + f uniformly on Gn-1\Gn where Go = F. Let 
N = n';0 G,. Then N E a(P) and X(N) = 0. Moreover, F \ N  = Uy (F\G,) 
and F\G, 7. Clearly, fn + f uniformly on F\G, = Ur=l (Gk-1\Gk) for 
each n. As F\G, E a(P) there exists an increasing sequence (Hn,,);=, c P 
S U C ~  that Uz=l Hntm = F\Gn. Let F, = U;,m=l Hp,,. Then Fn E P for all 
n, Fn 7 F \ N  and f k  + f uniformly on each F,. 

The easy proof of the following corollary is left to the reader. 

COROLLARY 1. If p : S = a(P) + [0, oo] is a a-finite measure, then 
the Egoroff-Lusin theorem holds for p. 

DEFINITION 14. Let X be a submeasure on a a-ring S and let y : S + 
X be a-additive. We say that y is absolutely continuous with respect to X 
and write y << X (resp. A-continuous) if X(E) = 0 implies y(E)  = 0 (resp. 
if limx(E),o y(E)  = 0) for E E S. 

THEOREM 6 (Pettis). Let S be a a-ring of subsets of T .  Let X : S + 
[0, oo] be a a-subadditive submeasure and let y : S + X be a-additive. Then 
y << A if and only if y is A-continuous. 

Proof. Clearly the condition is sufficient. Suppose y << X and y is not 
A-continuous. Then there would exist an c > 0 such that, for each n E LN, 
there would exist a set En E S with X(En) < $ for which ly(En)I > c. If 
E = lim sup En and A, = U;LO=, Ek, then we have X(E) = A,) 5 
X(An) 5 Cgn X(Ek) < for each n and hence X(E) = 0. Then by 
hypothesis y(E)  = 0. Clearly, A, \ E and hence by Proposition 2(ii) 
limn J J  y(l (An\E) = 0. Thus, there exists no such that Ilyll (An\E) < E for 
n > no. Since X(E) = 0 implies X(F) = 0 for all F C E, F E S, by hypoth- 
esis we have y ( F )  = 0 for F c E, F E S, and hence Ilyll (E) = 0. Therefore 
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we have IIyII(An) = IIyII(An) - Ilrll(E) I IIrII(An\E) < 6 for n 2 no. This 
is impossible since ((yll(An) > IlyJI(En) > ly(En)l > 6 for all n. Thus the 
theorem holds. 

6. Integrat ion of X-valued m-measurable  functions. Theorem 
1 of [6] is used in the proofs of Theorems 2,10,14 and 15 of [6]. If p is 
the Y-valued u-additive measure constructed in the proof of Theorem 1 of 
[6], p (N)  = 0 does not imply SE fnxEdm = 0, contrary to what is claimed 
there. Because of this lacuna, the said theorems remain unestablished in [6]. 
However, using the results of Sections 4 and 5, we modify the original proofs 
of [6] in this section and establish the said results rigorously. Besides, using 
Theorems 1 and 3 of Section 4, not only we dispense with the hypothesis of 
measurability of the limit functions in these theorems but also strengthen 
the statements of these theorems by using m-measurable functions in place 
of P-measurable functions. It is also noted in Remark 8 that the Bartle- 
Dunford-Schwartz integral treated in Section IV.10 of [lo] is a particular 
case of the integral defined here. Employing Proposition 7 we provide a 
strengthened version of Theorem 14 of [6] and using Proposition 8 we give 
a detailed proof of Theorem 13 of [6]. Also we clarify certain statements in 
the proofs of Theorems 10 and 14 of [6]. 

B A S I C  ASSUMPTION.  I n  t h e  sequel m : P + L(X,Y) is u- 
addi t ive in  t h e  s t rong  opera tor  topology of L(X, Y) wi th  m ( E )  < co 
for each E E P. 

Remark 6. The finiteness of m on P has to  be imposed and is not a con- 
sequence even if m is u-additive in the uniform operator topology, contrary 
to  the claim made by Bartle on p.339 of [2]. This has been established in 
Example 5 on p.517 of [6]. 

Under the additional hypothesis that m(E) )  < oo for all E E P, the 
X-valued P-simple functions are called simple integrable functions. 

LEMMA 6. Let yn, q,, : u(P)  + Y, n E RV, be a-additive. Let 

Then X is a continuous submeasure on u (P ) .  
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Proof. By Proposition 2 'i;, and i jn,  n E N ,  are bounded continuous 
submeasures on a ( P )  and hence X is also a bounded submeasure. To show 
that X is also continuous, let E > 0 be given. Choose no such that & < 5 .  
Let (En)? C u ( P )  such that En 0. As yn, qn, n = 1,2, ..., no are con- 
tinuous, there exists ko such that ( y n ( E k )  + i jn (Ek) )  < $ for k > - kO and 
for n = 1,2 ,  ..., no. Then it follows that X(Ek)  < 6 for k > ko. Hence X is 
continuous. 

The following theorem combines Theorems 2 and 7 of [6] for simple in- ' 
tegrable functions. 

THEOREM 7. Let f : T -+ X be a vector function. If there exists a 
sequence (s,)? c S ( P ,  X )  such that limn s,(t) = f ( t )  m-a.e. in  T ,  then 
f is m-measurable. Let % ( a )  = J(.) sndm : a ( P )  -+ Y ,  n E N .  Then the 
following statements are equivalent: 

(i) limn y n ( E )  = y ( E )  exists in  Y for each E E a ( P ) .  

(ii) yn(.) : a ( P )  -+ Y ,  n E N ,  are uniformly a-additive on a ( P )  . 

(iii) limn y n ( E )  exists in  Y uniformly with respect to E E a ( P ) .  

Moreover, i f  (sk)? is  another sequence in  S ( P ,  X )  with limn sL(t) = f ( t )  
m-a.e. in T ,  satisfying anyone of the above conditions, then limn JE s n d m  = 
limn JEsLdm for all E E a ( P ) .  Finally, y : a ( P )  -+ Y is a-additive and 
m-continuous (resp. I lm(( -continuous). 

Proof. By Theorem 3 f is m-measurable. Since the yn are a-additive on 
a ( P )  by Proposition 5(ii), by VHSN (i)*(ii) and obviously, ( i i i ) ~ ( i ) .  Let 
(ii) hold. In the definition of the continuous submeasure X of Lemma 6 let 
us take yn as above and 77, = 0 for all n. Let M E a ( P )  with m ( M )  = 0 
such that sn( t )  -+ f ( t )  for t E T\M. 

Let F = Ur=l N ( s ~ )  n (T\M). Now by the Egoroff-Lusin theorem a p  
plied to  A ,  there exist N E a ( P )  n F with X ( N )  = 0 and an increasing 
sequence (Fk)? C P with Fk )' F\N such that sn -+ f uniformly on each 
Fk. Let G = F\N. Given E > 0, by hypothesis (ii) and Proposition 3 there 
exists ko such that llynl 1 (G\Fko) < 5 for all n. Since m ( F k o )  < oo and since 
sn -+ f uniformly on Fko , there exists no such that I(sn - s,I I F k o  - m ( F k o )  < 5 
for all n , p  > no. As m ( M )  = 0, by Proposition 5(i) y n ( M )  = 0 for all n 
and hence X ( M )  = 0. 
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Moreover, X(M) = X(N) = 0 imply that  y n ( E  n N )  = y n ( E  n M )  = 0 
for all n and for all E E a ( P ) .  Thus we have 

for all n , p  2 no and for all E E a(P). Thus { y n ( E ) ) r  is uniformly Cauchy 
for E E a ( P )  and as Y is Banach, (iii) holds. The uniqueness of the limit 
is established as in the third paragraph on p.522 of [6] by considering the 
sequence (g,)? with g2, = sn and g2n-1 = S; for all n. 

By VHSN y is a-additive on a ( P )  and is m-continuous (resp. Ilmll- 
continuous) by Theorem 6 as m (resp. Ilmll) is a a-subadditive submea- 
sure by Proposition 4 and as m ( E )  = 0 implies by Proposition 5(i) that  
yn(E)  = 0 for all n and hence implies tha t  y ( E )  = 0. 

This completes the proof of the theorem. 

Remark 7. In the above proof we could have defined X(E) = C;O & e, 
for E E a ( P ) ,  where pn is the control measure of yn and IIpn)I = sup{pn(E) : 
E E a ( P ) ) .  In that  case, X is a finite positive measure and hence the Egoroff- 
Lusin theorem applies. We preferred to  use the supremations of yn as they 
can directly be described by the vector measures unlike their control mea- 
sures. 

Using the above theorem we extend Definition 2 of [6] to  a wider class 
Z(m)  which contains S ( P ,  X )  and which is contained in M(P, X ,  m ) .  

DEFINITION 15. An X-valued m-measurable function f is said to  
be m-integrable if there exists a sequence ( s n ) y  C S ( P , X )  such that  
sn + f m-a.e. in T and such that  anyone of the conditions of Theorem 
7 is satisfied by the integrals J(.)sndm, n E N. In that  case, we define 
JE f d m  = limn JEsn for E E a ( P )  and it is well defined by the last part 
of Theorem 7. By JT f d m  we mean the integral JN(I) f d m .  The set of all 
X-valued m-integrable functions is denoted by Z(m).  
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The above integral includes the Bartle-Dunford-Schwartz integral of [I] 
as a particular case. In fact, we have the following 

Remark 8. Let v, C and m be as in Remark 5. Then by Remark 5 we 
note that the Bartle-Dunford-Schwartz integral of scalar functions with re- 
spect t o  v (see [2] or Definition 4.10.7 of [lo]) coincides with the m-integral 
given in Definition 15. Moreover, in this case, Z(m)  = Ll (m)  where Ll (m)  
is as defined in [7] (see [9, 171). 

.In the proof of Theorem 14 of [6], Proposition 7 in Section 3 above 
guarantees the existence of a sequence ( fn)r of X-valued P-simple functions 
such that fn (t) + f (t) and I f n  (t) 1 p I f  ( t) 1 for t E T.  

The Egoroff-Lusin theorem referred to  in the proof of the said theorem 
should be with respect to  the continuous submeasure X of Lemma 6 with 
yn(.) = J(.) fndm and qn = 0 for n E N. Also a clarification is needed in 
regard to the claim (in the said proof) that I JEnFk(f - fn)dml < 5 .  S- 
ince (fa)? converges to  f uniformly on Fk, I JEnFk fndm - JEnFk fpdml 5 
( I f n  - f p ( l ~ k  - m(Fk) by Proposition 5(i) and hence (JEnFk fndm)y  is uni- 
formly Cauchy (in Y) with respect t o  E E a(P). Hence f is m-integrable on 
En  F k  and JEnFk f d m  = limp JEnFk fpdm.Thus by Proposition 5(i) we have 

I SEnFk(f - fn )dm(  = limp I SEnFk(fp -fn)dml 5 limp Ilfn - f p l l ~ ,  'm(Fk) = 
1 1  f - f n l  l~~ . m(Fk) < 5 for sufficiently large n. However, Theorem 14 of [6] 
can be improved as follows. 

THEOREM 8. If f E Z(m),  then there exist a sequence (sn)r C 
S(P, X )  and a set M E a(P) with m ( M )  = 0 such that sn(t)  + f (t) and 
Isn(t)l 7 (f(t)l  f o r t  E T \ M  and limnJEsndm = JEfdm for E E a(P), 
the limit being uniform with respect to E E a(P). Consequently, 

and hence 

I L f d m l  5 I l f l l ~ ' m ( E )  

for f E Z(m)  and E E a ( P )  

Proof. Let f E Z(m).  By Proposition 7 and Definition 15, there exist 
two sequences of X-valued P-simple functions ( w n ) r  and ( h n ) r  and a set 
M E a(P) with m ( M )  = 0 such that wn(t) + f (t), hn(t)  + f (t) and 
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(wn(t)J  / J f (t)l  for t E T \ M  and such that  yn(.) = J(.) hndm,  n E N, 
are uniformly a-additive on a ( P )  with limn yn(E)  = JE f d m  for E E a ( P ) .  
Let qn(.) = J(.) wndm, n E N. Let v (E)  = JE f d m ,  E E u (P) .  Let 

F = Uy{t E T \ M  : Jhn(t)(  + lwn(t)J > 0). Let X be the continuous 
submeasure defined as in Lemma 6 with respect t o  these a-additive vector 
measures (y,)? and (q,)?. Let uzn_l = hn and u2, = wn for n E N. Then 
( u n ) y  c S ( P ,  X) converges t o  f pointwise in T \ M .  So by the Egoroff-Lusin 
theorem (with respect t o  A) there exist N E F n a ( P )  with X(N) = 0 and a 
sequence ( F k ) y  C P with Fk / F \ N  such that  un + f uniformly on each ' 

F k  . 

As un + f uniformly on each Fk, we can select a subsequence (nk)? of 
N such that  JJhnk - wnk JJFk a h ( F k )  < for each k. Let s k  = W,,XN + 
Wnk X F k  Clearly the  P-simple functions s k  converge pointwise t o  f in T \ M  
with (sk(t) l  / 1 f (t)l for t E T \ M .  Let G = F \ N .  m ( M )  = 0 im- 
plies by Proposition 5(i) tha t  yn(M) = qn(M) = 0 for all n and hence 
X(M) = 0. Moreover, as X(N) = X(M) = 0, q n ( E  n N )  = q n ( E  n M )  = 
y n ( E  n N )  = y n ( E  n M )  = 0 for all n and clearly sk( t )  = 0 for t E 
E n  (G\Fk). Hence we have ISE f d m  - SE skdm) 5 I JEnFk(sk - hnk)dml + 
1 JEn(G\S) hnkdml + 1 JE f d m  - JE hnkdml. Consequently, by Proposition 
5(i) we obtain I JE f skdm) L I Iwnk -hnk I IFk .m(Fk) + I Jynk I I (G\Fk) + 
I SE f d m  - SE hnk dml. Given r > 0, let us choose ko such tha t  < 5.  By 
Theorem 7 v (E)  = limk JE h n k d m  uniformly with respect t o  E E u ( P )  and 
hence we can choose kl > ko such that  Iv(E) - JE hnkdml < 5 for all k > kl 
and for all E E u ( P ) .  Thus choosing k > kl we have 

and 

r 
v ( E )  - hnk d m )  < - for all E E o ( P ) .  

3 (2) 

Now by hypothesis ( y n ) y  are uniformly a-additive on a ( P )  and as (G\Fp) \ 
0, by Proposition 3 there exists k2 > kl such tha t  IIx(((G\Fk) < 5 for all 
k > k2 and for all n E N. Thus, in particular, 

fork > k2. Consequently, by (1),(2) and (3) we have 1 SE skdm-SE fdml  < r 
for k > k2 and for E E a ( P ) .  This proves the  first part of the theorem. The 
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remaining parts are immediate from the first and the  definition of m. 

This completes the proof of the theorem. 

Remark 9. For any sequence of X-valued P-simple functions (s,) satisfy- 
ing the hypothesis of the above theorem, generally J .) f d m  # limn 4. s,dm. 
However, it holds if and only if f E L l ( m ) .  See \7,9,17]. For Ll(m) the 
condition is sufficient by the Lebesgue dominated convergence theorem (see 
[7]). The necessity is proved via the construction of a counter example when 
f does not belong to  L l ( m )  (see [9]). 

Remark 10. The inequality in Theorem 14 of [6] replaces that  of Propo- 
sition 5(i) t o  extend the  proofs given for simple integrable functions in [6] t o  
general integrable functions. For example, see Theorems 2, 3, 9 and 11 of [6]. 

Theorem 10 of [6] is valid, but its proof should be corrected by applying 
the Egoroff-Lusin theorem with respect t o  the continuous submeasure X of 
Lemma 6 (and not by Theorem 1 of [6]), with % ( a )  = J(.) s,dm and qn = 0 
for n E N, where (s,)T c S ( P ,  X )  and s, + f in T. 

The following theorem is an improved version of Theorems 15 and 16 
of [6] and the  original proof of [6] is rectified here by defining suitably the 
continuous submeasure A. 

THEOREM 9 ( T h e o r e m  of  c losure  or of  in te rchange  of  l imit  a n d  
integral) .  Let f : T + X and suppose (f,)? c Z ( m )  converges t o  f m- 
a.e. in T. Then f is m-measurable. Let y,(.) = 4.) f n d m  : a ( P )  + Y for 
n E N. Then the following statements are equivalent: 

(i) limn y,(E) = y ( E )  exists in Y for each E E a ( P ) .  

(ii) ynl  n E N, are uniformly a-additive on a ( P ) .  

(iii) lim,y,(E) = y ( E )  exists in Y uniformly with respect t o  E E a ( P )  

If anyone of the above conditions holds, then f is m-integrable and 

the limit being uniform with respect t o  E E a ( P ) .  
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Proof. By Theorem 7, y,, n E N ,  are o-additive on o ( P ) .  Then by 
VHSN (i)+(ii) and the implication (iii)+(i) is obvious. 

Suppose (ii) holds. By Theorem 3 f is m-measurable and by hypoth- 
esis there exists M E o ( P )  with m ( M )  = 0 such that  f,(t) -+ f ( t )  for 
t E T \ M  and are P-measurable. By Theorem 1 fxTlM is also 
P-measurable. Define X of Lemma 6 with y, as above and 77, = 0 for n E N .  
Let F = UT==l N ( f , ) n ( T \ M ) .  Then F E o ( P ) .  As m ( M )  = 0, by Theo- 
rem 8  (y,(E)I 5 1 1  f n l l E .  m(E) = 0  for E C M, E E o(P),where we define 
0.00 = 0. Thus we have y,(M) = 0 for all n and hence X(M) = 0.  Following 
the' proof of Theorem 7 and applying the Egoroff-Lusin theorem (with re- 
spect t o  A ) ,  using the inequality in Theorem 8  instead of Proposition 5(i) and 
observing that  X(M) = X(N) = 0 imply that  y,(E n M )  = y,(E n N )  = 0 
for all n and for E E o(P), we deduce that  (JE f,dm)? is uniformly Cauchy 
for E E o(P). Since Y is complete, (iii) holds. 

Since fxTiM is P-measurable, there exists a sequence (w,)F of P-simple 
functions such that  w,(t) -+ f( t)xTiM(t)  for t E T. Let F = U:=l{t E 
T \ M  : I fn ( t )J  + Iwn(t)( > 0). Let q,(.) = J(,) w,dm. Then F E a(P) and 
qn are a-additive on o ( P ) .  Let X be as in Lemma 6 with rl, and y, (as in 
the above). Taking vzn-l = fn and v2, = w,, we have v,(t) + f ( t )  for 
t E T \ M .  As observed in the above, m ( M )  = 0 implies that  7,(M) = 0 for 
all n .  Similarly, by Proposition 5(i) %(M) = 0 for all n. Thus X(M) = 0. By 
the Egoroff-Lusin theorem (with respect to  A) there exist N E F n o ( P )  with 
X(N) = 0 and an increasing sequence (Fk)y 'O P with Fk 7 F \ N  such that  
v, -+ f uniformly on each Fk. As y, are uniformly o-additive by hypothesis 
(ii), we can repeat the argument given in the second paragraph of the proof 
of Theorem 8  by replacing h, by f,, by choosing a subsequence (nk) of N 
such that  JJw,, - f,, (IF, - m(Fk) < and by defining s k  = W,,XN + w,,xF,. 
Then (sk)y are P-simple and sk( t )  + f (t) for t E T \ M .  Let G = F \ N .  
As X(N) = X(M) = 0 ,  we have qn(E  n N )  = qn(E  n M )  = y n ( E  n N )  = 
y,(E n M )  = 0 for all n and sk(t) = 0  for t E E n (G\Fk). Given E > 0, 
using the inequality in Theorem 8  and arguing as in the proof of Theorem 
8 ,  we have 
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for sufficiently large k and for all E E a ( P ) .  
Thus f is m-integrable and JE f d m  = y ( E )  = limn JE f n d m  for E E 

a(P), the limit being uniform with respect to  E E o ( P ) .  

This completes the proof of the theorem. 

Remark 11. The above theorem is called closure theorem for the follow- , 

ing reason. If the process of Theorem 7 is repeated with sequences of func- 
tions in Z ( m )  instead of X-valued P-simple functions, we obtain only Z ( m )  
and no new m-measurable functions are obtained. Clearly, the theorem 
gives necessary and sufficient conditions for the validity of the interchange 
of integral and limit, which hold particularly for abstract Lebesgue integral. 
Moreover, Z ( m )  is the smallest class in M (P, X ,  m )  containing S(P, X )  for 
which Theorem 9 holds. More precisely, let J ( m )  be another class of X -  
valued m-measurable functions which are integrable in a different sense ( 3 )  
with the integral being denoted by (3) 4.) f d m  for f E J (m) .  If for each 
X-valued P-simple function s and for each E E a ( P ) ,  (3) JE s d m  = JE s d m  
and if Theorem 9 holds for f E J ( m ) ,  then Z ( m )  C J (m) .  The last ob- 
servation shows that  Theorem 9 does not hold for Bochner and Dinculeanu 
integrable vector functions (see p.102 of [17]). In other words, among 
various Lebesgue-type integration theories developed in the liter- 
ature (see [6,17]), it is only the integral developed by Dobrakov 
(particular case being the Bartle-Dunford-Schwartz integral (see 
Remark 8)) that preserves the theorem of interchange of limit 
and integral for the class of all integrable functions and hence it 
can be considered as the complete generalization of the abstract 
Lebesgue integral, while others are only its partial generalizations. 

Using Theorems 7 and 9 and Proposition 8 we provide a detailed proof of 
the following theorem which is the same as Theorem 13 of [6]. The original 
proof in [6] is only very sketchy. 

THEOREM 10. Let f : T + X be m-measurable and let fn : T + X, 
n E N ,  be P-simple functions or  more generally, m-integrable functions 
converging to f in measure-m (resp. in semivariation m) on each E E P. 
Let y,(.) = J(.) f n d m  : u ( P )  + Y ,  n E N .  Then the following conditions 
are equivalent: 

(i) limn yn(E)  = y (E) exists in Y  for each E E a ( P ) .  



DOBRAKOV I. AND PANCHAPAGESAN T.V.  2 7 

(ii) yn, n E N, are uniformly a-additive on a(P). 

(iii) limn yn(E)  = y ( E )  exists in Y uniformly with respect to E E a(P). 

If anyone of these conditions holds, then f is m-integrable and JE f d m  = 
l imnyn(E) for each E E a(P), the limit being uniform with respect to 
E E a(P). 

Proof. The set functions yn are a-additive by Proposition 5(ii) if fn  are , 
simple functions and by Theorem 7 if fn are integrable functions. Then by 
VHSN (i)+(ii)  and (iii)+(i) obviously. Let (ii) hold. If (iii) does not hold, 
then there would exist an 6 > 0, a subsequence ( k p ) E l  of N and a sequence 
(EP),"=, C a(P) such that  Iykp(Ep) - y(Ep)J  2 6 for p E N .  But, on the 
other hand, by hypothesis and by Proposition 8 there exists a subsequence 
( f k p q ) g 1  of ( f k p ) E 1  such that  fkpq + f m-a.e. Then by Theorem 7 in 
the case of simple functions and by Theorem 9 in the case of m-integrable 
functions, there exists qo such that  Iykpq(E) - y ( E ) J  < 6 for all E E a(P) 
and for all q 2 go. This contradiction shows that  (ii)+(iii). Thus these 
conditions are equivalent. 

By Proposition 8 there exists a subsequence ( f n k ) &  such that  fnk + f 
m-a.e. in T. Then by Theorem 7 in the case of simple functions and by 
Theorem 9 in the case of m-integrable functions, f is m-integrable and 
JE f d m  = limk ynk ( E )  = limn y,(E) for E E a(P) and by (iii) the limit is 
uniform with respect t o  E E a(P). 

This completes the proof of the theorem. 

Remark 12. In the case of abstract Lebesgue integral as in Halmos [12] 
and of Bochner integral as in Dunford and Schwartz [10], the class of all 
integrable functions is obtained by starting with sequences of simple func- 
tions which converge in measure t o  a measurable function, satisfying certain 
Cauchy conditions. But in the present theory of integration of vector func- 
tions, there exist functions f E Z(m)  for which there does not exist any 
sequence of simple functions converging to  f in measure-m or in semivari- 
ation m on each E E P and satisfying any of the conditions of Theorem 
10, even though P is a a-algebra. See Example 7" of [6]. A much simpler 
example is given in [9]. Thus, in contrast t o  the classical cases of abstract 
Lebesgue integral and Bochner integral, the class Z(m)  cannot be obtained 
by considering convergence in measure-m or in semivariation m as in The- 
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orem 10. 
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