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Fault Propagation in Industrial Complexes: (min, +)Algebra
Framework

Luz E. Solé

Abstract

The fault propagation and detection in an industrial complex of plant units networks
is modeled by (min,+)algebra linear systems. The diagnosability of the network can be
transformed to the matrix inversion in (min, +). In the paper the inversion of matrices is
studied for particular network structures, and diagnosability is solved.
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1 Introduction

An industrial complex consists on interconnected plant units. The interconnection among the

units is realised both material and information flow. It is supposed that the plant units are

equipped with fault detectors doing local detection and diagnosis. However, a fault detected in

a unit may be the consequence of a fault occurred in another plant unit, propagated its effect to

be detected in several other plants. The detection and diagnosis and the propagation of a fault

to the detection location may have delay time. This process, with delay in the detection and the

propagation can be modeled by (min,+) linear system of form

x(k + 1) = A⊗̂x(k)

where the x(0) = (t1, t2, · · · , tn)t, are the instants when faults occur at the plant units. The

diagonal elements of A, aii represent the delay of the detection and diagnosis at the i-th plant
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units, and aij is the sum of the time delay of the propagation between the i-th and j-th plant

unit and the delay of the detection and diagnosis at the j-th plant.

The first detection at the i-th plant occurs at time Ti. In terms of (min, +)algebra an

algebraic relation can be established between the vectors x(0), and T = (T1, T2, · · · , Tn)t, see

equation (3).

It is supposed that x(0) is unknown and T is known.

Our industrial network is diagnosable if from knowledge of the vector T , x(0) is computable

(ver [11]).

In the present paper the diagnosability of a particular network structure is considered.

It is supposed that we have fault propogation from the i-th to j-th plant units if i < j. In

this case at the relation (3), the matrix.

X = At ⊕ (At)⊕ · · · ⊕ (At)n

is triangular. Invertibility of triangular matrices are exhaustively analysed in the paper and the

obtained results are applied to the problem of diagnosability.

In [6] the effects of delays in communication network are analysed by using DEDS, however

(min, +) or (max,+) linear systems are not applied. The application of (max,+) linear systems

to the description of the public transportation network systems with delay is quite similar to our

fault propagation model, however the considered problem in [7] is completely different.

The next section is an outline of (min, +) and (max,+) algebras. The main results are

contained in the section 3, see theorems 2 and 3.
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2 Preliminaries

In this section, we recall some basic definitions, concepts and theorem which will be used later.

For an extensive discussion about (max,+)algebra, (min,+)algebra and similar structures, see

to [2].

Let ε = −∞, ε̂ = +∞ and Rε and Rε̂ denote the sets R ∪ {ε} and R ∪ {ε̂}.

For a, b ∈ Rε and Rε̂ the operations ⊕, ⊕̂,⊗, ⊗̂ will be defined by a ⊕ b = max(a, b),

a⊕̂b = min(a, b) and a⊗b = a⊗̂b = a+b, where will be adopted the conventions max(a,−∞) =

max(−∞, a) = a, min(a, +∞) = min(+∞, a) = a, a + (−∞) = −∞+ a = −∞ and +∞+ a =

a +∞ = +∞ for all a ∈ Rε and Rε̂.

Moreover, ε is the neutral element for the ⊕, ε̂ is the neutral element for the operation ⊕ and

absorbing for⊗ and ⊗̂, that is, for all a ∈ Rε and Rε̂, a⊗ε = ε and a⊗̂ ε̂ = ε̂. The neutral element

for ⊗ and ⊗̂ is 0 (somethings it is denoted by e). The sets Rε and Rε̂ together with the operations

⊕, ⊕̂,⊗ and ⊗̂, denoted by Rmax and Rmin are called (max,+)algebra and (min, +)algebra. More

precisely, Rmax = (Rε,⊕,⊗, ε, e) and Rmin = (Rε̂, ⊕̂, ⊗̂, ε̂, e) are semiring with respect to the

operations ⊕ and ⊕̂. The (max, +)algebra and (min, +)algebra are moreover conmutative

semiring. Furthermore, there are idempotent semiring, because ⊕ and ⊕̂ are idempotent, that is,

for all a ∈ Rε and Rε̂, we have a⊕ a = a and a ⊕̂a = a and therefore does not allow for inverse

elements. Indeed, if a 6= ε or a 6= ε̂ had an inverse element, say b, then a ⊕ b = ε or a ⊕̂ b = ε̂

would imply a ⊕ a ⊕ b = a ⊕ ε or a ⊕̂ a ⊕̂ b = a ⊕̂ ε̂. By idempotency, the left-hand side equals

a⊕ b or a ⊕̂b, whereas the right-hand side is equal to a. Hence, we have a⊕ b = a or a ⊕̂b = a,

which contradicts a⊕ b = ε or a⊕̂b = ε̂.
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Rmax and Rmin are isomorphic algebraic structures.

We now extend (max, +) and (min, +)algebra operations to matrices in the following way.

If A,B ∈ Rn×n
ε and Rn×n

ε̂ then

(A⊕B)ij = Aij ⊕Bij = max(Aij , Bij)

(A⊕̂B)ij = Aij ⊕̂Bij = min(Aij , Bij),

for i = 1, · · · ,m ; j = 1, · · · , n.

If A ∈ Rm×p
ε and Rm×p

ε̂ , B ∈ Rp×n
ε and Rp×n

ε̂ then

(A⊗B)ij =
p⊕

k=1

Aik ⊗Bkj = max
1≤k≤p

(Aik + Bkj)

(A⊗̂B)ij =
⊕̂p

k=1
Aik⊗̂Bkj = min

k
(Aik + Bkj),

for i = 1, · · · ,m and j = 1, · · · , n. From the definitions it follows that Rn×n
max and Rn×n

min are

idempotent semiring.

A square max-plus or min-plus matrix corresponds to a graph. Let A be n× n

max-plus matrix or min-plus matrix. The precedence graph G(A) is a weighted digraph (V, E),

where V is the set of nodes (vertices) and E is the set of ordered pairs of vertices, called arcs and

of G. If aij 6= ε or ε̂, then the ordered pair (i, j) is an element of E and aij is called its weight.

Of the pair (i, j), i is the initial vertex and j the terminal vertex.

The notation Ak in (max,+)algebra or (min,+)algebra denote A⊗A⊗· · ·⊗A or A⊗̂ · · · ⊗̂A

k times, and the value of (Ak)ij equals the maximum or minimum of the weights of all paths of

lenght k from vertex i to vertex j.

The role of determinant in the standard matrix algebra is replaced by dominant (to be
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defined).

Let A ∈ Rn×n
max , then the dominant of A is defined as:

Dom(A) =





hightest exponent in det(zA) if det(zA) 6= 0

ε otherwise

where z ∈ (1, +∞) and zA ∈ Rn×n, (zA)ij = zAij .

We define

M(+) =
{

A ∈ Rn×n
max : the sign of the hightest exponent

in det(zA) is positive

M(−) =
{

A ∈ Rn×n
max : the sign of the hightest exponent

in det(zA) is negative .

Then, if A ∈ M(+) we shall say that A has positive sign: Sign(A) = +; similarly, A ∈ M(−)

will be equivalent with sign(A) = −.

The Cramer’s rule in (max, +)algebra, in order to obtain the solution of the linear equation

A⊗ x = b, is given by

xj ⊗Dom(A) = Dom(Ai), 1 ≤ i ≤ n, (1)

where Ai is obtainded from A by replacement of the i-th column by b.

In general, a solution to A⊗x = b in (max, +)algebra may not exist, not even if dom(A) > ε;

and if it exists, it not necessarily unique.

Theorem 1 If the pair (A, b) satisfies Sign(A) = Sign(Ai), 1 ≤ i ≤ n and dom(A) > ε, then

(1) yields a solution of the equation A⊗ x = b.

Proof. (See [9]).
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3 Statement of the Problem

An interconnected system of n subsystems is considered. Suppose that the system i has a fault

at −ti time 1 ≤ i ≤ n and the fault is propagated forward, that is, from i-th plant unit the fault

is propagated to j-th only for j ≥ i.

Figure 1:

If we denote by −aij the time needed to pass the fault from the system i to the system j

and for −Tj the time where we detect for first time some fault at the jth system. Then −Tj is

given by

i

j

n

Figure 2:

−Tj = min
(−t1 ⊗̂(−a1j),−t2 ⊗̂(−a2j), · · · ,−ti ⊗̂(−aij), · · · −t1 ⊗̂(−a1`)⊗̂(−a`j),

· · · ,−ti ⊗̂(−ai`)⊗̂(−a`j), · · ·
)

= −max (t1 ⊗ a1j , t2 ⊗ a2j , · · · , ti ⊗ aij , · · · , t1 ⊗ a1` ⊗ a`j , · · · , ti ⊗ ai` ⊗ a`j , · · · )
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Tj = max (t1 ⊗ a1j , t2 ⊗ a2j , · · · , ti ⊗ aij , · · · , t1 ⊗ a1` ⊗ a`j , · · · , ti ⊗ ai` ⊗ a`j , · · · ) . (2)

We consider the vectors T and t define by T = (T1, T2, · · · , Tn)t; t = (t1, t2, · · · , tn)t and the At

matrix define by.

At =




a11 ε · · · ε

a12 a22
. . .

...
...

. . . ε
a1n a2n · · · ann




In the (max, +)algebra the equation (2) can be written as:

T = (At ⊕ (At)2 ⊕ · · · ⊕ (At)n)⊗ t. (3)

If X denotes the matrix

X = At ⊕ (At)2 ⊕ · · · ⊕ (At)n,

then (3) take the form

T = X⊗ t (4)

where X is a triangular matrix of the form

X =




x11 ε · · · ε
x21 x22
...

...
. . . ε

xn1 xn2 xnn




Theorem 2 If there exists a unique solution of the system T = X⊗ t, then the dominant of the

matrix Xi equals the sum of element of diagonal of Xi and the solution is ti = Ti − xii for all

i = 1, · · · , n.
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Proof. We have the proof by induction over n.

It is obvious that for n = 1, 2 the theorem is true. Suppose that for 1, 2, · · · , n the theorem

is true and that for n + 1 is false. Then it can be supposed that there exists A, hence X, such

that the extended system



x11 ε · · · ε ε

x21 x22
. . .

...
...

. . . ε
...

xn1 · · · · · · xnn ε
xn+1,1 xn+1,n xn+1,n+1



⊗




t1
...
...
tn

tn+1




=




T1
...
...

Tn

Tn+1




(5)

has the unique solution (t1, · · · , tn, tn+1). However, at least one Xi is not dominant by its diagonal

and t1, t2, · · · , tn is also solution of the first n equations: By induction

t1 = Ti − x11,

...

tn = Tn − xnn,

and that Xn
i is dominated by its diagonal, where Xn

i is given by

Xn
i =




x11 ε T1 · · · · · · ε

x22
...
...

xi−1,i−1 Ti−1 ε ε
xi,i−1 Ti ε

Ti+1 ε

xn1 . . . . Tn xn,n




.

Now, we consider the determinant of zXn
i for i ≤ n:
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Because the dominant is diagonal by hypothesis (i ≤ n), then

x11 + · · ·+ xi−1,i−1 + Ti + xi+1,i+1 + · · ·+ xnn is bigger than any of the term of det(zXn
i ). (6)

Now, by summation the term xn+1,n+1 in (6) we obtain that x11 + · · ·+xi−1,i−1 +Ti +xi+1,i+1 +

· · ·+ xnn + xn+1,n+1 is bigger than any terms of det(zXn
i ) + xn+1,n+1.

On the other hand, if the determinant of zXn+1
i is considered, that is,

det




zx11 0 · · · zT1 · · · 0

zx21 zx22
...
...

zxi−1,i−1 zTi−1
...

. . . . zxi,i−1 zTi
...

zTi+1 zxi+1,i+1

zxn1 . zTn zxn,n

zxn+1,1 zTn+1 zxn+1,n zxn+1,n+1




= zxi+1,i+1+···+xn+1,n+1 Det




zx11 0 · · · · · · zT1

zx21 zx22
...

0
zxi−1,i−1 zTi−1

zxi,i−1 zTi




then x11 + · · ·+xi−1,i−1 +Ti +xi+1,i+1 + · · ·+xnn +xn+1,n+1 ≥ xi+1,i+1 + · · ·+xnn +xn+1,n+1+

any exponent of det(zXn+1
i ). Hence, the dominant is diagonal.

Now, we consider the case i = n + 1, that is, we consider the determinant of the matrix P,

where P is given by
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P =




zx11 0 · · · 0 zT1

zx21 zx22
...

...
. . . 0

...
zxn1 · · · · · · zxnn zTn

zxn+1,1 zxn+1,n zTn+1 .




Now, expanding this determinant by the last row, we obtain that

det(P) = zTn+1det(P0) +
n∑

i=1

(−1)izxn+1,n−i+1det(Pi) (7)

where P0 and Pi matrices will be defined by

P0 =




zx11 0 · · · 0
zx22

. . . 0
zxn1 · · · · · · zxnn


 , (8)

Pi =




zx11 0 · · · · · · 0 0 · · · · · · 0 zT1

. . .
...

...
...

. . .
...

...
...

. . . 0
...

zxn−i,1 zxn−i,n−i 0 · · · · · · 0 zTn−i

zxn−i+1,1 zxn−i+1,n−i 0 · · · · · · 0 zTn−i+1

... zxn−i+2,n−i+2 · · ·
zxn−1,1 zxn−1,n−i

... · · · zxn−1,n−1 0 zTn−1

zxn,1 · · · · · · Zxn,n−i zxn,n−i+2 · · · zxn,n−1 zxnn zTn




.

(9)

Developing the determinant of Pi by the penult column, successively, in order to obtain a tri-

angular matrix whose principal diagonal elements are zx11 , · · · , zxn−i,n−i , zTn−i+1 , we have that

det(Pi) = (−1)i+1zxnn+xn−1,n−1+···+xn−i+2,n−i+2 × zx11+x22+···+xn−i,n−i+Tn−i+1 .
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Then, by substitution of this value of determinant in the equation (7), we have

det(P) = zTn+1+x11+···+xnn −∑n
i=1 zx11+···+xn−i,n−i+Tn−i−1

zxn+1,n−i+1+xnn+xn−1,n−1+···+xn−i+2,n−i+2
(10)

If Tn+1 + x11 + · · ·+ xnn is not equal to dominant of P, then this sum must be less that one

of the terms in (10).

In particular, Tn+1 +x11 + · · ·+xnn < x11 + · · ·+xn−i,n−i +Tn−i+1 +xn+1,n−i+1 +xn−1,n−1 +

· · ·+ xn−i+2,n−i+2 + · · ·+ xnn. But this imply that

Tn+1 + xn−i+1,n−i+1 < Tn−i+1 + xn+1,n−i+1. (11)

For (5) and inductive hypothesis

max(T1 − x11 + xn+1,1, T2 − x22 + xn+1,2, · · · , Tn−i+1 − xn−i+1,n−i+1 + xn+1,n−i+1 + · · · )

must be equal to Tn+1, but this is contradictory with (11). Hence, there is not exist solution if

the dominant of is different from the diagonal.

Theorem 3 If the dominant of Xi matrix is equal to the sum of elements of diagonal of Xi, then

the system T = X⊗ t has a unique solution, given by

ti = Ti − xii, i = 1, · · · , n

Proof. (Existence)

For the existence is necessary to prove that Sign(X) = Sign(Xi) i = 1, · · · , n and then

apply the Theorem 1.
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We have to calculate det(zX), z ∈ (1,+∞), in order to obtain the Sign(X). But,

det(zX) =

∣∣∣∣∣∣∣∣∣∣

zz11 0 · · · 0
... zx22

. . .
...

. . . 0
zxn1 · · · · · · zxnn

∣∣∣∣∣∣∣∣∣∣

= zx11+x22+···+xnn

therefore, Dom(X) = x11 + x22 + · · ·+ xnn and Sign(X) = +.

By hypothesis Dom(Xi) = x11 + x22 + · · ·+ Ti + · · ·+ xnn and Sign(Xi) = +. Hence, there

exist the solution of the system and given by

ti ⊗Dom(X) = Dom(Xi), that is,

ti = Ti − xii, i = 1, · · · , n.

(Uniqueness)

We apply induction over n. It is clear that for n = 1 the solution is unique. Suppose that

for 1, 2, · · · , n there exists a unique solution and that for n + 1 it is false.

We consider the extended system, given in (5) where by induction t1 = T1−x11, · · · , tn = Tn−

xnn is the unique solution and tn+1 is another solution no neccessarily equals to Tn+1−xn+1,n+1.

Now, by (10) and hypothesis

x11 + x22 + · · ·+ xnn + Tn+1 > x11 + · · ·+ xn−i,n−i + Tn−i+1 + xn+1,n−i+1

+xn+1,n−i+1 + xn−1,n−1 + · · ·+ xn−i+2,n−i+2

+ · · ·+ xnn

but this imply

Tn+1 + xn−i+1,n−i+1 > Tn−i+1 + xn+1,n−i+1. (12)
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By (5) and inductive hypothesis max(T1 − x11 + xn+1,1, T2 − x22 + xn+1,2, · · · · · · ,

Tn−i+1 − xn−i+1,n−i+1 + xn+1,n−i+1, · · · , xn+1,n+1 + tn+1) = Tn+1.

Therefore , Tn+1 = xn+1,n+1 + tn+1, that is,

tn+1 = Tn+1 − xn+1,n+1,

then the solution is unique.

4 Conclusion.

It is easy to see that there is no solution for (max, +) linear equations, for all diagonal matrix

and for all right hand side. Hence the problem of existence and uniqueness may be complicated

even in this particular case. Hence our positive results have importance and there are not trivial.

The applications is usefull in practice.
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