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Abstract

In this paper we study the effect of the diffusion on the stability of the equilibria in a
reaction diffusion ratio-dependent predator-prey model and we explore under which parameter
values Turing instability can occur giving rise to non-uniform stationary solutions. Moreover,
their stability is studied.
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1 Introduction

In this paper we are going to study the following reaction diffusion ratio dependent predator prey
model

∂N

∂t
= D1ΔN + aN(1−

N

K
)−

cNP

mP +N
, x ∈ Ω, t > 0,

(1.1)

∂P

∂t
= D2ΔP + P

(

−d+
fN

mP +N

)

, x ∈ Ω, t > 0,

subject to the Neumann boundary conditions

∂N

∂η
=
∂P

∂η
= 0, x ∈ ∂Ω, t > 0,

and initial conditions

N(x, 0) = ϕ1(x) ≥ 0, P (x, 0) = ϕ2(x) ≥ 0, x ∈ Ω.

where a, K, c, m, f , d are positive constants and N(x, t), P (x, t) represent the population density
of prey and predator at x ∈ Ω and at time t respectively. The prey grows with intrinsic growth
rate a and carrying capacity K in the absence of predation. The predator consumes the prey
with functional response of Michaelis-Menten type cuy/(m+ u), u = x/y and contributes to its
growth with rate fuy/(m + u). The constant d is the death rate of predator, and Di > 0 are
constants, i = 1, 2; while Δ denotes the Laplace operator in Ω ⊂ Rn, Ω bounded and connected.

The motivation to consider the above described model comes from growing evidence ( [1,2,4,7])
that in some situations, specially when predator have to search for food and therefore have to
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share or compete for food, a more suitable general predator prey theory should be based on the
so-called ratio-dependent theory, which can be roughly stated as that the per capita predator
growth rate should be a function of the ratio of prey to predator abundance. This is supported
by numerous field and laboratory experiments and observations ( [2–4]).

Hsu et al. in [11] perform a global analysis of the Michaelis-Menten-type ratio-dependent
predator-prey system without diffusion. Moreover, they discuss the main differences between the
classical predator-prey models and the ratio dependent predator-prey system. In particular they
brought into discussion the well-known “paradox of enrichment" or equivalently “the biological
control paradox".

In this paper we will study the effect of the diffusion on the stability of the equilibria in a
reaction diffusion ratio-dependent predator-prey model and we explore under which parameter
values Turing instability can occur giving rise to non-uniform stationary solutions. Their stability
is studied. Moreover, we give a comprehensive description under which parameter values this
pattern formation arises. In the concluding remark we will discuss the differences between the
dynamics of this model and the classical one.

2 Preliminaries

For simplicity, we nondimensionalizes the system (1.1) with the following scaling

t −→ at, N −→
N

K
, P −→

mP

K

then the system (1.1) takes the form

∂N

∂t
= d1ΔN +N(1−N)−

sNP

P +N
, x ∈ Ω, t > 0,

(2.1)

∂P

∂t
= d2ΔP + δP

(

−r +
N

P +N

)

, x ∈ Ω, t > 0,

where

s =
c

ma
, δ =

f

a
, r =

d

f
, d1 =

D1

a
, d2 =

D2

a

We will show that the reaction-diffusion system (2.1) generates a dynamical system and it is
biologically well possed on suitable Banach space.

Let us set F = (F1, F2), U = (N,P ) and D = diag[d1, d2], where

F1(N,P ) = N(1−N)−
sNP

N + P
, F2(N,P ) = δP (−r +

N

P +N
).
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Henceforth, considering also an initial condition, system (2.1) can be rewritten as

∂U(x, t)

∂t
= DΔU(x, t) + F (U), x ∈ Ω, t > 0 (2.2)

∂U

∂η
(x, t) = 0, x ∈ ∂Ω, t > 0 (2.3)

U(x, 0) = ϕ(x), x ∈ Ω. (2.4)

Let X be the Banach space X1 × X2, where Xi = C(Ω), i = 1, 2. The norm on X is defined
by | ϕ |=| ϕ1 | + | ϕ2 |. Let A0N and A0P be the differential operators A

0
NN = d1ΔN and

A0PP = d2ΔP , defined on the domains D(A
0
N ) and D(A

0
P ), respectively; where

D(A0N ) = {N ∈ C
2(Ω) ∩ C1(Ω) : A0NN ∈ C(Ω),

∂N

∂η
(x) = 0, x ∈ ∂Ω},

D(A0P ) = {P ∈ C
2(Ω) ∩ C1(Ω) : A0PP ∈ C(Ω),

∂P

∂η
(x) = 0, x ∈ ∂Ω}.

The closures AN of A0N , and AP of A
0
P in Xi generate analytic semigroups of bounded linear

operators TN (t) and TP (t) for t ≥ 0 such that N(t) = TN (t)ϕ1 and P (t) = TP (t)ϕ2 are solutions
of the abstract linear differential equations in Xi given by

N ′(t) = ANN(t), P
′(t) = APP (t).

An additional property of the semigroup is that for each t > 0, TN (t) and TP (t) are compact
operators. In the language of partial differential equations N(x, t) = [TN (t)ϕ1](x) and P (x, t) =
[TP (t)ϕ2](x) are classical solutions of the initial boundary value problem (2.2) with F1 = F2 = 0.

Let T(t) : X −→ X be defined by T(t) = TN (t) × TP (t). Then T(t) is a semigroup of
operators on X generated by the operator A = AN × AP defined on D(A) = D(AN ) × D(AP )
and U(x, t) = [T(t)ϕ](x) is the solution of the linear system

∂U

∂t
(x, t) = DΔU(x, t), x ∈ Ω, t > 0

∂U

∂η
(x, t) = 0, x ∈ ∂Ω, t > 0, U(x, 0) = ϕ(x), x ∈ Ω.

Observe that the nonlinear term F is twice continuously differentiable in U . Therefore, we can
define the map [F ∗(ϕ)](x) = F (ϕ(x)) which maps X into itself and equation (2.2) can be viewed
as the abstract O.D.E. in X given by

u′(t) = Au(t) + F ∗(u(t)), u(0) = ϕ. (2.5)

While a solution u(t) de (2.5) can be obtained under the restriction that ϕ ∈ D(A), a mild
solution can be obtained for every ϕ ∈ X by requiring only that u(t) is a continuous solution of
the following integral equation

u(t) = T(t)ϕ+
∫ t

0
T(t− s)F ∗(u(s))ds, t ∈ [0, β), (2.6)
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where β = β(ϕ) ≤ ∞. Restricting our attention to functions ϕ in the set

XΛ =
{
ϕ ∈ X : ϕ(x) ∈ Λ, x ∈ Ω

}
,

where Λ =
{
U = (N,P ) ∈ R2 : N ≥ 0, P ≥ 0

}
, and taking into account the definition of the

functions Fi, we obtain that F1(0, P ) = 0 and F2(N, 0) = 0 for U ∈ Λ. Thus, Corollary 3.2, p.
129 in [16] implies that the Nagumo condition for the positive invariance of Λ is satisfied, i.e.,

lim
h→0+

h−1dist(Λ, U + hF (U)) = 0, U ∈ Λ. (2.7)

On the other hand, a direct applications of the strong parabolic maximum principle can be used
to show that the linear semigroup T(t) leaves XΛ positively invariant, i.e.

T(t)XΛ ⊂ XΛ, t ≥ 0. (2.8)

Finally, conditions (2.7) and (2.8) together allow us apply Theorem 3.1, p. 127 in [16], giving us

Lemma 1 For each ϕ ∈ XΛ, (2.1) has a unique mild solution u(t) = u(ϕ, t) ∈ XΛ and a
classical solution U(x, t) = [u(t)](x). Moreover, the set XΛ is positively invariant under flow
Ψt(ϕ) = u(ϕ, t) induced by (2.1).

So, the model (2.1) is biologically well possed and its relevant dynamic is concentrated in XΛ.

Finally, we are going to prove that all solutions of system (2.1) are bounded and therefore
defined for all t ≥ 0. Actually, from the following result by using the general theory of infinite
dynamical system it follows that the relevant dynamic of the system (2.1) is concentrated in
compact set of the space XΛ.

Theorem 1 Let (N,P ) be any solution of (2.1). Then

lim sup
t→∞

max
x∈Ω

N(x, t) ≤ 1 , lim sup
t→∞

max
x∈Ω

P (x, t) ≤
1

r
.

Proof 1 From the first equation of the system (2.1), it follows that

∂N

∂t
≤ d1ΔN +N(1−N),

as long N is defined as a function of t.

Let z be the solution of the equation

z′(t) = z(t)(1− z(t)) , z(0) = max
x∈Ω

N(x, 0).

From the comparison principle, we obtain N(x, t) ≤ z(t). Now, taking into account that for any
ε > 0 there exists a Tε > 0 such that z(t) < 1 + ε for any t ≥ Tε, which in turn implies that
N(x, t) is defined for all t ≥ 0, and lim supt→∞maxx∈ΩN(x, t) ≤ 1.

Having in mind that for a given ε > 0 there exists a Tε > 0 such that N(x, t) ≤ 1 + ε for any
x ∈ Ω and t ≥ Tε, and by using the second equation of (2.1), we get

∂P

∂t
− d2ΔP ≤ δP (−r +

1 + ε

P
) = −δrP + δ(1 + ε),
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for any x ∈ Ω and t ≥ Tε.

Let z be the solution of the following initial value problem

z′(t) = −δrz(t) + δ(1 + ε), z(Tε) = max
x∈Ω

P (x, Tε).

After straightforward computation we get

z(t) ≤
1 + ε

r
+ z(Tε)e

−δr(t−Tε), ∀t ≥ Tε.

Finally, by using the comparison principle we know that P (x, t) ≤ z(t) as long P is defined as
function of t. This together with the previous inequality implies that

lim sup
t→∞

max
x∈Ω

P (x, t) ≤
1

r
.

Which completes the proof.

3 Analysis of the model without diffusion

In this section we will study the system (2.1) without diffusion, i.e.,

N ′(t) = F1(N,P ), P
′(t) = F2(N,P ). (3.1)

In particular, we will focus our attention to the existence of equilibria and their local stability.
This information will be crucial in the next section where we study the effect of the diffusion
parameters on the stability of the steady states.

The equilibria of the system (3.1) are given by the solution of the following equations

N(1−N −
sP

P +N
) = 0 , δP (−r +

N

P +N
) = 0.

The system (3.1) has in the first quadrant the equilibrium points (0, 0) and (1, 0) for all parameters
values. If 0 < r < 1 and 0 < s < 1/(1 − r), then (3.1) admits a nontrivial equilibrium, which is
given by

(N∗, P ∗) =

(

s(r − 1) + 1,
(1− r)[s(r − 1) + 1]

r

)

.

We point out that for r = 1 we get that (N∗, P ∗) = (1, 0).

Hereafter, we will assume that (r, s) ∈ D, where D is the region given by

D =

{

(r, s) : 0 < r < 1, 0 < s <
1

1− r

}

.

In the system (3.1) the origin is a non analytical complicated equilibrium point. The structure
of a neighborhood of point (0, 0) in the first quadrant of the plane (x, y) and the asymptotes of
trajectories for x, y −→ 0 depend on parameter values and change in an essential way with a
change of parameter. See [6].
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A straightforward computation shows us that the equilibrium point (1, 0) is locally asymp-
totically stable for r > 1, and unstable if 0 < r < 1.

Linearizing the system (3.1) around the nontrivial equilibrium (N∗, P ∗), we obtain that the
characteristic equation is given by

λ2 − traceAλ+ detA = 0.

where

A =

(
s(1− r2)− 1 −sr2

δ(1− r)2 −δr(1− r)

)

.

Taking into account that Reλ < 0 if and only if traceA < 0 and detA > 0, we get that (N∗, P ∗)
is locally asymptotically stable if and only if r, s, δ ∈ Ds, where Ds is the set determined by the
following inequalities:

0 < r < 1, 0 < s <
1

1− r2
+

δr

1 + r
, s <

1

1− r
, δ > 0. (3.2)

Let us set f(r) =
1

1− r
and gδ(r) =

rδ

1 + r
+

1

1− r2
, where δ is a positive parameter. We

represent in Fig. 1a and 1b the regions of asymptotic stability of the nontrivial equilibrium.

f(r)

gδ(r)

r0 1

1

Rs

f(r)

gδ(r)

rr00 1

1

Rs

Fig. a Fig. b

Figure 1: Fig. a Rs: Region of local asymptotic stability for 0 < δ ≤ 1. Fig. b Rs:Region of local asymptotic
stability for δ > 1.

4 Turing instability

It is obvious that the equilibria of the system (3.1) are solutions of (2.1). We shall focus our
attention on the nontrivial equilibrium U∗ = (N∗, P ∗) of the system (3.1). More concretely, in
this section we will analyze the stability of nontrivial steady-state solutions of (2.1).
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Definition 1 (see [14]) The equilibrium U∗ of (2.1) is said to be diffusionally (Turing) unstable
if it is an asymptotically stable equilibrium of (3.1) but it is unstable with respect to (2.1).

The stability of a homogeneous stationary solution U∗ of (3.1) will be studied via linearized
stability analysis (see for instance [10], pp. 68-70). Setting W = U − U∗ and recalling that
A = F ′(U∗), as given previously, the linearized system of the reaction diffusion equation (2.1)
around U∗ is given by

∂W

∂t
= DΔW +AW,

∂W

∂η
(x, t) = 0, x ∈ ∂Ω, t > 0. (4.1)

The trivial solution, W = 0, is asymptotically stable if and only if every solution of (4.1)
decays to zero as t −→∞.

Let φj(x) denote the jth eigenfunction of the Laplacian operator −Δ on Ω with no-flux
boundary conditions. That is,

Δφj + λjφj = 0, x ∈ Ω, n.∇φj = 0, x ∈ ∂Ω,

for scalars λj satisfying
0 = λ0 < λ1 < λ2 < ....

The determination of the pairs (φj , λj) is a standard problem (see for instance [9], pp. 205-208).
The differential operator −Δ, with no-flux boundary conditions, is self-adjoint in L2(Ω), that is

∫

Ω
−Δψ1 ∙ ψ2dx =

∫

Ω
−Δψ2 ∙ ψ1dx,

and it is easy to see that,

λj =

∫
Ω | ∇φj |

2 dx
∫
Ω φ
2
jdx

> 0 for all j ≥ 1.

We may suppose without loss of generality that the φj′s are normalized so that ‖ φj ‖L2(Ω)= 1.
Moreover, the set φj form an orthogonal basis for L2(Ω) and any function may be expanded as
a Fourier series or eigenfunction expansion

u(x) =

∞∑

j=0

ujφj(x).

Using these preliminaries, we may solve (4.1) by expanding our solution W via

W (x, t) =
∞∑

j=0

sj(t)φj(x) (4.2)
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where each sj(t) ∈ R2. Substituting (4.2) in (4.1) and equating the coefficients of each φj , we
have

dsj

dt
= Bjsj ,

where Bj is the matrix
Bj = A− λjD.

Now the trivial solution W = 0 of (4.1) is asymptotically stable if and only if each sj(t) decays
to zero as t −→ ∞. This is equivalent to the condition that each Bj has two eigenvalues with
negative real parts for all j. The eigenvalues of the matrix Bj are given by

det [Bj − ρI] = ρ
2 − traceBjρ+ detBj = 0.

Hereafter, we are going to assume that parameters r, s, δ ∈ Ds; i.e. r, s, δ belong to the region
where the nontrivial equilibrium U∗ of the system (3.1) is asymptotically stable. Now we shall
study the stability of U∗ with respect to the system (2.1) in the (d1, d2)-plane.

Taking into account that r, s, δ ∈ Ds, it follows that traceA < 0 and detA > 0. Therefore,
traceBj = traceA − λj(d1 + d2) < 0, due to λj ≥ 0, j = 0, 1, 2, ..., and d1, d2 > 0. Henceforth,
in order that occur the Turing instability, it should be satisfied that detBj ≤ 0, for some j ≥ 1,
where detBj = (A11 − λjd1)(A22 − λjd2)−A12A21.

For fixed λ let us denote the hyperbola in the (d1, d2)-plane by

Hλ : (λd1 −A11)(λd2 −A22)−A12A21 = 0.

We know that A22 = −δr(1 − r) < 0 on the admissible region. Hence, the location of the
graph of the hyperbola Hλ on the (d1, d2)-plane is dictated by the sign of A11 = s(1− r2)− 1. A
straightforward computation gives us that the graph of the function h(r) = 1/(1−r2) lies strictly
below of the boundary of the region of asymptotic stability for any δ > 0, see Fig.2a and Fig. 2b.

gδ(r)

h(r)

r0 1

1

D1s

gδ(r)

h(r)

f(r)

r0 1

1

D2s

Fig. a Fig. b

Figure 2: Fig. a 0 < δ ≤ 1. Fig. b δ > 1.



Pattern formation 9

Let us suppose that A11 < 0. In this case detBj > 0 for any j ≥ 0 and d1 > 0, d2 > 0.
We disregard this situation due to we are looking for Turing instability conditions, see Fig.3a.
Assuming that A11 > 0, we obtain that there exists positive parameters d1 and d2 where U∗ is
diffusionally unstable. That region is depicted in Fig.3b.

d1

d2

RS

A11
λ

detA
λA22

detA
λA11

A22
λ

d1

d2
Ru

Rs

A11
λ

A22
λ

detA
λA22

detA
λA11

Fig. a Fig. b

Figure 3: Fig. a. Rs-Stability region, when A11 < 0; r, s, δ ∈ Ds and λ > 0. Fig. b. Rs-Stability region,
Ru-Instability region, when A11 > 0, r, s, δ ∈ Ds, and λ > 0.

From Figure 3b, it follows that the set of (d1, d2) ∈ R2+ satisfying that detBj ≤ 0 for some
j ∈ N consists of all points which are above the graph of the hyperbola Hλj . Clearly, for each
j ∈ N this set is nonempty and therefore we always can choose (d1, d2) ∈ R2+ in such a way that
U∗ is diffusionally unstable. Let us fix d2 > 0. Since λj → ∞ as j → ∞, then there exists a

k ∈ N such that d∗k =
detA

λkA11
< d2. Therefore, the point (dA, d2) belongs to the hyperbola Hλk ,

where dA =
A11λkd2 − detA
λk(λkd2 −A22)

. Moreover if 0 < d1 < dA, then (d1, d2) will lie above of the graph

of Hλk and the homogeneous steady-state solution U
∗ = (N∗, P ∗) will be diffusionally unstable.

We can also remark that if d2 −→∞ we have

A11λkd2 − detA
λk(λkd2 −A22)

→
A11

λk
.

5 Pattern Formation.

In this section we shall show how the diffusion-driven instability phenomenon gives rise to non-
homogeneous steady-state solutions of (2.1) that bifurcate from the uniform stationary solution.
For this purpose, we start by introducing a definition. Consider the following reaction diffusion
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system

∂U

∂t
= DΔU + F (U),

∂U

∂η
(x, t) = 0, x ∈ ∂Ω, t > 0 (5.1)

where U ∈ R2, D is 2× 2 nonnegative diagonal matrix and F : R2 −→ R2 is a smooth function,

where
∂

∂η
denotes the normal derivate. Assume that U∗ is an uniform stationary solution of

(5.1), i.e., F (U∗) = 0.

Definition 2 We say that U∗ undergoes a Turing bifurcation at μ0 ∈ (0,∞) if the solution U∗

changes its stability at μ0 and in some neighborhood of μ0 there exists a one-parameter family of
nonconstant stationary solution of systems (5.1).

Now we use the theorem 13.5 in [17] for to determine the nonhomogeneous stationary solutions
of (5.1), in this case take d2 as bifurcation parameter.

Theorem 2 Let υ1k and υ2k be the eigenvectors of Bk corresponding to the eigenvalues λ1k and
λ2k, respectively. Assume that

i. r, s, δ ∈ Dis, i = 1, 2.

ii. υ1k =

(
ξ1
ξ2

)

and υ2k is not parallel to

(
ξ1
0

)

,

iii. 0 < d1 < D∗, where D∗ =
A11

λk
,

Then there exists a k ∈ N such that at

d∗2 =
A22λkd1 − detA
λk(λkd1 −A11)

the uniform steady-state solution U∗ of (5.1) undergoes a Turing bifurcation

Proof 2 Hereafter, the role of the space X will be played by

X =

{

W ∈ C(Ω,R2)× C(Ω,R2) :
∂W

∂η
(x, t) = 0, t > 0 x ∈ ∂Ω

}

with the supremum norm involving the first and second derivatives, while Y = C(Ω,R2) with the
usual supremum norm. However, when choosing the subspace Z, we shall use the orthogonality
induced by the scalar product

〈V,W 〉 =
∫

Ω
(V1(x)W1(x) + V2(x)W2(x))dx,

where V = (V1, V2) y W = (W1,W2).
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Setting W = U −U∗, where U∗ is a nontrivial homogeneous steady-state solution of (5.1) can
be rewritten as follows

Wt = DΔW +AW +G(W ),
∂W

∂η
(x, t) = 0, t > 0, x ∈ ∂Ω (5.2)

where A is the Jacobian matrix of F in U∗ y G(W ) = F (U∗ +W )−AW .

For any nonhomogeneous stationary solution U of (5.1), W = U − U∗ satisfies the elliptic
equation

DΔW +AW +G(W ) = 0,
∂W

∂η
(x, t) = 0, t > 0 x ∈ ∂Ω (5.3)

Taking into account this observation, define the function f : R×X −→ Y and linear operator L0
considered in Theorem 13.5 ( [17]) as follows

f(d2,W ) = DΔW +AW +G(W ) and L0 = D2f(d
∗
2, 0) =

∂f(d∗2, 0)

∂W

where d2 is the diffusion coefficient of the susceptible class. The spectrum of the linear operator
L0 is given by the eigenvalues λij of the matrices

Bj = A− λjD

evaluated at d2 = d∗2, where i = 1, 2, and j = 0, 1, 2, ..... Since 0 < d1 < D∗, there exists a unique
k ∈ N such that (d1, d∗2) belongs to the hyperbola Hλk .

d1

d2

D∗

d1

d∗2

Hλ1

Hλk

Hλk+1

Figure 4: Turing Bifurcation. When d1 < D∗, the uniform steady-state solution U∗ of (5.1) undergoes a Turing
bifurcation at d2 = d∗2

In other words, detBj > 0 for j 6= k and detBj = 0 just for j = k. Therefore, for i = 1, 2
and j = 0, 1, 2, ..., k − 1, k + 1, ... all eigenvalues λij have negative real part. For j = k, one
eigenvalue, say λ1k, is zero and the other one is negative, i.e., λ2k < 0.
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Since υ1k is the eigenvector of Bk corresponding to the zero eigenvalue λ1k, the eigenfunc-
tion of the linear operator L0 corresponding to λ1k = 0 is given by ψk = υ1kΦk(x) which is a
nonuniform stationary solution of the linearized system (4.1), i.e.,

DΔψk(x) +Aψk(x) = 0,
∂ψk
∂η
(x) = 0, x ∈ ∂Ω.

Therefore, the null subspace N(L0) of the operator D2f(d∗2, 0) is one-dimensional, spanned
by ψk. Because of the orthogonality of the system, Φn(x), n = 0, 1, 2, ... obtained by solving the
eigenvalue problem

ΔΦn(x) + λnΦn(x) = 0, x ∈ Ω, n.∇Φn(x) = 0, x ∈ ∂Ω.

The range R(L0) of this operator is given by

R(L0) = {U ∈ [C(Ω,R)]2 : The Fourier expansion of
U does no contain the term Φn(x)}

⋃
{υ2kΦn(x)},

and has codimension one. So conditions (i) and (ii) of Theorem 13.5 [17] are satisfied. It still
remains to verify condition (iii). Let

L1 = D1D2f(d
∗
2, 0) =

∂

∂d

(
∂f

∂W

)

(d∗2, 0).

Then

L1 =

(
Δ 0
0 0

)

and

L1ψk =

(
Δ 0
0 0

)

υ1kΦn(x) = −λn

(
ξ1
0

)

Φn(x),

with ξ1 6= 0, and

(
ξ1
0

)

not being parallel to υ2k. Then, L1ψ1k /∈ R(L0) and condition (iii) of

theorem 13.5 [17] is satisfied. So by choosing Z = R(L0) we conclude that there exists a γ > 0
and a C1 curve

(d, φ) : (−γ, γ) −→ R× Z

with d(0) = d∗2 and φ(0) = 0 such that

W (x, s) = sυ1kΦn(x) + sφ(x, s)

is a solution of the elliptic equation (5.3) with d2 = d(s), s ∈ (−γ, γ).

Finally, taking into account that W = U − U∗, we obtain that

U(x, s) = U∗ + sυ1kΦn(x) +O(s
2)

are non-uniform stationary solutions of (5.1) with d2 = d(s), and s ∈ (−γ, γ).

Therefore, at d2 = d∗2, the uniform steady-state solution U∗ undergoes a Turing bifurcation.
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6 Stability of bifurcating solution

In this section we will study the stability of the one parameter family of non uniform stationary
solution U(x, s) of the system (2.1) that arise from the bifurcation of the homogeneous steady
state U∗.

We showed that λ1k is a L1-simple eigenvalue of L0, where L1 = D1D2f(d
∗
2, 0) and L0 =

D2f(d
∗
2, 0). On the other hand, for |ε| and |s| small enough, the operators D2f(d

∗
2 + ε, 0) and

D2f(d(s), sψk + sφ(x, s)) are close to L0. Applying Lemma 13.7 in [17], we obtain that there
exist functions

d 7−→ (ρ(d), ψc(d)), s 7−→ (η(s), ψb(s))

defined on neighborhoods of d∗2 and 0, respectively, such that

D2f(d, 0)ψc(d) = ρ(d)ψc(d)

D2f(d(s), sψk + sφ(x, s))ψb(s) = η(s)ψb(s)

and
(ρ(d∗2), ψc(d

∗
2)) = (0, ψk) = (η(0), ψb(0)).

Note that the functions

η(s) = η(D2f(d(s), sψk + sφ(x, s))),
ψb(s) = ψb(D2f(d(s), sψk + sφ(x, s))),

ρ(d) = η(D2f(d, 0)), ψc(d) = ψb(D2f(d, 0))

given by Lemma 13.7, [17], are smooth functions.

The following result is the Crandall- Rabinowitz’s Theorem 1.16 p.165 which is proved in [8].

Theorem 3 Let the assumptions of Theorem 13.5 in [17] holds, and let the functions ρ(d) and
η(s) be defined as above. Then ρ′(d∗2) 6= 0, and if η(s) 6= 0 for s close to 0, then

lim
s→0

sd′(s)ρ′(d∗2)

η(s)
= −1. (6.1)

First we determine ρ′(d∗2). It is known that ρ(d2) satisfies the equation

ρ2(d2)− traceBkρ(d2) + detBk = 0.

Differentiating implicitly the former equation with respect to d2, we have

ρ′(d2) =
λkA11 − λ2kd1 − λkρ(d2)
2ρ(d2)− traceBk

.

Evaluating at d∗2, we obtain

ρ′(d∗2) =
λ2kd1 − λkA11

traceA− λk(d1 + d∗2)
=

λk(λkd1 −A11)
traceA− λ(d1 + d∗2)

.

Since A11 > 0 and 0 < d1 <
A11

λk
then λkd1 −A11 < 0 and traceA− λk(d1 + d∗2) < 0. Therefore,

ρ′(d∗2) > 0.
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Proposition 1 Let (d(s), U(x, s)) be the one parameter family of bifurcating solutions given by

U(x, s) =W ∗ + sυ1kΦn(x) +O(s
2).

Assume that the conditions of Theorem 2 are satisfied, d′(0) 6= 0, and that the eigenvalues η(s)
of the nonhomogeneous steady state bifurcating from the critical value λ1k = 0 are nonzero for
small |s| 6= 0 . Then if d(s) < d∗2 the corresponding solution U(x, s) is stable and if d(s) > d∗2,
the corresponding solution U(x, s) is unstable.

Proof 3 We know that ρ′(d∗2) > 0. Let us determine the sign of η(s). Since d
′(0) 6= 0, we

may assume that d′(0) > 0. Then by continuity we have that d′(s) > 0 for |s| small enough.
Therefore, using (6.1), it follow that η(s) < 0 for s > 0 small enough, which in turn implies that
the bifurcating solution is asymptotically stable. For small s < 0, η(s) > 0. Hence, the bifurcating
nonhomogeneous stationary solution is unstable.

The case d(s) < 0 can be analyzed similarly . This completes the proof of our claim.

7 Discussion

In this paper, we discussed the main mathematical features exhibited by the reaction-diffusion
system (1.1). More concretely, we showed that when A11 = s(1 − r2) − 1 is positive nontrivial
geotemporal dynamics of the reaction diffusion ratio-dependent predator-prey model (1.1) can be
obtained. In the case when the 0 < d1 < A11/λj we showed that for a wide range of parameter
values and diffusion coefficients d1 and d2, see fig.3-b, the nonlinear system (1.1) can exhibit
stable spatially heterogeneous solutions which arise from Turing bifurcations. It is worth to point
out that a Turing bifurcation can not occur for large diffusive coefficient of the prey, nevertheless
the diffusive coefficient of the predator can be large enough.

The existence of this pattern formation for system (1.1) shows that the reaction diffusion
ratio-dependent predator-prey model exhibits features which were not possible for the classical
model. More specifically, one can show that for a classical Lotka Volterra prey-predator system
with diffusion on a finite domain and zero flux boundary condition cannot give rise to temporally
or spatially inhomogeneous solutions asymptotically as t→∞.

In conclusion, the mathematical analysis of model (1.1) shows how reaction diffusion ratio-
dependent predator-prey model can stably regulate its growth around either spatially homoge-
neous or heterogeneous solutions through a Turing instability mechanism.
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