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Let £ b g o-vipe of subsets of 2 set G # 6. u:L ~ X is

called a mensure it p 135 counisbly sddivive in L, with respoect

to the norm topoiogy of ¥. u  dis called 2 measure of bounded v-

riation when sup |u| ('} « «, where 1. depotes the variation «of
5

—~—

s

u.  As ful is copptably add:tive in the o-ving. L, u ig of bous

-
Frd
Tx
tsd
Yol
]

*

ded variation i and cnly i€ fpf{bi< = for all

£ wis » ;U,mﬂ inoa positive weasare, w o lby=inf{vi{F) L oy

is an outer measure on the hereditavy o-ring H{I} generated Ly 7

Let Mvzm{Ez:H(E): K vEemeasvrabiel, Lot «{vi={Ec Q: EnNAsu

for every A ¢ W }.  The membeirs of t{v}) are called v-measurabkic

Y4

.

sets. It is Enown that (v} is ¢ 2-algebra contalning M, and

e

hence cantainiag 2. (Vide. p. 70 |7
The set {functiocn v trivie jﬁywj, defined by

wIIEY = osup w7 (A
A
Ao M
o
is a positive measure and extends w* from M, to t(v). The seis
Eoe t(v) with v 8) = 0 are cailed v-negligible. The notion o

almoest everywhere with respect te v ig defined en terms of

L. . ) Wz ‘ &*
v-negligible., Alsce we shall dencto w7 by

-
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-
-
.t
-

s
L
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A function f:y ~ X iz called T-simple if it admits & yopoo

sentation of the form

{ ( b ? &



where x; e X, E., £ %, 1 = 1,2,.n. 1t is true that

(Vide Remarks p. 83,{2]}

DEFINITION 1.1, A functien f: & » ¥ ts caliled |uy|-measurable wi.
, o there

re p:l -+ X 1s a measure of bounded varviatvion, ifjfexists N e v

N{ul-negligible, such that itheve exizts a sequence (s,) of E-sin

X-valued functions converging t¢ £ pointwise in 2\ N. i.e.s

T

lpl-a.e. in 2.

As p is of bonnded wvarviation, |[p!” is bounded in H(E) and.h -
L s .. A . L ; o
ce,]u! is bounded in v{luij. Pherefore, @ is §p§~1ntegrab1ﬁ i ouioe

(“’A 4

sense of Definition 6, p. 75 or (.. Uonsequently, by Theorem

p. 99 of |2}, s functionm iy » X wh.ch is ul-measurable in i
sense of Defirition 4, p. 8% of {Z] i [ul-measurable in the sev
of our Definition 1.3. Converscliv, as o U-simple X-valued fuctic
s is clearly |uf-measuvabie 1. the sensc of [2], by Teorem 1, p.-
of [2}, we obtain that 2 function £:9 + ¥ which is Jul-measucs

i

in the sense of Definition 1.1, is |u|-measurable in the sense

[2].
Thus we have:

PROPOSITION 1.2. Let u: £ - X he & measure of bounded variz:i-r

Ff: @ > XY is |pl-measurabie in the sense of Pefinition 1.1 i{and

£




only if it is |u|-measurable in the sense of |2]

The theory of integration in §8 of [2Z] can be simplified to

some extent as we have u - defined on the o-ring - I.

For a IZ-simple function f =

[ S s s
ot
b4
b
]
e
-
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g ]
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¥
(=3
£
ta

we define
4

n
J fdu = } w(E, N E)x,, E e LU{al,
g i=}

It is clear that

fdp )l < | HElldlul. . (@)

Ty

I
E

DEFINITION 1.3. Let u:I + X be a measure of bounded variation. If
f: @ » X is |u|-measurable, then we say that f is p-integrable
if there exists a sequence (sn} of L-simple X-valued functions

such that e e

}(i) Sy f lul-a.e in Q ;

(ii) fé [[sn4sm[]dlul + 0 as n,m -+ @,

Then by (1), for E ¢ I, (f s - du is a Cauchy sequence in

n )
n=1
X and is therefore convergent in X. By Propositions § and 9, &7

¢
4
vi

of [2], f £dp = 1im é s, du is well defined for E ¢ I U{}.
E n 3 .

ig(p,x) will denote the collection of all X-valued u-integr. -

ble functions.From (i) and (ii) in’ Definition 1.3, it follows tha:




-

l| £/l is {u}-integrable (in the classical sense)if f is sp and tha:

fe aull< [renand <.
Q B

as (0,L,lul) is a finite measure space.

Using the equivalence relation f ~ g if {x: £(x) # g(x)} i=
fu|-negligible, one sees that LIC“’X) mlf{p,x%, is a Banach spag:

4]
under the norm

Pl = [ shan.
£

PROPOSITION 1.4. Let f: O + X be |p|-measurabie. If |[£]jef(|u], 2,
then f shg(p,x) and

el alul .

Sy

] £ aul <
Q

)

e
paw

PROOF. It is obvious that || £|| is |u|-measurable. By Proposi-
tion 1.2 and by Theorem' 2, p. %% of [2}, there exists a sequénca

(sn) of I-simple X-valued functions such thot

(i) s, Gl < [ £l , ne N yweq

(ii) s, > f ful-a.e.

Then by Theorem 3, p. 136 of [2], (which applies here), £ e 0¥

and

u£ £aulls [ el alul .

2



§2. PRODUCT MEASURES WITH VALUES IN X
Throughout this section we shall assume ti.t by 55* X oarc
measures of bounded variation for i = 1,2, whev2 . ars o-rving
of subsets of Q; ¥ ¢, i = 1,2. Then sup [uj{E } = M, are fin: -
. E,.'L)" £ :
te for i = 1,2. In this section using a>-i..ury functions hp and
E . . g .
h”, E € Zl X &,, Wwe prove the existence and uniquencss of the pro-

duct measures HyX Uy and (le.vz}t on Xi.xz7, such that .

(“1 xuz} (AxBI w o la) 0

Ao

and

t‘ ~ & Y "
(ul x uz) (AXB} = u, (R} u, (&)

N

for A ¢ El'and B e 22. It is also true that Mi X Uy and (p, -

are of bounded variation in 51 xz7u

DEFINITION 2.1. Let E ¢ Z, xZ,. %We defire th~ Functions hpt

1
and hE: 92» X as Follows.

hE(W13 = uszz £ 0.,

L

Z':$w2} e Ei, WIE:QI

and
E ~ s Y - ’]
W) = ugdwy e Qg0 (wpowst e BE, wye
W
. 5 . o~ 2
Since Ew = {wz € QZ: (wl,wzj e B} ¢ Lo and B %= {wl UK

1
&ﬁ,wz)e E}l e Ly »as Ee EIXZZ,ﬁhﬁ functions hﬁ and'hE are welil

defined.

LEMMA 2.2. Let E e Z;XI,. Then hg: 2+ ¢ is {u1l~measurablr



and h: 2,” X is [u2§wmeasurab1e.

(o

v,

PROOF. We shall prove the resuvit for hpb In a similar manner ©h.
result for hE can be proved.

Let E = AxB, A = El’ B ¢ 22. Then, @ witis case, hE = uzéﬁjﬁ,
which is clearly |u;|-measurable. Consequently, if

[y

n i e .h
Eo= U ApxBy, Ay e dgs By e By, (AxB )0 (B iy,

then it is clear that

which is a Zl*Simple ¥-valued function and hence is iultumeasura
ble. Therefore, if R 1is the ring generated by {AxB: Aely, Beli

then h is fu1l~measurab1e for each E ¢ R,

E

T

t

Let M= {E e I, x L,: hy is iull-measurable}. Then by
foregoing argument, R & M. Let {En} be a monotonic sequence i:r

M with E = 1fm En’ Then {EEn}wi} is monotonic with Ew

= 1im{E
n n ’

1

Since Mo is a vector measure, which is countably additive in ¥

it follows that

he = Ul (E 3 = tim u,((E.) )} = 1fm h,_ .
E 2 Wy o Z niwy n En
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As E_ e M, h

o is |uy|-measurablefor meN. Now by Proposition

E
n

1.2 and by Theorem 1, p. 94 of {2}, 1im hp = hy is |y, |-measu-
. _ n n .
rable. Hence E ¢ M and consequently,by Theorem B,$8 of [4] |

we have that M = S(R) = Iy x £,. That is, hE is Iulimmeasg

rable for each E ¢ Zl X Ez.

COROLLARY 2.3. Let {E,}" S Iy XD F {xi}?cx ‘and
e 13_ -

if s: 91 + X 1is given by

n
s{wy) = ¥ hy (wydx,
| 1 ig1 Ei 1771

then s is lull~measurable. Similarly t: Qé + X, given by

n Ei»
t(wz) = igl h ng)xi,

is |u,|-measurable.

et f = - ‘ i - u-
PROOF. Let fi(wl) hEi(wl}xi, w, € Ql. As hEi is ;“1’ measu
rable, by Lemma 2.2, exists a sequence (sn) of X-valued El~sim»

ple functions which converges to hE
i

!u1$~a.e. en 2,. As s x,

is also an Y-valued I,-simple function and as S, X5 £f. !ulf*a.

1

in 25 it follows that fi is !ullumeasdrable. Now by Proposi-
tion 1.2 and by corotlary 1, p. 101 of [2],s is lu1f~measura~
ble. By a similar argument we also have that t is [u,|-mea-

surable.

e



“ G-

LEMMA 2.4. For E e I; x 5,, hg ai(ul,x;i% and hE ¢ £, X)L T

Tl(E} = ; hE dul and TZ{E} = j He duz .

9]
2y iy

then Ty and 1.,

; are X-valued measures in L; x Z,. Further ,

TI(AXH) = yl(A} pZ(E} and v, (AxB} = p?(B) “1(A}

for A ¢ 21 and B & Xz

PROOF. For E ¢ Ly X L,, by Lewma 2.2 hp is EpIEMmeasurable

and hE is iu?[~measurableg For wy ¢ QI

FhgGe 3 iE = uy (B T = [, €EW1) <M,

and hence hy: @, + X is bounded. As lfhﬁkiis lul{-measurable
and bounded and (9, Lys iulij is a finite measure space
it follows that ![hff} is }u1£~integrable and consequently, by
Proposition 1.4 hE is u1~integrab}e. Similarly, nF is uz-intg

grable.

Be¢ause of the¢ similarity it is enough to prove that 1t 1is

. . . . . - ] o - Lo .
countably additive in £, X I,. Let {Ei}l c:zl X Z,, E n'Ul Ei’
=

Ei(\ Ej = ¢, 1 # j. Then it is obvious that for Wy o€ Ql’{(Ei}w1;

is a disjoint sequence in I, and that B, = §j (E)
i=1 1

. Furthev,
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for W, € Ql

h = E ) = ((E; 14m
E(wl} UZ( wlj lil uz ( ) ) n 121 Uz((v JWI)

= 11m ﬁNI) @
1 ?191 J ,

Also we have that for Wy € 9]

| hn

(5

Wl =1l uz((ii&lﬁi)wl) I

< Ju, 1 CC D E;
= v =) 1 w1
< fuy | (B, ) < My €2)

1f EE: 2 + R is given by hy(wy) = |u,] (Ewl), then from the

theory of product measures in the case of positive measures {vi-
de Berberian [1]), we have that ﬁE is {uzf‘measurable and is
bounded by M,. Therefore ﬁE is [uz}—integrable as !uzl is

a finite measure in Z,. We rewrite (2} in terms of hB as

IIh ? Ei(wl)ii < hp(wd, wy e Q. (27}

From (1), {2') and the fact that ﬂE € df({uji, R}, by theo-

rem 3, p. 136 of [2], we obtain that

[+ .
f hy du, = 1im ( 1 ) f h du .
g ¥ 1
b a 5 [ 3 1§

1 ' 1
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i.e. Tl[E) = % Tl(Ei).

Further, for A ¢ Zl and B = £7, by the definition of the in-

tegral of an X-valued simple function, we have that

Tl(A x B) = f hAxB dy, =

1 B (B) %y dug = Ay, (B)
Q ! s

2N
— "——m’-—,‘

1 1
and similarly
tp (A x B) = [ ug(A) Xy du, = oy (B) wpCA).
y
DEFINITION 2.5, Let &R be the ring generated by the semi-ring

{AxB: A ¢ £,, B e Ez} . We define

1’

n
My X upr R =X by (uy x wy) (B} = ] pqy(A)) uy(BY)

i=]
and

. n .
(g % )% R =X by (o x up)® (B) =T (85) wy A

where

n e . . .
E ajBI(Ai x ByJ, (A, x Bi}fj (Aj x Bj}« ¢, 143, Ay €2y, By € Ly,

i=1,2,....n.
THEOREM 2.6. u, X p, and (u; X uz)t are well defined in €. .

There exists a unique extension of uj X p, as an X-valued mes-

sure, to El_x'zz. The :extensicn is also denoted by Hy X Uy and is‘calleg



the product measure of 1, and u, and
+ &

(kg X vy) (B} = J' bp dpg, BEoe By x
{ |

A& similar result holds for (u} X uQ}t

t

and its unique extension,with
is also denoted by {ulx u,3", is valled the transpose product
&

measure of y; and p, Further, u,; X o, and {u; X uz)t are of

«
b

bounded variation in Iy % I, osnd satisty:

3u1 x ﬂzi (E} < E]uif X IUZE} (E)

and
| (g x w8 < Cuglxluy ) (B)
for E ¢ &

s

PRGOF. By Lemma 2.4, we have that 71,(AxB} - flenzj {AxB) and

T, (AXB) = (ulxuz}t (AxB). 1f & is the ring generated by
{AxB: A € £y, B e I,}, then ¥, = Tzf # and T, = Tzé KR are

countably additive in ® and hence are finitely additive. Hen-

ce, if
E.—a‘U (fmizxﬂi}g(ﬁixi-ﬁij ﬂé"&wlgj)“¢1?‘h
i=} J
A. € 21, Bi £ 22, Lr}’Z* i1
then . 11




=
n

s T, 1s well defined on E and ig¢ independent of the reprezen-
i
tation as a finite disjoint wniown of meassurable rectanglies, 1+
foillows that (v, Xu,)t (B} is weil defined for £ ¢ & and further,
& i :

ntably additive on . Hi

4s jiy X U, 7 T oeu &, uy X, iz

3

B4
3 ‘E, . + . s - Ay . t
i

5 - k g - e G F 3 '\ H W T
milarly {uj X is well defined 1n W Ll Lug Yug,to o Ly e

-2.;
® .

-
£
-
T
o
fud

From Lemma 2.4, it follows that uy, x u., has a countably 2

a countably additive ex~

=

tivé extension Ty and f{p, % u53 hase
tension 1, in by XE5.  We shall prove the unigueness of Ty
Similary argumentswill prove the uniguoencss of T if Ti is
another countably additive X-valued extnnsign of My XM, in

3

E] ¥ L,, then for x* ¢ X*, x* T LB} = x® Ii(ﬁ}. EeZyx Ez .

L A

In fact, for

i

T
B
<

=
:a'i

e

As X Ei}f¥(Aj X Bj}m ¢, i=j,

£ L.
‘:‘!

Ai, € 21, Ei

&
<
o

we

e Y = 1 T ey Ay wy(s

= {lugbx o, i (B). (1)



~14-

From the classical theory of product measures of finite positive

measures, |uglxfu,l: Z; = 2.

pi

+ {0,=) is countably additive and
finite (see Theorem 2, p. 126 of [1]). As £, X I, is a o-ring,
it follows that

sup  (Jugl x [uyl) (B) = M < = (2)

Tre 5
Li‘.ul X c,z

Therefore, from (1) and (2} we obtain that ‘

I!Tlﬁﬁ) <M for all E e 8.

Consequently, x* T4 1s a bounded scalar measure in ® and hence

scalar measures,we have that (x* «,} (E) = x* Ti {E}, Ee LyxI,.

As x* is arbitrary in X*, by the Hahn-Banach theorenm

(B} = 1y (B}, Ee Iy xE,

This completes the proof of existence and uniqueness of the ex-

tension of Uy X U, in Iy x %,
From (1), we have that
R < .SV}" {E ¢ Zl x 223 §£11 X M;;f(};} = (f&!ﬁxfuzl}(ﬁ)}.

As Eulf x!uzl is a finite measure on L; X Ly, by a known argu-
ment we see that (Y% is 2 monotone class and hence by Theorem

B, §8 of Halmos [4],% = S@®) = &, x I,. Therefore




&,

i

and hence u, Xy, 1% of bounded variation in Ty X ZZ’ The co

rresponding result for (u, X b,)

: is proved in az similar mapner.
s .

CORDLLARY Z.7. If By B4 Ly cemmute,in the sense that
}chA\)L:?(B} = }J‘Z{kﬁ»hi Qﬂll{;’,\, A € 21, B ¢ 2’/},,
then
. N
P T T R VPR O : L X L.

PROOE. The result fellows from Lemms 2.4 and the unigueness

part of Theorem 2.6,

§3. A GENERALIZED FUBINI'G THEORE#

o

Pl

Let ﬂi, Ei, 3 M., i=1,Z2 be as in §4. Let p, X By and

Ji’ 1 A
(ul X UZ)L be the product sad transpomd product measures res-
pectively. In this section we cbtain a gensrgiized Fubini's theo-

rem, giving the relation hotweo, the integral with respect to the

product (transpose product) measure znd a suitable iterated in-

tegraly when the function f: @, % 0, > X is Zulizxip2{~méasura-

ble and || £|| is [u;| *u,{-integreble. Turther,when u; and u,

od

commute and the range of £ 1is bounded in X, this result redu-

ces to the theorem of Fubini for such integrals.




% &, in the sequel.

5

LEMMA 3.1. let £: 0 <+ ¥ be cuch thar £ 44 §FH§ X h; l-measurable znd

Z
hFll e ¢i({u1§x{uzi,ﬁQ}‘ Thes £ ig {u % Hod and (gl -
~integrable.
W
s
it e .. g - o o, . 5, . 7 Sop ~ . ~ L. 5 .. @ i
PROOF. lLet fw {wZ} = f@wlﬁ Wb Qwij. A is ;¢i§4xgu2§—

1
-measurable, there exist a sequence (s ) of X-valued z1<xﬁ¢~5imw
. '

> SRS - e ; P o b Y L s T e T -
ple functions and a set N, K;Ui;.Kgyzt} - negligible such that

(B} <« fuwlxtu,l (B) for Ee %, x &, by
[y I'}fdi' “ZE \E} I0r b oo »,;1 Lz ’g",

s+ £ in  QNN. As {‘;J.} X u

I Z

Theorem 2.6, it is clear that N is |p, ¥ p,l-negligible (vide.

Z
Proposition 11, p. 15 of {2]) and hence s, = f lug xu,f-a.e. The-

refore;by Definition 1.1, f is [y, x |-mezsurable. Consequen-

Yoo
ki oy
&

tly, [ €1l is {u; x uyl-measurable. Further,

g
e
=
R
S
A
g

T ..
- %
IS

Felatuy > iyt < |1 eifachy

and hence by Preposition 1.4, £ s (p, X u,}-integrable.

’

that f 1is (ulzxpﬂjt~iniegrah}ﬁ‘

In the sequel we shall assume thatr {:0 » X is 7u1§ X fug |-

-measurable and that ||

H
!

iy

[-integrable.

e

;
Py

b4
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LEMMA 3.2. Let N be §u1£x[u¢§wnegligibla, “hen there exist

WN o= AU B, where A ¢ Iy X L, and

P

sets A and B such that ¢
B is {ylj x§u2[~negligible,' i1t the function g: & + X satisfies

the relation g(wj, wz) = f(wl, wz} Yo then there exist Cc:ﬁl,
o» Clugi-negligible, Dlu, |- negligible, g is {plgxfpzlﬁmmr
) W W,

, 2 2
surabie, g = £ (U, |-a.e. and g © = f

'1 rv'l s

i, 8 9,\ C and for w, = 2,\ I
\ﬂnl g ’21\ C and for 2 472 y |

D o

P “luglraie.y for

PROOF. Since sup ({iu

Fxfus,!) (BY <, G\N is a h’l; X lu2§~~integrav
Eezixzz “

1

ble set in the sense of Definition 6, p. 75 of [2]. Hence by
Proposition 12, p. 75 of [2], there exist sets A e I; X L, and
B, {ulf x§u2[~negljgible, such that §NZN = A U B. Therefore ,

g =1 XA 13 Euif xlu2g~measurable by Corollary 1, p. 101 of

.

Let h = f-g. Then h(w;, w,} = & for (w,, w,} & A and hence
h =0 [u1[>c}p7§-a.e. Mow, by the cliassical Fubini's theorem,

for E ¢ T(Eulf), F e T[iwz[}

. Cntlarte v as o w ; )
0 f ikhlijiipll A EMZL) [ J "hw | dzuglj dfull
ExF i I
oot W .. »
- ¢ ;KH “ ) ',
; { } | ! E!éghlf) d(hzl
¥ E

e




pd
o2}
5

where we consider the restrictions of Iy, | and [u.} in
p 4 Lo
Tm(§U1f3 = {6 e 1(ju,l): 6 < L}
£ o e
and
respectively. lixing F and varying Y we obtain that there

exists Cé'ﬁ],‘C

[y

[ L : e e e e N
J {{hwifid{uzg = () for wy & O3 % C
F :
and now varying F in v(|u,[), we deducr et h = 0 [, l-a.e.

Similarly, we have that 0 |

Wy
£ V2

£ = and =

W 1 W }

~-negligible . Hence ~a. €,

for such Wy and Wo.

There exist {yi

LEMMA 3. 3. sets No& 5, Ny

such that
(i} for Wy € QT‘\N?, { fw du., exists and
s - (’:y.“ ¥ 1 e
P AR
YA
: W
. - Z ;
(ii} for Wy E QN Ny, 5 £ diiy exists.
7 . p ; ] ¥

PROOF. As £ is [uy| x ;

e = Al ]
{s_} of L.
« n

negiigible and a 5

segquence

such that s_ » f in QN N.

tions )
1

and B, with A ¢ fro 0 aegli

g
E
PR

By X 2y g
T }1 at (Z 5 '\I ™ A L} E T ogud s ome AT i o .
211 % M VAN A 7 e LLéx g o= I }{ﬁ . {‘h e oS a W &L-if &

ji-8.€., for w,

|-negligible, i

there exist

gible,

1
e 9\ D, Dlu,|-
W, g

8 gull"a-e*y

1,2

-

N hﬁfxguz

x Ly-simple X-valued func-

By Lemma 3.3, there exist sets A
2 %

such

2 and
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t, = S, Xa §s £y X Ezfszmple. Consequently,

= . .'i
gwl(wz) 1rilm (tn,wl (w,}, w, € @,

w

and hence g is §u2{~measurable. Similarly, g 2
1

is |uyl

-measurable.

Now from Lemma 3.2, it follows that g = £ |u ]-a.é.
‘ Wy Wy 2
Y2 _ 2

for ﬁlluI[-a.e.f and g “ = f °, [uyl-a.e., for wZquiﬂa.e.

Consequently, by Proposition 1,2. and by Proposition 9, p. 91
- W
of |2], we have that f, is |u,|-measurable and f 2 is Juq |
1

-measurable, for wllull-a.e. and wzluzl-a.e.

As [|fll e #%]ullzc!uzl, R}, applying the classical Fubi-

ni's theorem to || £]] , we obtain that

[ 2 ) atyl <o

2

for w, € 92\\ﬁ2, N, !p2!~negligible and

He |l al < w
iz w1 “2‘

for w, € Q\ ﬁl’ ﬁi [u1f~negligib1e. Consequently, we have,

by Proposition 1.4, that f £,

€y
w A : -
and f £ Z d My exists for W, E 92\ N27 where Nl == NIU Cy
4
N, = ‘ﬁzun, C and D being those given in Lemma 3.2.

du, exists for w; € Ql\\Nl
1 : -
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LEMMA 3.4, With Ny» Ny as in Lemma 3.3, let

F{wl) = f fwld Hyy Wy € nl\ N1
&

and

Then F is full—measurable and G is tu?!~maasurable.

PROOF. As f is [uli xluzl-integrable by Lemma 3.1, there exists

a sequence (sn) of X-valued L; X I,-simple fuctions such that
1
[Wsy - slhathuglxiu,h <2, nen @
£

and that s_ -+ f [ul[ xfuzi-a.e.« By the classical Fubini's theo-

rem, there exists ﬁn,ipliﬁnegligible, such that

~

' f ,
F () = } i (sn)w1~ £l d}uzl <@, Wy G \N,

a.
‘2

F sf(lulh R) and

Wy

{
. . f 1
[ ey atugl = [ Wsp-enaciugi i, < &
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by (1). Therefore,

1fm [ F_odlu,l = 0 .
gzl i

That is, F_  tends to 0 in [u1t~mean and hence by Proposition
1.4 p. 130 of {2}, there exists a subsequence (Fnk) of (F_ ) such

that F_ + 0 Ju,|[-a.e. Therefore, exists a set N_, |u,|-negli-
. ny 1 o 1
gible, such that Fn (wl) + 0 for all Wy € ﬂl\ No. Let

k

N=nNU § N uN.
| 1 ger K7 0

~

Then N is [u,|-negligible. For wy ¢ 7\ N,

HRo) - [ 6oy 2, @ugli= Il [ o

-(s, ).} du, i
.’.2 .

L5

2

< !2 1y 050, Nl |
2

= F (w,) + O
nk 3

as ¥k » o,

In other words, we have that

F(wys) = 11Im {s_ ) du -g.e. (2)
| 1 X i nk Wl 20 h‘l‘
2




We ohserve that if

B
. v - <~ 2 Iy P 3
2 S = L X Xpos Ky F X, Li € Ly Xi,, i=1,2....n,
i=] 1
so that s es 7., %X %L,- simple with valoes in ¥, then
L i i
f 1 ir
I e "
} s du, = ) uiiiﬁ*jw Jx. = ) hy (wljxi.
4 i i=l 1 i=1 i
2 1Y
Now, by Corollary 2.3, we

obtain that { s
A

Wy duz ig ipli—measu~
§2
2
rable. Now by {2) and by Thecrem 1, p. 9

4 of [2] we have that
F is fu1£~measurable.

The proof for G

is similar and hence omitted.
THEOREM 3.5.

(A Generalized Fub

ini's Theorem).
hﬁﬂ X!uz!~measurable with || £1i,

Let £: @ » % Lo
Prg f % §p2§~integrable. Then
there exist N; e I, with N §p3i~negligib1e, i=1,2, such that
for Wy o€ Q;\ Ny, there exists the integ 1j fw1 duz and for Wy €8,5
W, Qz '
there exists the integra{f £ 7 diiy.
y
If F: 91 + X and O- £, ¥ are defined in such a way that
Fluwy) = [ £,
6 1
2

: W
dpz s Wy € Qlkﬁw‘ and G{wz} = ; f 2 d By, Wy € Qi\N??

Q.

A

(e

PRES
Cua?



then F is u1~integrable and € is u2~integrahle. Further, we

have that

¢ 14
J f d{ulzcyzj = E d Uy = } } fw1 d“z dul
5 Q} {21 Slz
and
I3 W

[ _ t - 2

I i P 3 1 s = i -
| £ dull X —,;2} j", d ug j[ f f dui.duz
Q 8‘42 £, i,

(3]
[

PROOF. By Lemma 3.4 and by Proposition 9, p. 91 of [2],F is
|uj|-measurable and G is |[u,| -measurableyand the existence of

Ni with specified properties is guaranteed by Lemma 3.3.

From (1) in the proof of Lemma 3.4, there exists a sequen-

ce (sn) of X-valued 21 X Zzwsimpie functions such that

- ol 3 [ § o i < }
Bl atiugixbug D < 3

i
bl
p—

N NS
n
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§
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e
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et
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e

el
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P

[
,
v
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£
=
o
o
=
-
.
pis

Then by Corollary 2.

~—
b

W

-
Fa%
§ oD
R
-

[

1
. (' i v f e
“ [ I S Loos *E bos {h. ) _:' 1}

_—
[
-
<
g
Y
L.

L ORI
YA ST T,

whete K = max a. . Feroo s i s buynded Eulf~measura~
l<i<n ’

ble function and  so | s{iis 1y, l-integrable. Consequently,

-

e
T
~
g
o
oY)
-
Tk
el
b
o
G
¥
o
e
o
el
b
N
s
¥
w
s
N
[
,
d
N
Y
o

Kow we shall prove that ¢ sy, -integrable. It is cleay
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& = - e % “ i { .
o J j( [Efwz Ea“ 'Ji i diH?; d t“l{
{2, 4 - )

by the classical Fubinifs theorom and by (1}.

Let 1 (w,]} = f {s 1} dv7 . Then, by the foregoing, tp 15
g2

: ulwintegrable and consequently, {rom (2} it follows that
LR afugd < | e patu, | e [ el dly, | <o
J ‘ pb 2o ! P | Tt TR ’
Q} 322 “
Therefore, || F} is !uif'ﬁﬁf%ﬁfa5iﬁ snd hence by Proposition 1.4
Foois 11~iﬂtegrable.
By a similay argument i1 follows that G is p,-integrable.
AFFIRMATION 1. If
S -
- S = ) X. Xg » EB.oVE B, o= ¢, i}, B £ Ly X Ly, X; £ X
121+ CEy 3 1 1 ]




a-z{.‘; =

thern

£ f
('3{: ' ioax 4 { &7 (i'r
!'“’[ WMy & M ] )ﬁ w, “F2 9Fy
4 S
Y .00

i T n
5 (1(H1 X uzf y (ﬂl X liog) (Elj x5 = i T?(ﬁ%}xi , (3)
1 i<1 S

by Thecrem 2.6,

We observe that if g is Ql - % is u1~infegrable
and x ¢ X is a fixed vector in X, then gx is By-integrable

<.

and

( [ i dul}x = E gx dul.

¥ !
8¢ {‘;,s,] X ‘;,ez} r; f{ hf*' dyl}x,i
f ' i=1 j i '

”
i
L
P 1 ; -
= | J;}‘ X ('i;i
1::.‘:2' ,{», i 1
db g
A

(on
=4 E ( Y iy e .‘tr}”
: Vo, g A JRERt
;! =] ;i * 4
»!51
f7
=ty (e P, idu
i 4:“.3'4“( lj'w} i’
Y AT 3
pY4
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by §n i
A e
[ .
e i =, Vil . 3
H bos | 3
i ) } Y, X
B,
i &

AFFIPMATION 2. lLet

M,
Ut
-~
D
-
ol
b
s
Eat
i

i

4 in place of T in the

iﬁ, B2 A ¥
rmation can be proved.

In fact, using
affi

procf of Affirmaticn 1,
t_, we have

From (2), recalling that

( Fodp., = 3w | ot du
Y1 , Potm U
a o

P -

i
L
= LI I ; (, 7. SV D
; : 17O, Z 1,
143 F 3
‘JII ‘:az

Using Affirmation 1 in (4},

F dp‘l = 1ix

i#

[ " 3
j ¥ u{pl x )
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as
;[f £ dluy x u,) - [ s, dluy x )l J [ £-s_ 1 dlfugl x fuy ) <
Q G Q
(1 SR 5 T 1 M

Similarly, using Affirmation I we have

. "¢ ao 3t
j G dpz } f d{plXuZ)
Q

This completes the proof of the theorcm.

COROLLARY 3.6. (Fubini's Theorem) In addition, let 1y, and

Moy be commuting  measures. If f: & » X 1is a bounded hﬂlxhbi“

3

-measurable function, then £ is yy Xp,-integrable and

W
: . . P M2
J £ dlug xuy) j f Fay dHz 9y f f £7 duy duy
194 QJQZ ' QZ ﬂl
PROOF. || £}l is hﬁj xluszmeasurabie and bounded. Hence, as

[ul[xtuzf is a finite measure in I, X Lol £l is [yl X i, -
-integrable and hence by lLemma 3.1, f is ulzxuz~integrable
Now by Theorem 3.5 and Corollary 2.7, the conclusion is obtai-

ned.

It is known that for two complex measures ug and My oD
o-algebras £; and L, respectively, ‘ulzxu2i=ﬂ}pll x Juy |

(vide Lemma III. 11.11 of {3}). But this is not generally tru




for X-valued measures as we see in the following counter exam-
?.) .

COUNTER EXAMPLE 3.7. Let ¥ be a commutative Banach algebra

{

&

z X such that || x

¢

with Xy X

[

and Z, be o-algebras of subsets of i, and 0, respectively ,
ith G 4 and 9, ¥ ¢. Let v,: ©. -+ 10

Wl,t,‘i. Sd} # 4 and Az ?( i3 t 3 4 ;

non trivial measures, i = 1,Z,then My o= Xpve o, i=1,2,are X-va

lued measures on I, with

!
Fash Y
—

T
b
j—
[
3
p——
=,
)
o
Sord
B
o~
3
L—
2
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