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ABSTRACT

In the théory of admissibility of integral operators a central
role is played by Banach function spaces. indeed, the behaviour of the
solutions of integral equations can be simply described if we can ascertain

that they belong to certain Banach spaces.

[

In this paper we study the admissibility problems which, by duality,
are equivalent to the embedding of the projective tensor product of two function

spaces into a third B.F.S..

A fundamental role in our development is played by the construction
of function spaces following ideas of Calderén (9). Using these spaces we are
able to extend unify and considerably simplify previous work of several

mathematicians,

Notably we should mention the work of R. 0'Neil (43) who studied
similar problems in the context of Orlicz and L(p,q) spaces. The fundamental
ideas here are, however, different. From our point of view complicated spaces
are constructed from simpler spaces by means of a suitable functor. Thus, our
embedding theorems follow once have obtained the results for a suitable set

"simpler spaces'.

This not only simplifies the proofs but clarifies the role of the
conditions involved in 0'Neil's paper. Moreover the method also gives embeddings
for mixed norm spaces and our generalized setting allows us to prove results

that hold simultaneously for a large class of spaces.




INTRODUCTIOM

In the theory of admissibility of integral operators a central
r6le is played by Banach function spaces. Indeed, the behaviour of the
solutions of integral equations can be simply described if we can ascertain

that they belong to certain Banach spaces.

In this paper we study the admissibility problems which, by
duality, are equivalent to the embedding of the projective tensor product

of two function spaces into a third B.F.S.

A fundamental role in our development is played by the
construction of function spaces following ideas of Calderén (9). Using
these spaces we are able to extend unify and considerably simplify previous

work of several mathematicians.

Notably we should mention the work of R. 0'Neil (43) who studied
similar problems in the context of Orlicz and L(p,q) spaces. The fundamental
ideas here are, however, diferent. From our point of view complicated
spaces are constructed from simpler spaces by means of a suitable functor.
Thus, our embedding theorems follow once we have obtained the results for

a suitable set of ''simpler spaces'.

This not only simplifies the proofs but clarifies the r6le of
the conditions involved in 0'Neil's paper. Moreover the method also gives
embeddings for mixed norm spaces and our generalized setting allows us to

prove results that hold simultaneously for a lage class of spaces.




The paper is naturally divided in two parts. In the first part
we introduce and study the relevant properties of our spaces, including
duality, and interpolation theory. In the second we study the embedding

theory for tensor products of these spaces.

The reader is referred to page 1 and page 50 for a detailed

description of the results obtained in this paper. .

Some of results were announced in (36) and (37).
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CHAPTER O

PRELIMINARIES AND NOTATION

It is expected that the reader will have some famitiarity with
the theory of Banach Function Spaces as developed for example in Luxemburg[32]

and Zaanen [ 61 |-

The purpose of this chapter is to provide a brief introduction
to the theory of rearrangement invariant spaces and to indicate pertinent
references to the literature. Moreover, we shall also develop the notation

to be followed in this work.




(viii)

0.1. YOUNG'S FUNCTIONS, Let a be a monotonic, non-decreasing

function, a: [0, o) > [0, &ﬂ , such that a is not constantly equal to zero
X
or infinite, then let A(x) = J a(t)dt, x e [0,). A is called a Young's

0
function.

in what follows we shall need to consider more general functions

(0C.1.]1) DEFINITION., Let A be a monotonic, non decreasing
function, A: [0, ®) » [0, «] , such that (i) A(0) = 0; (ii) A is left
continuous; (iii) there exists to € (0, ®) such that 0 <.A(ty) < . A

will be called a generalised Young's function.

Let A be a generalised Young's function, the inverse of A s
defined on [0, ®) by

ATY(t) = inf {s: A(s) >t} , inf {¢} = o

It follows that A"! is a monotone non-decreasing function
which is right continuous, and that the following inequalities hold Yt >0
AATI(t)) st < ATH(A(Y)).

Moreover, A and A™! are related by

A(t) = sup {s: A"¥(s) <t} , sup {¢} =0.

Let A be a generalised Young's function such that A(t)t™! 4
(i.e.A(t)t™! increases in a wide sense), then the Young's complement of
A is defined by

A(t) = sup {st - A(s)} . t e [Q, )
s20
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From the above definition we readily get Young's inequality,
ts € A(t) + A(s) Vt,s > 0.

The inverses of A and A are related by the following inequality

t < ATH(t) ATM(t) g 2t , 05t <™,

The reader is referred to 0'Neil [43]for a detailed account.
However for the reader's convenience we shall review the definitions of

certain conditions that we shall ocassionally impose on Young's functions.

(0.1.2) DEFINITION., THE A2 CONDITION. A generalised

Young's function A is said to satisfy the A, condition if there exists a
constant 631 such that for all x 2 0,

A(2x) € 6 A(x) .

A is said to satisfy the A, condition for large values if A
is finite valued and if there exist constants 831, x5 2 0, such that

v x 2 xg, A(2x) £ 6 A(x).

A is said to satisfy the A, condition for small values if there

exist constants 831, xp > 0 such that ¥V x € (0, xo), A(2x) £ 6 A(x).

It can be proved that a Young's function A satisfies the A,

condition if and only if 3 p > 1 such that A(t).t Py .

(0.1.3) DEFINITION.THE Y2 CONDITION., A generalised




(x) )

Young's function A issaid to satisfy the V, condition if there exists a
constant 6 3 1 such that ¥ x > 0

A(6x) > 2 8 A(x)

It is known that if A is a Young's function then A satisfies

the V., condition if and only if A .satisfies the A, condition.

" We define similady the V, condition for small and large values.

(0.1.4) DEFINITION. THE A CONDITION,., A generalised

Young's function Aissaid to satisfy the A condition if there exist constants
a3 1, B >1, such that \/x;O,

A{ax) =2 B A(x).

0.2. ORLICZ SPACES, In this work we shall only consider

non-atomic, 0 -finite and complete measure spaces. Thus, in all what follows,
we shall make the following convention: when we say ''a measure space' we

shall mean ''a non-atomic, g -finite, complete measure space'.

Let (Q,u) be a measure space and let us denote by M(Q) the
class of real valued yu-measurable functions. Let A be a generalised

Young's function, and for f & M(Q) define

”fIILA(Q) = inf {a>0: £ A(]f(x)|/a) du(x) s 1} .

The Orlicz space LA(Q) is defined by

Lp(@) = (F e B@: IFIl ) (o)< )
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where M(Q) is the quotient space of M(Q) under the equivalence relation =

defined as follows: h = g, h,g ¢ M(Q), if and only if h=g u-a.e. ;

and (1F1 () = MF g > Fef

In general we shall follow the standart practice of identifyinag

a measurable function f with its equivalence class f = {g ¢ M(Q): g = f}

Ocassionally, when we are willing to emphasise the rgle of y ,

we shall write LA(du)-rather than LA(Q).

The reader is referred to the standart treatises on Orlicz

spaces ([32],[27].[62])-

0.3, BANACH FUNCTION SPACES. Let (Q,p) be a measure

space. We consider normed (respect. quasi-normed) spaces (X(Q), || || X(Q))

of measurable functions on (Q,n) such that:

(i) |f] £ |g] np-a.e. and g ¢ X(Q)

implies f ¢ X(Q) and ||f|| X () < |9l X(q)

(ii) Let XE denote the characteristic function of a measurable

set E, then Xp ¢ X(Q) whenever u(E) < « .

(iii) f ¢ X(Q) implies f is locally integrable

(i.e. fex(p)=>fFfel C(Q)) )

1
Lo




(xii)

(iv) 1f 0 < f 4+ fy.ace, f eX(@Q ¥nehd, and

f <, then f & X(Q) and Vim || f = |If :
nsszII A () en f ¢ ) and moreover ) LmJ[ all X () [|f]] X ()

(The Fatou Property (F.P.).)

A normed (respect.quasi-normed) function space X(Q) verifying
conditions (i) - (iv) will be called a Banach Function Space (B.F.S5.)
(respect. q.B.F.S.). Indeed, it can be shown that condition (iv) implies

that X(Q) is a Banach space (cf [32]).

In general we shall write X and || jlx rather than X(Q) and

” H X(9)’ whenever no confusion arises.

Let X be a B.F.S. (respect. q.B.F.S.) the associate space of
X is defined by

¢ to e M@ ol = s JFeog601aut) <o .
194

A deep result of Lorentz and Luxemburg (cf. BZ]), states that

X'" is isometrically isomorphic to X for any B.F.S. X.

(0.3.2) DEFINITION. lLet X(2) be a B.F.S. (respect.q.B.F.S.),
we shall say that X has absolutely continuous norm (a.c.n.)(respect,a.c.q.n.)
whenever E/ f ¢ X and every sequence of measurable sets {An} such that
An v & we have 1lim |[fX, ||, = O.

ALl X
n > o
It can be shown (cf, [32], [48]) that fn ~ f p.a.e. and

[fal < lg] s 9 X implies Vim ||fn - g x = 0, whenever X has a.c.n..

n > oo
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Let X be a B.F.S. and denote by X% its dual space, define
I': X' > X% by T(g)(f) = <f,g> = Jf(x) g(x) du(x), g e X', f € X. Then

9]
I' defines an isometric isomorphism between X' and X* if and only if X has

a.c.n. (cf, BZ]).

0.4, REARRANGEMENT INVARIANT SPACES., Among‘the class

of B.F.S. spaces (respect. q.B.F.S.) we are specially interested in the

subclass of rearrangement invariant spaces.

Let (Q,u), (Q', u') be measure spaces such that u(Q) = u'(Q'),
and let f ¢ M(R), g € M(Q'), then we shall say that f and g are equimeasurable

(we write f v g) if for all t > 0,

u{ x € Q: |[f(x)] >t} =qpu'{x' € Q': |g(x')]| > t} .

(0.4.1) DEFINITION. Let X(Q) be a B.F.S. (respect.q.B.F.S.),

we shall say that X is a rearrangement invariant space (r.i. space) (respect.

q.r.i. space) if ||f]| X = ||g|l X Y f,g € M(R) such that fn g .

The Orlicz spaces LA’ where A is a Young's function, are

examples of r.i. spaces.

Let f € M(RQ), the non-increasing rearrangement of f is defined by
fx(t) = inf {s: Af(s) st} , inf {¢} =0

where Ac(s) = uix: [f(x)] > s} L0 tgul.
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In [33]it is shown that for every r.i.space X(Q) there exists
a r.i. space X(0,u(Q)) such that [[f{| X = || f|| x + We shall call X the

Luxemburg representation of X . A similar result holds for q.r.i. spaces.

tt can be shown (cf. [33] ) that if X is a r.i.space then X'

is a r.i. space, and moreover

u(Q)
ligfl v = sup l fx(t)g*(t)dt.
lFll e

Let X(Q) be a r.i. space (respect. q.r.i. space), the fundamental

function of X is defined by

Ixg Il p(E) = ¢, if  t<ula).

oy (t) = 0 Pf t > ul@).

It can be proved (cf.[63]) that a r.i. space X can be renormed

in such a way that the resulting fundamental function is concave on (0,u(9)).

We assume, without loss of generality, throughout this work

that all spaces have been renormed in this manner.

The fundamental function ¢x is absolutdy continuous on (0,u(Q))

and (})X(t).t'1 +. The fundamental functions of X and X' are related by

(0.4.2) o,(t) ¢y, (t) =t Vit o

From {0.4,.2) it follows that
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(0.4.3) 44 (c)

< ¢X(t).t'1 a.e..
dt

For example the fundamental function associated with an Orlicz
space LA(O,w) is given by o (t) = 1/A71(1/¢).
A

We shall consider some conditions on r.i. spaces that shall

be impossed ocassionally in the sequel.

(0.4.4) DEFINITION, THE &2 CONDITION, Let X(Q) be a
r.i. space, we shall say that X satisfies the 8, condition if there exists

a constant 031 such that

t
l ¢x(u)%”—se¢x(t), 0<t < uQ).

(0.4,5,) EXAMPLE, Let A be a Young's function such

that A satisfies the A; condition, then LA(O,w) satisfies the 8, condition.

(0.4.6) DEFINITION. THE N, CONDITION, Let X(Q) be a
r.i. space, () = =. We shall say that X satisfies the n; condition if
£(t) = min {1, % } belongs to i(o,w). Similarly if X(0,%) is a B.F.S. we

shall say that it satisfies the n, condition if £(t) = min f% ,» 1} € X.

(0.8,7) EXAMPLE. Let A be a Young's function satisfying

the V, condition then LA(O,w) satisfies the n, condition.

0.5. spaces A(X), M), M?&), Let X(Q) be a r.i. space,
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Lthe Lorentz space associated with X is defined by

u(Q)

AX) = {F e W@z Iy = l FH() gy (0195 < o

If X satisfies the §, condition then A(X) is a r.i. space . {(In general

A(X) is not a r.i. space according to our definitions since it may happen

that XE ¢ A(X) for some E € Q, 0 < u(E) <= .)

t >0
valid ¥
defined by

Let f € M(Q) and define the maximal rearrangement of f by

t
frk(t) = %— J fx(s)ds = sup { 1 J [f(x)]du(x)} , t > o.
0 u(E) =t t e

It follows that f** is non-increasing and f*(t) g f**(t) , V

We notice for future reference the following useful equation,

(0.5.1) fiw(u)du = r fxx(r) - r f*(r)

fx(r)
r > 0.

The Marcinkiewicz space M(X) associated with X is

M(X) = {f e M(Q): || f] = sup {f**(t)¢, (t)} < o}
€ ” IM()() t >0 X
Suppose that u(Q) = =, then we have

(0.5.2) A(X) ¢ X ¢ M(X)

with continuous embeddings (cf.[63])p A similar result holds if u(f) < » .
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We shall also consider the g.r.i. spaces MYX) defined by
n
= . Y = * )
M(X) = {f e M(Q): ||f]] M(X) ts&;po{f (t)¢x(t)} < «}

n
It is easy to see that X ¢ M(X), indeed let f ¢ X, then Vt>o

Fr(t)gy (1) < lIFsxgg ol 5 < IFxl 5 =1IFIl

> >

and the assertion is proved.

0.6, The symbol + stands for the end of a proof, or if
used after the statement of a theorem means that the proof is elementary

or contained in the given reference.

To simplify the formulation of our results we shall use the
notation F(h) = G(h), where h belongs to some specified class C, to mean

that there exist positive numbers a,b such that

F(h) < a G(h) and G(h) £ b F(h)

for all h ¢ € (infinite values of F(h), G(h) being permited). Finally we

e

write X = Y, where X(Q) Y(Q) are B.F.S. spaces to mean that ||f|| , =||f]|

V£ e M@).

The reader is referred to page 122 for other notational conventions

and symbols used in the text.




PART |
FUNCTION SPACES
’ INTRODUCTION

In this part of the thesis we develop the theory of the socalled

Calderdn spaces. Let X(Q) be a function space and £(x, t) be a positive

function defined on @ x R* such that

(i) &(x, t) increases in t for each x € Q fixed.

(ii) &(x, 00 =0 V¥xeaq.

(iii) For each x £ @, £ R* + R+, defined by gx(t) = £(x, t)is
cQncgave.
For a pair (X(Q),&) define

g(x)(Q) = {f e M(Q):3 1 >0, ge Z(X) such

that |[f(x)] < x&(x,|g(x)])}

and put

Fllggy = infA> 0:3g € 2(X), [FOO] s A &lx, gD .
Then £(X)(Q) is a Banach space (cf. Calderén [ 9]). For example if A is a
Young's function and £(x, t) = A!(t) then A-}(L!) = Ly, the classical

Orlicz spaces, if £(x,t)=tthen £(X) = X.

We shall also consider spaces constructed, by means of themaximal

rearrangement, as follows: let X(0, «) be a B.F.S. of Lebesgue measurable

functions on (0, =), then X" = {f e M(O, m)=||f||xo = || frx || g < ®}.

We shall single out a class of spaces, constructed by means of




a combination of the methods described above, which contains among others

the Orlicz spaces, the L(p,q) spaces and several of its generalisations.

The general theory of B.F.Spaces which started to flourish in
the early fifties has concerned itself with unifying certain general common
features shared by the spaces which analysts use in every day life. Moreover,
new classes of function spaces were invented and studied in a §ystematic way.
This-is the case for example of the so called Lorentz Aa spaces [29 ], the
Ma,p) spaces studied by Lorentz[}O],[31] and Halperin [21], the Marcinkiewicz
spaces studied by Lorentz [31]and Halperin [21], the Orlicz spaces studied by
Orlicz [hé] and others. These spaces are generalisations of the classical

LP spaces (F. Riesz [50])-

It should be noted that these developments were closely connected
with the problems analysts were studying at that time. Moreover, most of the
"new'' spaces, were at the time of their "invention'', already implicit in the

formulation of several problems in analysis.

Not surprisingly then, these theories led to new and profound
developments in funcfional analysis. Let us mention, as an example, the
theory of interpolation of operators developed among others by M. Riesz
[ 51 ], Marcinkiewicz [35], Zygmund [64], Calderén[ 9] ,[10], Peetre [47],
Lorentz [31], Lions [28] , Oklander [42] (cf. [8] for a detailed account
of the theory and a detailed source of contributions). The theory of
interpolation of operators has had an enormous influence on classical and

modern Harmonic Analysis (cf, [6&] ).

The general systematic development of abstract function spaces -

initiated by Ellis and Halperin [17]and camplemented by decisive




contributions by Luxemburg[3zL Lorentz[3l] and Luxemburg and Zaaneth]-
in interaction with the ''concrete' field of possible applications led to
the study of special subcategories of function spaces. Thus, rearrangement
invariant spaces, translation invariant spaces, harmonically invariant’
spaces, etc (cf. [33],[52 ], [26], [54], [15]), have been studied, and in
general the methods used in each case depend on the particular subclass

under consideration.

in this thesis we introduce a newclass o function spaces in order
to study some problems which ‘arise in the qualitative theory of integral
operators. These problems are formulated here in terms of the possibility
of embedding the projective tensor product of two B.F. spaces into a third

B.F.S..

OQur spaces provide a generalisedsetting on which to formulate
our results. Moreover, the 0.C.L.H.Z. spaces introduced in Chapter 2 are
interesting in their ownsince the characteristic features of the theory

of Lorentz spaces and Orlicz spaces are blended.

This part of the thesis has been divided in three chapters: in
51 we discuss the general theory of Calderdn spaces, in §2 we introduce
the class of 0.C.L.H.Z. spaces and compute their duals and associatespaceé
and in 83 we extend the interpolation theorems of Marcinkiewicz-Calderén-

Hunt (cf, [l@) to the context of 0.C.L.H.Z. spaces.

These results will be used in the second part of our work.

(¥ ]




CHAPTER 1

GENERAL THEORY OF CALDERON SPACES '

Let A be a Young's function (respect. generalised Young's
function) and X(Q) be a B.F.S.. The spaces A~!{X)(R) (respect. GA~!(X))
are introduced and their elementary properties established in 8§1.1. and
§1.2. The functor®is described in §1.3 and it is used to give a unified
discussion on Hardy's inequalities for A”!(X) spaces. In §1.4 several
examples, illustrating the scope of our theory, are presented. In §1.5
we prove that if X is a B.F.S. with a.c.n. then A" (X)(Q) is separableif
and only if p(R) =~and A satisfies the A, condition or ()< =« and A
satisfies the A, condition for large values ((Q,u) is assumed to be
separable). In §1.6 the reader will find a brief discussion on the associate

spaces A"!(X)' and bibliographical information.




1.1. THE sPACES A 1(X), Let (Q,u) be a measure space, X(9)

be a B.F.S. and let A be a generalised Young's function, we define
—l - . o
A" H(x)(Q) {f € M(Q): ”f” A—l(x) < o}

Il g-1(x) = inf (A >0 HA(-I%‘-)H <1}

where A(l§l)(x) = A(lféili).

X

[N

Let A be a Young's function, then it is not difficult to see that
A" 1(X)(Q) is exactly the Calderén space generated by the pair (X, gA),
where gA(x, t) = A"'(t). Thus, if A is a Young's function,A"1(X) is a

Banach space and moreover, (fl < |g| a.e, implies

el g € Mol gagyy (ef 3D,

The purpose of this section is to prove some elementary results

concerning the A-'(X) spaces which shall be useful in the sequel.

(1.1.1) LEMMA., Let A be a generalised Young's function and

let X be a B.F.S., then
NACIEL 7 1F ) pma ) s 10 Vfeal(x).

Proof. Follows readily from the fact that A is left continuous

and X has the F.P.. +

In the remainder of this section we shall assume that X is a

B.F.S. and A is a Young's function.

(1.1.2) THEOREM. A" '(X) is a B.F.S..




Proof. We shall prove that: (i) A"!'(X) has the F.P.; (ii)

Xg € A~}(X), whenever u(E) < =, (iii) f € A"*(X) implies f ¢ LEOC'

(i) Suppose that 0 < f #f p.a.e., f e A" (X), n=1 ...... .,
and nliqxllfnu x = 0 < It mst be shown that el A-1(x) = %

It is clear that ||f|| A-i(x) 3O Let op = || £l A=1(x) * We may
assume without loss that 0 < o, <» , n=1,,.... Then since a * a, and
A 4, we get using (1.1.1), ||A(|f,] 7 o)} xS on=1, ... Therefore

using the F.P. of X, we get [|A(|f| /a) ||, < 1, which implies ||f]| A= (X)S

(ii) Let E € Q, be a measurable set such that u(E) < » . Since

lim A(x) = 0, there exists 0 < a < « such that A(lJ” X||, s 1. Then
X0 a E'' X

” XE”A-I(X) < a'.

(iii) Let T3 0 e A"1(X), then A(|f] / |lf||A-,(x)) € X and
since X is a B.F.S. we conclude that A(|f] / ”fllA'l(X)) " is locally

integrable.

Let E ¢ §, be a measurable set, 0 < u(E) < », then by Jensen's

inequality

1 1 f (x) o
A <WHA-1(X) i]f(x)l du(x) s TTET i A( A-‘(x)) du(x)<

Therefore j [f(x) |du(x) < = +
E

We collect, without proof, some elementary properties of the

| ”A"‘(X) norm.

(1.1,3) proposITION, (i) [If|l p-1¢yy sV <> HA([FDIy s 1.

7




G ANy =1 = 1IFl] p= 1y

for some constant k > 1, then ”fllA‘l(X) =1 =>IIA(|f|)“ X = 1.

=1 and if [|A(k]f])] x <®

(iii) fn > f in A"1(X) if and only if lim [|AGK|Fa=f]) |, = 0
nN-oo

Vk > 0, whenever X is a B.F.S. with a.c.n.. +

In our work we shall be interested in A~!(X) spaces generated

by r.i. spaces X. The following result will be important in what follows

(1.1.4) THEOREM, Let X(Q) be a r.i. space, and let X(0,u())

be its Luxemburg representation, then

(i) A7'(X) is a r.i. space.
(ii) A"1(X)~(0,u(Q) = A" 1(X) (0,u(R)).
(iii) The fundamental function of A!(X) is given by

damyx) () = 1/A71 (176, (1)), 0 s t < u(Q).

Proof. (i) Let f, g be measurable functions such that f v g ,

then¥a> 0 A(%I-) " A(—I—g—l-) (cf.[12]). Thus,

IAGFI 1l e ) |y = 1AL/ I 8l o) g < 1
which implies “fllA'l(X) < ”g[lA'l(X) and similarly we get

Hall A=1(X) $ “f“ AT1{x) *

(ii) Let f ¢ A"1(X), then A(&“) ~ A (1£Ho Yo > 0. Therefore,

IlfllA‘l(X) = Hf*IIA-l(ﬁ) = || ]| A-1(x)"

(iii) Let E ¢ Q be a measurable set, 0 < u(E) < u(Q), then




¢A-l(x) (U(E)) = ¢A'l (3(\) (u(E))

inf {a > 0 || ACQEE)y o ¢y

inf {a > 0: A(&) ¢X(u(E)) € 1}

1/A'1(1/¢X(u(E))). +

[y

1.2, THE SPACES GA~ (X)), Let (Q,u) be a measure space, let
A be a generalised Young's function and let X(2) be a B.S.F.. In this

section we consider a generalisation of the spaces A™'(X).

(1.2.1) DEFINITION, Let f e M(Q), define

IF lga-1(x) = inf {k > 0: [TACFI/ W)l s k)

GA"1(X) = {f ¢ M(Q):IIf[IGA-l(X) < o},

It is not difficult to see that || || defines a metric

GA™ 1 (X)
under which GA™!(X) is a complete metric space. However, the spaces

GA"!(X) are not, in general, topological vector spaces.

In this section we compare the spaces A™'(X) and GA™'(X) and
obtain necessary and sufficient conditions for scalar multiplication to be

continuous on GA™!(X).

For future reference we point out that (1.1.1) can be generalisad

as follows

/
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(1.2.3) PROPOSITION, Let A be a Young's function, then
(i) A~'(X) = GAT!(X) as sets.

(ii) ” IIGA'I(X) and H HA'I(X) determine the same uniform

topologies on A~! (X).

Proof. Suppose that 0 < llfllGA'l(X) < 1, then by (l.i.l),

Hacle] 7€l GA—l(X))HX sllfllGA_l(x) < 1, which implies

llfllA'l(X) £ “fIIGA'l(X)' Now since A(x).x ! +we have for 0 < r s 1,

a1/ ) Afx)|/r)

< . h th f(x)| > o.
[f(x)]/ /2 [f(x)|/ r Vix such that [f(x)|

1/2 1/2

Therefore, [[A([f]/ r"T) ||, < r'"% and if we choose r =[] -1y we

get ”f“zGA'l(x) < Hf“ A‘l(x)'

Suppose that ”fllA‘l(X) < 1, then it follows readily that

I’fIIGA‘](X) < 1. Thus, we have proved,

< ”f“A-l(X) < ”f”GA'l(X)

v

Consider the case where ||[f]]| 1, then ”fIIA'l(X) > 1

GA™ 1 (X)
and moreover ”flIGA"(X) < IFll A-1(X) Let r = ”f”GA'l(X) then r? > r,

and since A(x).xt we obtain

A
-

e ACIELZ P20y < ITACELZ )T
Thus, r? > ”fllA'l(X) and we have proved

/
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(125 161l gpmr gy 2 TV IFI per g 2 1 =2 ED gamn g

The required result follows readily from (1.2.4) and (1.2.5).+

The above result can be extended to generalised Young's functions.

We shall omit the details of the proof of the following .

(1.2.6) PROPOSITION, Let X be a B.F.S. with a.c.n., and

let A be a generalised Young's function. Then,

(i) A“'(X) = GA'(X) if and only if 1lim_ A(t) = O.
t~>0

(ii) If A satisfies the A condition and [y A(t) = 0, then

]
t>0

the topologies of A" !(X) and GA™!(X) coincide. +
We shall now consider necessary and sufficient conditions on A

for scalar multiplication to be continuous on GA~ 1 (X).

(1.2.7) PROPOSITION. Let X be a q. B.F.S. with a.c.q.n.
and let A be a generalised Young's function, then scalar multiplication

is continuous on GA“!(X) if and only if 1lim A(t) =0, 1lim A(t) = =,
t'>0 O )

Proof. Suppose that 1im A(t) =0, 1lim A(t) = «, then
t >0 t > o

f € GATY(X) implies |f| < «» p.a.e.. Let € > 0, and 6 > 0, then since
éiﬂ o A(8|f]) = 0 p.a.e., and X has a.c.q.n. we get éETO ”A(Qéilﬁ“ = 0
which implies ”efllGA'l(X) <g if 8 is sufficiently small.

Suppose that 1lim A(t) = a>0. Let f 3 0 ¢ GAT1(X),

t->0
/
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then there exist E ¢ 8, 0 < u(E) <, r > 0, such that |[f(x)| > r. XE(x).

ThenIIGfIIGA-I(X) > a]leH X’ ¥ 6 > 0. Thus,scalar multiplication is not

continuous.

Suppose that tIim A(t) = o < », Let E be a measurable set
+ ©

such that 0 < u(E) < «» and define f = ®. Xg - Then,f € GA~!(X) and

[y

1 8fHga-1(x) > @ llxgll sV 8 > 0. +

The condition that X be a q.B.F.S. with a.c.q.n. cannot be
weakened in general. However , for the GA'I(M?X)) spaces the following

result holds,

(1.2.8) PROPOSITION, Let X(R) be a r.i. space and let A

be a generalised Young's function. Then scalar multiplication is continuous
I AT . e - .
on GA"'(M(X)) if A satisfies the A condition. Conversely if u(Q2) = « and
"
Range (¢X) = [O,w), then scalar multiplication is continuous on GA™!(M(X))

if and only if A satisfies the A condition.

Proof. Suppose that A satisfies the A condition.

There exist o 21, 8 > 1 such that A(a x) > B A(x), therefore ¥ n e N,
n n . - —1 =
A(aM x) 2 B"A(x). Let f 4 0 be a function in GA™1(X), ||f|| GATI(x) = "

let €>0 and choose n € N, and 6 e(0,») such that r < g8n.e”!,

0<6<erl.an, then V t >0

A(ofx(t)/€) ¢, (t) = BTN [B"A (BF*(t)/e)] ¢y (t)

< 8N A(a" 6e” 1% (t)) ¢X(t)

IA

B0 A(FH(£)/ 1) o, ().
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Therefore,
0f*(t)

{A(———= (t)rs r. B < €.
tsgpo =) ¢, (¢ r €
limOHBFH Gai(x) = 0

The converse can be proved by observing that one can assume

that @ = (0,®) and considering f(t) = 1/A'1(1/¢x(t)). +

1.3. SPACES X0 , Let £ ¢ (0,0] , let Y(0,£) be a B.F.S. of
Lebesgue measurable functions on (0,2) and let (Q,u) be a measure space
such that pu(R) = f, then we define

YO(@) = {f e M(@): [[F]l yo = [[f**]], < =},

It is easy to see that Y® is a Banach space (cﬁ.[y]) and moreover

if Y satisfies the n, condition (cf. Chapter 0) then Y° is a r.i. space.

2

(The n, condition implies that Xg € YO if u(E) < =,)

Let X(Q) beag.r.i. space and A be a Young's function, the
purpose of this section is to study the rdatiomship between A™!(X) (Q2) and

A= (X) ().

(1.3,1) THEOREM. Suppose that the operator P given by
t

P(f)(t) = %- J

0
A-1(X) = A-1(X)°

f(s) ds defines a bounded linear operator P: X > i, then

Proof. Let f ¢ A" (X)® then, since f*(t) s f**(t) ¥ t > 0,

we have
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l’fllA'l(x) = ||f*]| A—l(Q) s l]f**llA-l(i)
= Ifli ATL(R)Y ¢

Suppose that f ¢ A~!(X), 0 < ||f]| Ac1(x) = » and let

0= max {1, [Pl o g » then [Iflp-aqgyo = NPT pn (-

Now, using Jensen's inequality we get

[|A(P(f*/0r)) || % s|P(a(f=/or)) || &

<Pl lIatF*/60) || 5.

X > X
But since A(x).x"!4+we get ||A(f*/6r)]|| & s 6'1||A(f*/r)][? < 87!, hence

Pl ey <Ol per oy -+

(1,3.2) COROLLARY., Let X(0,®) be a r.i. space, then

(i) AT(A(X)) = AT1(A(X))° , whenever 38 > 0 such that

o]

J ¢X(U) %lé'- S9¢>x(t).t‘1 , Jt > 0.
t

N N
(ii) AT (M(X)) = A1 (M(X))?® , whenever X' satisfies the 62

condition.

Proof. (i) It is easy to see that the condition on ¢x implies
that P: A(X) > A(X), continuously,in fact this.an be proved using Fubini's

theorem. Then apply (1.3.1).

(ii) We shall prove that the condition on X' implies that
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N "
P: M(X) > M(X) continuously. In fact ¥t > 0,

P(F)*(t) ¢, (t) < P(f*) (1) ¢, (t)

t
< &)—XT](U {o f:‘:(s) ¢X(S)¢X,(S)'d_s§'

I e [ o (9)98)
= M(X) $%It) . X' s

(@]

<UE -

where C is an absolute constant.

Thus,

PN Wixy s CIFIN Wy -
The result follows by (1.3.1). +

Let us note that A'l(M?X)) = M(A1(X))"™ for every r.i. space

X, therefore if the conditions of (1.3.2) hold we have A'I(M?X)) =

2 ATI(M(X))0 = M(ATT(X))™ = M(ATI(X)).

(1.3.3) REMARK, It is well known and easy to see that

A A 1 A ~
P: X > X whenever j h(s,X) ds < = , where h(s,X) =||E
0

sl % >
(Eg f)(t) = f(t.s). The following result holds:

h(s, A" (A(X))) s sup {A71(t) /A ¢y (s) t)} , whenever ¢, is
t>0
strictly increasing, lim ¢X(t) = o , and there exists a constant
tr

6 > 0 such that ¢X(u) ¢X(v) £ 6 ¢, (u.r) vV u, v >0. In the case that

X =LP , then h(s,AXL(p,1))) = sup (A" (t)/A ' (t.s"P)} , 1 ¢ p <o
t>0

These results can be proved using similar methods to those of Boyd [ 7] ,

where the case p = 1 is considered.
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1,4, EXAMPLES, We consider several examples which ithstrate the scope

of aur results.For simplicity we assume 2= (0,®),u = Lebesgue measure.

\

Y
(1.4,1) Let x =L, then A"} (X) = LA’ and we obtain the

classical Orlicz spaces.

(1,4,2) Let X = A(X), then if A(t) = tP, 1 € p <o,
A"1(A(X)) = A(¢X, p) (cf Lorentz [31]). Thus the A"!(A(X)) spaces generalise

the Lorentz spaces A{¢, p) as well as the Orlicz spaces Ly

(1.4.3) Let X = L' , then M(X) = L(1, =) ("weak L") and
M(LA) = M(A"1(*)) = AT(L(1, =))°. Moreover GA~!(L(1,) coincides with the
0'Neil space Wa (cf[43]). Notice that if A satisfies the V, condition then

ML) = ML) E ATILA, =),

(1.4,4) vLet A(t) = t"(log” t)% and X = L(p,q), where
0 F< o 0<s<w, 1 <p<oeo, g<q<= Then f e A" (L(p,q)) if

306 > 0 such that

JTf*(t)]rq (log* |f:9(-£)-|)Sq ¢9/P %} <o, ifq<o

0

& r + f’l“(S) S l/p o I - o
tsgpo{i’ ()" log l———e I t"7'Pl <o if q= o,

These spaces provide a generalisation of the L"(Log® L)®

spaces as well as the L(p,q) spaces.

(1.4.5) Let Ay (t) = ﬂi:i Ots>t15 1 , then A; is a Young's
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function and A"'(X) = L for every B.F.S. X.

0 i =
(1.4,6) Let A, (t) = {] P E S 8 , then A, is a generalised

Young's function,and for every r.i. space X() we have

[ f]] GA~1(x) Oy (lifokf(t)).

.

Then GA;'(X) = {f € M(0, »): f is of bounded support} whenever

lim ¢X(t) =ow; if lim ¢>X(t) < o then GAz'(X) = M(0, =). In either

t > o0 t>o

case scalar multiplication is not continuous on GAE‘(X).

0 i <
(1.4.7) tet Ay(r) = (O 1F 0sts]
T if t>1
generalised Young's function and for every r.i.

. Then A3 is a

space X we have

Thus, if lim ¢x(t) = o, GA3'(X) = I® + BS where
t >

BS = {f ¢ M(0, »): f has bounded support} .

1.5, CONDITIONS FOR SEPARABILITY. Llet (Q,u) be a

separable measure space, let X()be a B.F.S. with a.c.n. and let A be a
generalised Young's function; in this section we give necessary and
sufficient conditions for GA™'(X)(Q) and A '(X) (Q) to be separable.

Our main results are given by

(1.5.1) THEOREM, (i) Suppose that u(Q) = =, and A is a
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Young's function, then A™'(X)(Q) is separable if and only if A satisfies

the A, condition.

(ii) Suppose that n(Q) <~ , and A is a Young's function then
A"1(X)(Q) is separable if and only if A satisfies the A, condition for

large values.

.

The above result can be generalised, to the spaces GA~!(X), as

follows

(1.5.2) THEOREM. Let A be a generalised Young's function,
then

(i) If pu(Q) ==, then GAT1(X)(Q) is separable if and only if
A satisfies the A, condition and 1lim A(t) = 0.

t>0

(ii) 1f p(Q) < o, then GA"Y(X)(R) is separable if and only if

A satisfies the A, condition for large values and 1lim A(t) = 0.
t+0

We shall only give a proof of (1.5.1) (i) since (1.5.1) (ii)

can be proved similary and moreover (1.5.2) can be proved using similar

methods to those of reference [hﬂ .

Proof of (1.5.1) (i). Let A be a Young's function verifying
the A, condition, we shall prove that ¥ f € A"'(X) and for every sequence

of measurable sets {Ap}, such that A, ¥ ¢we have 1im ||f x, ||, = 0.
n

n->oo

Let f e A"YX), |[|f]l ACl(x) = T # 0 and let {A,} be a
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sequence of measurable sets such that An ¢ ¢. There exists B 2 1 such
that A(2x) < 6 A(x) ¥ x > 0. Let € > 0, and choose o ¢ N such that

2% > r. ™!, then V' n e N we have

A(lleAn/E) = A(ZaIfIXAn/za €)

[

n

6%A(|f|/r).

n

Hence,

o ]

IACIFlxq /€Ml x s 87 ¥ne N

Therefore, since lim A(t) = 0 and X has a.c.n., if follows that, if
n is sufficiently f;:ge, HA([flen/e)[[X < 1. From the above it follows
readily that 1im foAnllx = 0.
n -+ o
Thus, A"'(X) has a.c.n. and therefore is separable
(cf Luxemburg Bﬂ).

Let us now prove that the conditions on A are necessary. We

consider two cases:

(1) Suppose that there exists xge(0,®) such that A(xy) = o ,
then we shall prove that A" !(X) is not separable. Indeed for E ¢ @,

0 < u(E)< = , define fE = XE’ thenIIfE" ATL(X) = l/A'1(1/||xE||X), and

therefore 1im ol a-1 = 1/A" () 2 x5! . Thus, A"!(X) does
EVATI(X)
u(E) »0

not have a.c.n. and therefore is not separable. .

(11) Suppose that A is finite valued but A does not satisfy
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the A, condition. Suppose to the contrary that A~'(X) is separable and let

{fn}:=o be dense in A™!(X).

Since A does not satisfy the A, condition there exists a
sequence {sn}:=o such that A(sp) > 2N A(2sp), n =10, ........ . Let

{E"}:=O be a sequence of disjoint measurable sets such that

IIXEn“ = 2""‘[A(sn)]'1 and fn has constant sign on E,. For n =0, ..... ,
define
1 if fn Xg 20
n
r{n) = {
-1 if X <0

Let f = - zr(n)sann, then]]A(]fl)lIx = 1, but

[aCifn = Fl2) ]l > HA(an)xEnllx >1, n=0.........

Therefore ||f, - flIA-l(X) 21/2, n=0...... , a contradiction. +

(1.5.3) COROLLARY, Let X() be a r.i. space verifying the
8, condition, then

(i) if p{R) = =, then A"*(A(X))(Q) is separable if and only

if A satisfies the A, condition.

(ii) If pu(R)< o, then A"1(A(X))(Q) is separable if and only

if A satisfies tha A, condition for large values. +

1.6. NOTES TO CHAPTER 1. The theory of Orlicz spaces

seems to have originated in Orlicz [46]and Birnbaum and Oriicz [3]. An

excellent modern account of the theory is given in Luxemburg [32]
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(see also [27])

The theory of &(X) spaces was initiated by Beurling [ 2 ] and

Calderén [9],

The author has been informed that the spaces A~!(X) have been

also studied by Eijnsbergen in his unpublished thesis under Professor A.

Zaanen.

However, the results presented here seem to be new. Most of the

material presented in this chapter extends:and unifies work by 0'Neil@3]

We have omitted a discussion of the duality theory of Calderén
spaces. Some results in this direction will be presented in the next
chapter. However, we wish to point out here a general result comnunicated

to the author by Professor W.A.J. Luxemburg.

(1,6,1) THEOREM., Let X(Q) be a B.F.S., and let A be a

Young's function, then

(A"1(X)) = {f e M) : [|F]] wrjyy= inf  sup l
€ A™H(X) k>0 ”w” k

f J‘JW"IW[dU+

The reader is referred to §2.4 wherewe compute the associate
spaces of A“'(A(X)) spaces and some more general spaces using a different

method.

)< oo}
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CHAPTER 2

0.C.L.H.Z. SPACES '

Using the constructions of Chapter 1 we introduce the class of
"0.C.L.H.Z. spaces' which generalise the spaces A~'(A(Y)) as well as other

well known classes of spaces.

In §2.2.and§2.3.Hardy type inequalities are proved in this
generalised setting. In 82.4 we compute the associate spaces and the dual
spacés of 0.C.L.H.Z. spaces, and moreover we give sufficient conditions

for reflexivity.

The last section, §2.5 , contains a brief comparison of our

results with those already avalaible in the literature.




22,

2.1, 0.C.L.H.Z. SPACES. [In this section we introduce a
class of spaces which can be obtained using the constructions outlined in

Chapter 1.

In order to avoid notational complications we shall assume

throughout this chapter that all spaces are B.F.Spaces of Lebesgue measurable

functions on (0, ).

Let A be a generalised Young's function and let &;, &, be
concave non-decreasing functions Ei: RV >Rt , i = 1,2, moreover define

£: R¥ x R* > RY by &(x, t) = A"1(t) / &1(x). Let du(t) =£é(t)'%£ and

consider the spaces L' (du) = {f e M(0, =): || || dp) = jlf(x)ldu(k) < o},

Then we define 0

AA, E1, &2 ) = [E(U (du)]°

It follows that

A(A9 €1‘9€2) = {f € M(O,oo }

Ul paere,) <

WFl a e, g, = Inf la >0 ij(f**(t) £, (t)a™) du(t) € 1} .

0

We shall also consider the spaces A(A,E,, 62)m defined by

A(A’El’gz) = {f 2 M(O’m): “f”'\A(A,ElaEZ) < °°}

llfllﬂ;\(A ¢ gy = inf {a>o0: roA(f*(t) £, (0)a™h) du(t) €1} .
16195,

0

In particular if ¢x, ¢Y are the fundamental functions of

. ‘ . LN
r.i. spaces X and Y, the spaces A(A, by ¢Y), A(A, by ¢Y) shall be
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referred as'"0.C.L.H.Z. spaces' (thinking in the names of Orlicz, 0'Neil,Calderén,

Lorentz, Luxemburg, Halperin, Zaanen).

(2.1.1) EXAMPLE. Let X = L™ so that ¢X = 1, then

A(A, 1, ¢Y)m = A"1(A(Y)) and if the condition of (1.3.2) (i) is satisfied
then A(A, 1, ¢Y) T ATY(A(Y)). In particular if Y =L, A(Y)=Uand
MA, e ) = AR 1LY =L AR, 1) 2 L, if A satisfies the
V, condition.

P

(2.1,2) EXAMPLE, Let Y =1(®and X=1L, 1 <p<w,
moreover let A(t) =t9 . g1, 1 ¢ q < o, then
1
AR, bys 0y) « AT a7H, £, 1) 2 L(p, Q).
(2.1.3) EXAMPLE, Let A be the Young's function defined

in (1.4.5), then A(A, Oy s ¢Y) = M(Xx), and A(A, Py > ¢Y)“ = MYX).

It is easy to see that the A(A, Oy ¢Y) spaces are Banach
spaces whenever A is a Young's function, and moreover they verify all the
conditions set out in 0.3 except perhaps that it may happen that ]El <

(|E| denotes the Lebesgue measure of E) but Xg ¢ AA, by > ¢Y).

v
2.2, RELATIONSHIP BETWEEN  A(A, ¢y, ¢,) AND A(A, &y, &)
Let X and Y be r.i. spaces, in this section we compare the

oy
spaces A(A, Oy ¢Y) and A(A, by ¢Y)

(2.2.1) THEOREM, Let A be a Young's function verifying
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the A, condition and suppose that there exists a constant 6 2 1 such that

. Jt du
() [0y, (W <oq,(0), vt > o.
0

(i) jt¢x<u>¢Y<u>9u“;se¢x<t>¢Y<t>t'1, Ve o.

Then, v fe M(oam)
fll Y ~ I £l :

Proof. “fllX(A’¢x’¢Y) £ “fIIA(A’¢x’¢Y) since

fx(t) € fx*(t), ¥ t > 0. Suppose that O < Hf[lX(A 6

o0

= pr <
L0y)

Since A satisfies the A, condition 3 k 2 1 such that
A(2x) € k A(x) ¥ x 2 0; choose n € N such that6. 27" £ 1. Then,

t
frx(t) g, (t) = 55;%??T [ 6 f*(S)¢X(S)¢X.(S)%§

therefore by Jensen's inequality

1

t
A(f**(t)¢x(t)r-1k-n) £ 66;7727- l A(f*(s)¢x(s)9r'lk-n)¢x.(S)

Thus, if we let du(t) = ¢Y(t)9$- ,

&)

[:<f**<t>¢x<t>r-lk-n>du<t>

0

A(f*(s)¢x(s)6r'1k'”)¢x,(5)6“1 I:x(t)

00

A(f#(s) ¢, (s)0r™ k™M) du(s)

N

]
d———}o\—ﬁ O

A2 (F%(s) &y (s)27MBr ™ k™M) ) du(s)

[ AER ()b (5) M au(s)
0

lmA(f*(s)¢x(s)r'1)du(S)

n

L)

£ 1.

du(t)

t

ds

ds
s
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n ~
Therefore, IIFI,A(A’¢X’¢Y) sk |If”A(A,d)X,(bY)

The above result can be extended to generalised Young's

functions A such that A(t).t™'V . We shall need the following (cf [58])

(2.2.2) LEMMA, Let A be a generalised Young's function

such that -A(t).t™' vand let ¢ be a concave increasing function, then

Yt>o0
t t
[ Fils) o (s) ¢ 1292 a2 l A(FE(s) ¢ (s)) ).+

2 log 2

(2.2.3) THEOREM, Let A be a generalised Young's function

such that A(t) t'V and suppose the following conditions hold,
(i) 3 6 > 0 such that A(st) & 8 A(s) A(t), Vs, t 3 0.

(ii) 3 M > 0 such that

(t)
[A(——g—————(—)-xls ) ¢y (s) —-<ﬂ-&m , Yt > 0.
t
Then,
rA(f:'n':(s)(bx(S)) d)Y (5) de = FA(f*(S)q)x(s)) q)Y(s) gi

0 0

Proof. We shall use (2.2.2).

t
A(Fx(t) oy (t)) = A(ETlTTT J f*(s) 5'52)
X' ()

t
log 2 - 2
<A A i Al (s)s) 2))
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1 2 . d
<0 A 1o { A ()5)
2.2.6) < oG 1oy l A(FE(5)dy (8)) Alby, ()42

Let du(t) = ¢Y(t)d—:- , then using (2.2.4) we get

[ AtF ()6, (0)) aute) <
0 .

N
LQG)
N

T3

AF2(s)4, (5)) Aloy, (s)) | ACIE 2 an(e)Se
X

00

J A(f*(s)cpx(s)) du(s). +
0

(2.2.5) REMARK, Let us suppose that the conditions of
(2.2.1) hold and mareover that Oy > ch are such that

4, (t) day (t)
D s, 2y e

then integrating by parts and using (2.2.1) one can show that

gy 5 () A7 gy (),

The following consequence of (2.2.1) will be of importance to

determine the dual spaces A(A,d)x.d)Y)* .

(2.2.6) COROLLARY, Suppose that the conditions of (2.2.1)

hold then A(A,¢X,¢Y) is separable.

Proof. We shall prove that A(A,¢x,¢Y) has a.c.n.. Since A

satisfies the A, condition 3k 3 1 such that A(2x) € k A(x), ¥ x >0

Let f e A(A,¢X,¢Y), ”f“A(A,d)X,<pY) =r , let €>0 and choose n € N such that
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2" > r. ™' . Then, Y E ¢ (0,») such that |E|< = we shall have

| alestex (g 1)) () 4y (00 )0y (08 € k" <o

Therefore since 1im A(f*(t)X(o IEI)(t)) = 0 a.e.,we have by the
|E| +>0 ’
dominated convergence theorem

. ® e - dt
* 1 —_— =
i [ Ao gy (O, (0T gy (S = 0.
JE] > 0y
Hence, if |E| is sufficiently small

Jm/-\(f*(t)X(O,lEl)(t) (D Ny (O <1

0

that is lim || f*y =0.

Hi 0,16 Faa, 0,48,

Now,
N
lIfXElIA(A’¢x*¢Y) g const [[f. x| A(A, 8,5 0,) (by (2.2.1))

< const Hf} Ik .
(0, [E' (A, ¢y 0y)

Therefore,

Ii +

|E|

f = 0.
+o“ xEHA(A,q,X,q,Y)

(2.2.7) REMARK, It can be proved using similar methods
to those of (1.5.1) that if A does not satisfy the A, condition then

A(A,¢X,¢Y) is not separable.

(2.2.8) EXAMPLE, Let g, (t) =t%, 4 () =t% 0<a<y,

0 < B <1 and further suppose thata+ B <1, then for every Young's function

A satisfying the A2 condition we have

J AFx (1)) tB ﬂt-t— = [A(f**(t)t"‘)t8 9{- .
0 0
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(2.2,9) REMARK, Let a, B, and A be as in (2.2.8) it is
of interest to point out that the norms of the '‘compression' operators

o

(Egf) (t) = f(ts) can be estimated for the spaces A(A, t-, tB) as in the

case briefly discussed in (1.3.3). In fact one can show that

h(s,AA,t% tB),A(A,t%, tB)) = &® sup {A™2(t) / A" (tsB)} .
t>0

.

~
2.3, THE OPERATOR P, The results obtained in§2.2. can

be interpreted as sufficient conditions for the integral operator

t
PIF)(t) = ¢! j

Of(s)ds to act continuously on A(A,cbx,chjv spaces. The

purpose of this section is to establish similar results for the adjoint

operator ’I;J(f)(,‘t) = rof(s) _ds_s = rf\’l(t)-
t

(2,3,1) THEOREM. Let A be a Young's function satisfying

the A, condition and suppose that there exists aconstant 621 such that

(i) [ (PX(S) %3 sﬁq)x(t)t", vYt>o.
t

(i) Fq;x(%)cpY(—l-) dT“ €00, (t" e (t71), ¥Vt >o0.
¢ |

~
Then, there exists an absolute constant C such that Vf e A(A,¢X,¢Y),

s v
IIf"lIA(A’¢X’¢Y) N Cllf“ A(A’¢X’¢Y).

Proof. There exists k 3 1 such that A(2x) € k A(x) ¥ x > 0.
Let us choose n £ N such that 2" 6 € 1 and let f ¢ A(A,¢x,¢Y)~,

"
IIfIlA(A’¢X’¢Y) =r > 0.
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\, (2%
Observe that f*(t) is non-increasing, therefore (f*)* = fx

=1 k™", then

k
[A( F4(5)92 o (t)e)gy (1)L

a.e.. Lete=r

I (g)

loo]

J A( f f“(s)—— ¢X(t'1)€)¢y(t'1)
0 t

t
i fem - - . -1, dt
)[QDA( [f (5 (™) gy, (5™ s oy (67 ) )y (7114
by simple ﬁhanges of variables. But since
t 00
[ ¢X,(s'1)ds = J ¢X.(s}-, <6 ¢X,( t™ !t = e/¢x(t'1)
1/t

we obtain using Jensen's inequality and Fubini's theorem

(e) < e'llA(e c Fr s 03 (s (57 [ ay(e gy ()4

S

< Ja;(e.e f*(s)¢x(s))¢y(s)%§
0

oo}

- lA(zn(z-n 0c £ ()0, ()¢, (s)ds

< {[ A(f“(s)d)x(s)r'l)(by(s)—‘l

Therefore,
oy n
[[£5]] < k" ||l .+
A(A, by s dy) A(A, by s ¢y)
(2.3.2) THEOREM. Let A be a Young's function verifying
the A, condition, and let Y be a r.i. space verifying the 8, condition.

Then, there exists an absolute constant C such that V f e A(A, 1,¢Y)m

i) X(A,l,ch) ¢t ”f”bA(A,l,cby) :
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Proof. Since A satisfies the Ay condition there exists p > 1 such

that A(t)t™P + , therefore A'(t)t € p A(t), ¥t 2 0.

Let 8 > 1 be a constant such that j ¢Y(s) —_— <6¢Y(t), and let
f e Z(ACA, 1, ¢Y)”). Then, rA(f+(t))¢Y(t)— € 1. Moreover, we shall

)
assume first that there exists r > 0 such that fx(t) = 0 for t > r.

Let o= Bp, then integrating by parts and using Young's inequality
gives

Ny
= (At @/ o 0%

0

2 [aFrm g (05

0

2.3.3) < ([ arrng 0L + FI(A'(F*(t)/a))th(t)-dt—t

It is well known that A(A'(t)) = t A'(t) - A(t) (cf [64], page 16

or [32] page 37), therefore, combining this result with (2.3.3), we get

8
< - [1+p1~1]
1.

I €
Therefore,

11 n, 1,00 % 1F1la,1,40)

We conciude the proof for an arbitrary er(‘/(('A,I,th)m) using the

monotone convergence theorem. +

An extension to generalised Young's functions A such that A(t).t™!v

is given by
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\

(2.5.4) THEOREM, Let A be a generalised Young's function

such that A(t)t™'¥ and suppose that there exists a constant® 3 1 such that

(i) A(t.s) € 0A(t)A(s), VYV t,s > O.

t
(1) [0y )% cop, (), Viso.
0
Then,

~ J:(?='=(t)¢x(t))py(t)%t— < C I A(f*(t)qax(t))q)Y(t)-dt—t

0

where C = A(2 log 2)26%/log 2.

Proof.lt is proved in[58]that ¥t > 0,

fx(s)o,( )93 € 2 log 2 A™}( ! Jm A(f*(s) (s))is-) .
f: X s s °9 log 2 t/2 s ¢X S

Now, since A(¢x(t)[wf*(s)%§0 € A([wf*(s)¢x(s)%§), we have
t t

My (DF(6)) € A2 Tog 2 A7 (51 K/ZA(f*(S)CbX ())82))

BA(2 log 2) ds
< Tog 2 K/ZA” (s)¢x(5))s—

Therefore,
(oo

LA(?*(tmx(t)my(t)dt—t < 2l ] A(FE(s)0y () 8y () +

2.4, puaLiTYy oF 0,C,L.H4,Z, SPACES, The purpose of this

section is to characterise the associate spaces and dual spaces of 0.C.L.H.Z.

spaces.

(2.4.1) THEOREM. Let A be a Young's function verifying the
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A; condition, and let X,Y be r.i. spaces, then

(i) if there exists a constant © > 1 such that V t >0

ds -1 t ds
oy (s)g7 < 8¢, ()t J ¢y ()7 € 6 ¢ (1)
t

0
then A(A,1,¢y)' = A‘E’¢yn¢Y) and A(A,1,¢Y)* is isometrically
isomorphic to A(§,¢Y,,¢Y). .

(ii) If X and X' verify the 8§, condition and moreover 3o 21
such that jm¢x(u)gg-£ ¢, (t)t™?, vV t >0, then
t u X

A(A,¢x,1)' = A(R,¢x,,1) and A(A,¢X,1)* is isometrically
isomorphic to A(ﬂ,¢x,,1). Moreover if A satisfies the V, condition A(A,¢x,1)

is reflexive.

For the proof of (2.4.1) we shall need some auxiliary results
which shall be useful also when computing the associate spaces of more

general A(A,¢x,¢Y) spaces.

In what follows we shall let ¢; , ¢o be strictly positive

continuous functions defined on (0,®), and define

V() = t/62(0)42(t), dult) = ¢o(0)SE .

(2.4,2) LEMMA. Let f,g ¢ M(0,©) be such that

” f**¢1” LA(du) <, ”9""""1P“ LA(dU) <, then

ilf(t)g(t)ldt £ 2 ”f**¢1||LA(du) Hg**wIILA(du)-

Proof.

Jlf(t_)g(t)ldt £ rf*‘-’:(t)g**(t)dt

0 0
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00

=I frr(t) () g** (t) plt)dp(t)

¢ 2 [[fexo | La(dy) ISl LR(dw)

by Holder's inequality for the Orlicz spaces (cﬁ[BZ]). +

. . n
(2.4,3) LEMMA, Let S(B.9.,¢7) = {f:f ;O;FA(f(SM,(S)du(‘s) €1},

0

where #(t) = j f(s)d—:-, t >0. Then, Y g ¢ M(0,% ,
t

00

Hg;':;':lp"LA(du) £ SUP{[I’*(t)g*(t)dt! r ¢ S(A,¢1,¢2)}‘ 2 Hg**w“l./r'\(d]-l) .

Proof. It is proved h1{3ﬂ that

il 2 () sup{J fle)grx(t) plt)dult) : > o,i A(F(s))duls) s 1< 2llg*yll ;4
0
On the other hand, using Fubini's theorem, we have
(> r° ‘
sup{l re(t)gx(t)dt:r €S(A,d1,02) } = sup{lf(t)g**(t)dt: f >0,lqk(f(5)¢1(s)du(5)< 1}

(o ] [e <}

sup{lf(t)¢1(t)g**(t)lb(t)du(t):f2 0, lA(f(s)¢1(s)du(s)<1}

00

sup{lf(t)g**(t)w(t)du(t): F 3 O’I AGF(s))du(s) € 13 .

The result follows . +
We are now ready for the proof of (2.4.1)

Proof of (2.4.1).(i) We shall prove first that
" -
A(Al 19 ¢Y) = A(A9 ¢YI9¢Y)-

.kiét ¢(t) =1 vVt >0, and ¢,(t) = ¢Y(t) , then
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du(t) = ¢Y(t)9$-, Y(t) = ¢YKt). it follows from (2.4.2) that A(Z,¢Y,,¢Y)

is continuously embedded in A(A,1,¢Y)'. Let g € A(A,1,¢Y)' , we shall

compute By (2.4.3),

“g“ A(R"byl '¢Y)

- 00

lsll nh . o) < S0P ¢ [r*(t)g*(t)dt: r e S(A1,0,)
9’ Yl’ Y .
= sup{Im ?(t)g*(t)dt: f 3 O,I“AZf(s))du(s) €1} .

By the proof of (2.3.2) there exists a constant C > 0 such that

n
Pl € Iy VP20 Fenm

Therefore,
”gllA(A’¢Y"¢Y) £ sup {J?(t)g*(t)dt: f2o0, ”?|| L, (dw) £ C}
0

A,
but since, for f 3 0, f(t) ¥, and by (1.3.2) there exists a constant C! > 0

such that “fllA(A,1,¢Y) < ¢} “f*'lLA(du)’ we get successively

ol A(R,0,,.4,) € 5*° {r*(t)g*(t)dt‘, L (o) < €
0

'S sup{wa*(t)g*(t)dt: ”fI|A(A.1 o) c.cl}
) ’ ’ Y

¢ c.ct gl
AA,1,0y)"
Thus, we have proved that A(A,1,¢Y)' = A(A,¢Y,,¢Y). To complete the

proof of (i) let us observe that under our current hypothesis,
A(A,1,¢Y) =AY (A(Y)) and A~! (A(Y)) is separable by (1.5.3). Therefore

A(A,1,¢Y)' is isometrically isomorphic to A(A,1,¢Y)*

(i) Let ¢1(t) = ¢,(t), ¢3(t) =1 V t>0, then
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dp(t) = d—tt, U(t) = ¢X,(t). Then by (2.4.2) it follows that A(Z\,q,x,,l) is
continuously embedded in A(A,¢X,l)'. The proof that A(A,¢x,1)' is contiﬁuously
embedded in A(A,¢x,,1) is similar to the last part of the proof of (i) above,
this time instead of using (2.3.2) and (1.3.2) we use (2.3.1) and (2.2.1). It
follows that A(A,¢X,l)' Z MA,9,,,1). Since, by (2.2.6), A(A,¢,,1) is separable

it follows that A(A,¢,,1)' is isometrically isomorphic to A(A,d,,1)%*.

Finally if A satisfies the V2 condition then, by (2.2.6),A(R,¢ s 1)

is separable and therefore A(A,d,,,1)* is isometrically isomorphic to A(A,d,,1).+
Using the same method of proof we can generalise (2.4.1) as follows

(2,.4,4) THEOREM, (i) Suppose that A, §y,0,, satisfy the
conditions of (2.2.1) and (2.3.1) and moreover suppose that E(t) = ¢X(t)¢v(t)
is concave, then A(A’¢X’¢Y)l = A(R,¢,¢Y), where ¥(t) = ¢x,(t)/¢v(t), and moreover

A(A’¢x’¢V)* is isometrically isomorphic to A(A,¢,¢V).

(ii) Suppose that the conditions of (i) hold, and moreover Asatisfies
the V, condition and there exists a constant 6 > 1 such that [zx.(u)%g-é 6¢X.(t)t‘H

then A(A’¢k’¢Y) is isometrically isomorphic to A(A,¢X,¢Y)**. ty

2.5, NOTES TO CHAPTER 2. The 0.C.L.H.Z. spaces seem to have

been introduced here for the first time. Note however that the A(A,¢X,1) spaces

where introduced in [58] .

Hardy's type inequalities have been proved, with different
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degrees of generality, by many authors. However, the inequalities of §2.2
and §2.3 seem to be new. Similar inequalities in the context of other,

less general, sﬁaces may be found in 0'Neil[h3], Torchinsky[58], see

also [23], [s6].

The results in§ 2.4 generalise classical results concerning
the representation of the duals of Orlicz spaces and Lorentz spaces. The
caSeiof Orlicz spaces is treated in Luxemburg BZ} , the L(p,q) theory is
given, for example, in Oaklander @2] » Hunt [25] and Butzer - Berens [8],
the Ma,p) and M(a,p) spaces are treated in Lorentz B]] and Sharpley BS] .
The methods used here are a combination of the ones used in the theory of

L(p,q) spaces (cf;PZ] ) and Orlicz spaces.

Using the methods of Halperin BZ] and Luxemburg Bz] one could
obtain also results concerning the uniform convexity of 0.C.L.H.Z. spaces.

We hope to report on thes matters elsewhere.

Finally we should mention that our results are valid, with
minor modifications, for arbitrary separable measure spaces (f,p) such that
ulQ) = ©» . The case where u (Q)< ©» can be treated in a similar fashion

but requires some additional technical work,
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CHAPTER 3

EMBEDDING THEOREMS AND INTERPOLATION

In 83.1 we introduce the spaces 0(X) (''the Orlicz spaces
associated with a rearrangement invariant space'') and use them to compare

Lorentz snaces and Orlicz spaces.

In §3.2 we extend the interpolation theorem of Marcinkiewicz-

Calderon-Hunt to the context of 0.C.L.H.Z. spaces.

In 83.3. we illustrate the results obtained in previous
sections by proving an interpolation theorem for Orlicz spaces. Finally
in §3.4 the reader will find the references to the literature and

comparisons with the results of other mathematicians.
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3.1, ORLICZ SPACES ASSOCIATED WITH R.I. SPACES,

Let X{0,®) be a r.i. space of Lebesgue measurable functions on (0,»), in
analogy with the spaces A(X) and M(X), we introduce the space 0(X), the

Orlicz space associated with X.

We recall a few facts about fundamental functions. The

fundamental function of X is defined on (0,°), we extend its domain of
definition putting ¢x(0) = 0 then ¢X is a generalised Young's function.
fte inverse ¢;1(t) = inf {s: ¢X(s) >t} is such that ¢;1(0) =0 and
¢;‘ is right continuous. Therefore if we define ¢(x)(t) = 1/¢il(1/t),
t e [0,0, ¢(X) is a generalised Young's function. Moreover, since
d)x(t)t'1 ¥ we shall have Cb(x)(t)t'l +. Using the generalised Young's

function ¢(X) we construct the Young's function ¢2X) defined as follows

G1D 0= oy@% . cc b

Therefore,

(3-1.2) ¢EX)(t) g ¢(X) (t) € ¢€X) (Zt) ’ Vt >0 .

(3,1.,3) DEFINITION, Let x(0,% be a r.i. space, and

let ¢€X) be the Young's function defined by (3.1.1), then the Orlicz

space associated with X, 0(X), is defined by 0(X) = ¢(°X')1 (L) = L¢(0)
: X

In the remainder of this section we shall compare the
0.C.L.H.Z. spaces introduced in Chapter 2 and the Orlicz spaces associated

with them,
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(3,1.4) THEOREM., Let Y(0,=) be a r.i. space, and let A

be a Young's function, then
(i) A(A,l,¢Y)m(0,m) is continuously embedded in

t
0N, 1,0y = Lyo(0.), where B9() = [ [1/637 (1/()) |
0

(ii) If C is a Young's function, and A(A,1,¢Y)m(0,w) is

continuously embedded in Lc(O,m), then 0(A(A,1¢Y)m) is continuously

embedded in Lc(O,m).

Proof. (i) We recall that A(A,1,4,)" = ATH(A(Y)) (cf.(2.1.1)),

W N 4
therefore M(A(A,1,4y) )~ = A71(M(Y)). Observe that

m)(t) = )N(l/t) = 1/¢;1(1/A(t)) = B(t).

D(AAL 1, 0y) KLAVYTR IS

Let £ e AATL o)™ o (IF1 (a1, 07 ™ then

f(t)/r < A'1(1/¢Y(t)) Yt > 0, therefore since (1)"1!\0\’1’(bY)'\:(t)t'1 +, we
get

B(fx(t)/r)t « A(F=(t)/r) ¢, (1), Ve >o.

t t
Thus if we let B%(t) = J (1/¢;1(1/A(s)))ds = J B(s)%?- we obtain
0 0

BO(F(t)/r)t < A(F*(t)/r) gy (t) Vit >0
therefore,

[oocee(r/me &« [ae(r/m o (0%
0

0

< 1.
Hence,

”f||o(A(A,1,¢Y)“7 < “f”A(A,1,¢Y)N
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(ii) Suppose that A(A,l,¢be is continuously embedded in

LC(O,m), then there exists a constant 6 > 0 such that

¢A(A,l,¢Y)N(t) > 6'1¢Lc(t) , ¥ t 0. Therefore,

1 o
ey ¢ AT o Yo

AT (179, (t71)) € 8 ¢TI(t)
¢“(A(A,1,¢Y)”)(t) €8¢ (t) , ¥ to>o.
Thus,

O (ha 1,00 B €FCTHO Voo
H » Y

and therefore 0(A(A,1,¢Y)w) c LC , with a continuous embedding. +

(3.1.5) THEOREM, lLet q be a positive number, 1 £ q < = ,

and let Aq(t) = t9 . qg}, te [O,w). Let X(0,) be a r.i.space then,

(i) if ¢x(t)q . t7r ¥, then A(Aq,¢x,1)w is continuously

embedded in 0(X).

(ii) Suppose that d)x(t)q . t"1 4, then 0(X) is continuously

embedded in A(Aq,¢x,1yb

Proof. (i) Let us consider the functional

1/q
= * q dt
LR NIICINCIE &
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It is easily seen that || f]| = || ]l v , Wf e M(0,>).
A(Aq,¢x,1)

a : 1/q
Suppose that f ¢ A(Aq,¢x,l) CE = 1. Let 6 = 2 , then
J¢0(X) (f"‘(t)/e)dt g l‘b(x) (f*(t)/e)dt
0

Zn+1

- B Jop (0 704t
zn

nz_w¢(x)(f*(z")/e)z“

M

(3.1.6)

X LN, - " n
2.2 /9% (6/F%(27)).

Sincel]f”m < [[fl] , (cf.[55] and also Chapter 0) we have

M(X)

fx(2") < e/¢x(2") ¥V onea

- -1
Now, ¢;(t)t ! is non-increasing therefore it is readily seen that tq/d)X (t)
is non-increasing, thus
QN
, % (5™ 9 oy (27)
(6/f%(27)) X , Vonez

g
by (8/F5(2")) 657 (6, (2")

€ ¢;(2n)2-n , Vnez
oN
¢-1(e/f*(2n))s 6-q¢;(2n)f*(2n)c1 ,V nel.
X

Combining (3.1.6) and (3.1.7), we get

£”¢§x)(f*(t)/e)dt < 079§ ed(2")fx(2Me

Zn

<99 .2 % J l¢x(t)f*(t)IQ_%§

n==-o
2n~t

N
—
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Thus,

sOo|lf|l #

Il o x) eI A (ag .6, 1)

(ii) tet f ¢ 0(X) and suppose that Hfllo(x) = 1. Then, using the

notation of the proof of (i), we have

I

n+1
I T [F*(£)9, (€))%t
2n t

"

£ [Fr(2Me, (2m1)]9 | 27

[+.03

(3.1.8) ¢ B [F2mo, (2m]9 . 297

Y n,
Now since 0(X) is continuously embedded in M(0(X)) = M(X), we
have

fx(2") ¢ 2/9,2" , J nez
2" g9t (2/F5(2M) , Y nez
and using the fact that ¢g(t)t”'4 , we obtain

[P (2M o, (2M]% < 2" ¢y (Fx(2") /2)

2n+1

(3.1,9) < [ o (01210
2n

Combining (3.1.8) and (3.1.9) we get
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1F]] 9 < 297 J b () (FE(0)/2)
¢ 2971 [T (et
0

< 2971 .+

(3.1.10) EXAMPLE., Let A be a Young's function, consider the

Orlicz space LA(O,w). it is easy to see that A(t).t™9 ¥ implies ¢L (t)9¢=1 4
: A

and A(t).t™9 * implies oL ()9 7 .
A

Thus if there exists q > 1 such thaA(t)t™9 ¢+ , we have

f < C {|[f*(t)¢, (£)]9 dt} 7a ¥ ¢ ¢ M(0,x),
La La
0
where C is an absolute constant.

Similary if there exists g 3 1 such that A(t)t @ ¥+, we have

e q 1/q
([ e @17 e empiell, .V Fem0,
0
where M is an absolute constant.

3,2, INTERPOLATION AND A(A,¢X,¢Y) SPACES, In this

section we extend the well known interpolation theorems of Marcinkiewicz-

Calderon-Hunt to the context of 0.C.L.H.Z. spaces.

We shall consider only r.i. spaces of Lebesgue measurable
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functions on (0,»), but the reader will have no problems to extend our

results to more general situations,

Let X., Y.. 1=1,2 ber.i. spaces. A linear (sublinear)
operator Tsuch that T:A(xi) > M(Yi)' i =1,2, continuously, is said to be
of weak types (xi. Yi)’ i = 1,2, These operators are majorized by integral

operators:

(3,2.1) LEMMA, (calderdn flo] . Zippin [63 ], Sharpley [55]).
Let T be a linear (sublinear)operator of weak types (xi’Yi)’ i=1,2,

Moreover suppose that min {¢X_(0+)} = 0 . Then,
i=]’2 ]

(1) TA*(t) < 2 max { ||T]| '}rk(t,s)f*(s)ds .

=
J *

YV e A(X,) + A(X,), where IT]] ; denotes the norm of the operator T,

T: A(X,) > M(Y.) , and k(t,s) = d y(t,s), y(t,s) = min {¢, (s)/o, (t)}
] ] ds [=1.2 Xi YI

(ii) A pair of r.i. spaces (X,Y) is intermediate for the
interpolation segment € = [A(Xl), M(Y1) 3 A(Xy), M(Yzﬂ (i.e. every
linear (sublinear) operator of weak types (xi’Yi)’ i = 1,2, maps X into

o o]

Y continuously) if and only if V fe X, §(f) = | k(t,s)f(s)ds is well

defined and moreover &U(f) ¢ Y, where k(t,s) is defined as in (i) . +

We shall give sufficient conditions for 0.C.L.H.Z. spaces to

be intermediate for the interpolation segment &= [A(X;), M(Y;); A(Xz), M(Y,)) .

Let X, Y, Z, be r.i. spaces. Let dp(t) = ¢Y(t)g$- , and for




f, M(0,0) let us denote by f° the non-increasing rearrangement of f with
respect to the measure du(t). Let ¥(t,s) be the function defined in (3.2.1)

and define

F(s,t) = ¥(t,8) . 0,(6)/6,(s), s,t € (0,%).

Using the same methods as in 31], [55], we can prove the

following

(3.2.2) LEMMA, Suppose that min {¢, (0¥)} = 0 and
i=1,2 i

moreover assume that there exists a constant M > 0 such that
00
l F(s,t)du(t) € M ¥V se (0,

J F(s,t)du(s) < M vV t e (0,).
0

Then V r > 0, we have

r r
[tsottmaforac < u [ (o s M0 auce). +
[1] 0

(3.2.3) THEOREM. Suppose that the conditions of (3.2.2) are
satisfied, and let T be a linear (sublinear) operator of weak types (Xi’Yi)’

i = 1,2 . Let A be a Young's function, then there exists an absolute constant

C > 0, such that

oy 4"
[ 7¢]| < cllfll Ty, ¥
A(ALD,,0y) A(A’q’v‘ , by
V£ e A(AG /by by)

Proof. Let f ¢ A(A’¢X/¢Y’¢th then by (3.2.2) we have
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Isg(F)¢ < Ml fxo, /0, |l

2l () La(dn)

since LA(du) is a r.i. space with respect to du .

Therefore by (3.2.1),

[T ()=, |] 2. max {J| T|] .} M . ||fxe /0, ]
2! Ly (dy) m12 i bx/ Py L, (du)

n n
IRECNT s c|ifll ox
where C = 2 max {||T||i M.+
i=1,2
Using the results of Chapter 2 we can state and prove a similar

result replacing the A(A.¢x,¢Yr spaces by the A(A.¢x,¢Y) spaces.

These results when specialised to the case where ¢Y(t) =1
give the interpolation theorems of [58] and if specialised further to

Young's functions defined by powers we obtain the results of fSS] .

Vle point out that similar results hold when we consider

generalised Young's functions. The required inequalities are worked out in

Chapter 2, but we shall leave the formulation of the results to the interested

reader.

3.3 ORLICZ SPACES AS INTERMEDIATE SPACES. The

results in §3.1 and §83.2 can be combined to obtain interpolation
theorems that give Lorentz spaces and Orlicz spaces as intermediate spaces

of weak interpolation segments.

We shall follow the notation set out in the previous section.
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>

Let us consider a simple, but important, case. Let Xi = Lpi , Yi = Lqi

then A(Xi) = L(pi,l), M(Y.) = L(qg.,»), i

1,2, where

0 < :%- = Bi < ?¥-= a €1, o $+ a; , B # Ba. Define,
€ = (31 = 82)(01 - 0tz)ml
v= Byl 1y

a) g’ oy Qg
Therefore Y = 8 - €0, =B, - €0,,and the function Y(t,s) can be easily
computed .
s 7B if sg<t
¥(t,s) =

oy - )
s 2t B2 if s >t

Let o= [L(py,1), L{q1,2); L(ps,1), L(g2,®)] , we have the

following result:

(3.%3.1) THEOREM. Let A and B be Young's functions such that

(i) B~(t) = A"} (t5)¢Y

(ii) There exists a constant 6 >0 such that the following

inequalities are satisfied Vito> 0,

‘ B
[" P 8 <otPre (o)
) B s B

t
I -0z ( ) <09 ()t
) A
[ (s Bz/¢L (s)) ds < e(t81/¢L (t))
B

J
t
Tsmo1 g )95-4 6 t %y (t)
Ly Ln
t




48,

(iii) There exist q,s, such that 1 ¢ q ¢ S < w , an A(t)t™S
and B(t)t™S 4

Then (LA(O,m). LB(O,m)) is intermediate for the interpolation segment g .

Proof. Let T be anoperator of weak types (pj, qj), i = 1,2 .

\le shall prove that the conditions of (3.2.2) hold. For example,

l‘)(t,S)(bLB(t) ds te - ds
[D' [T I i, @8 () 5

I sazt'32[¢L (t)/¢L (s)] %?
8 A
t€
= I1 + l2
Mow,
t ds
x4 (t)e~Fs J (SB‘/¢L (s))j;
B 5 B
£ 6
Similarly one can bound I, and also meit.5)¢&ﬂ(t) dt
z 5 o, () 't

A
Therefore by (3.2.2), we get

To AR, 6, D AR, 6 LD, Tsase

A B

continuously, whare Aq(t) = ¢9, q"! for 1§ q€ =, and
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'sing the embedding theorems of 83.1 (cf, (3.1.10)) and

condition (iii), we get

T: L, »> LB’ continuously . +

3.4, NOTES TO CHAPTER 3. The embedding theorems obtained

in 8§83.1 extend some well known results for Orlicz spaces, A(a, p) spaces,
L{p,q) spaces. The standart references are Lorentz [29 ], [30], Luxembturg

(32] , Hunt [257], o'Neil [43], [45].

Similar results, concerning the posibility of including Crlicz
spaces as intermediate spaces for weak interpolation segments have been

given recently by Torchinsky [58] using a different approach.

In [38]it is shown how these results can be used to ottain

continuity results for the Laplace transform.




50.

PART 111

TENSOR PRODUCTS CF FUMCTIOM SPACES
INTRODUCTIONM

let (21,u1),(2R,H2) be measure spaces and denote by
(21 x 02 Uix H2) the product measure space. Let Y(21), Y(02),*7(0y x Q3)
he B.F. spaces and denote by X ® Y the algebraic tensor product of X and

Y; in the vector space X 8 Y consider the projective cross~norm {cf. [53] )

n n
lall gy = inf CE eI Hloilly = u= I f; 8

=®

where (f @ g)(x,y) = f(x) gly).

It is well known, and easy to see, that the completion of
(x B Y, Il |lx # Y) which we denote by X % Y, is not necessarily a B.F.S..
Therefore we consider the problem of embedding X 3 Y into Z(9; x R2), in
other words we are searching for necessary and sufficient conditions for

inequalities ”f 8 gllz € c ”fllx ”gl'Y to hold.

Our interest in this problem is justified by the following

theorem

THEOREM A, X BY ¢ 7 if and only if Vk €Z', the

integral operator

z, (F)(y) = [ k(x,y) fly) dui(y)
o
defines a bounded linear operator, z): X > Y,
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Proof. Similar to the one given in [27]in the context of

Orlicz spaces. +

Thus, to a certain extent, the problems of stability or
admissibility for integral operators (cf. Corduneanu [lj]and the references
quoted in this book) can be discussed from the point of view of tensor
products of functions spaces. Moreover, in many situations, the study of
the problem of'embedding the tensor product of two function spaces is much

easier to deal with than the corresponding admissibility probiem.

Consider the following result (for a proof see (4.3.1)below)

THEOREM B. tetzu(X)(2,), z2(Y)(R2), £3(Z) (21 x 22) be

Calderdn spaces. Then,

2, (X) 822(Y) ¢ 21(2)
whenever the following conditions are satisfied,
(i) x8Ycz
(ii) There exists a constant 8 >0, such that
21(x,t) Caly,s) € 8 zx,y,t.5) , Vix,y) € 9 x @,
0 <s, t <o+ 4

Combining the above results we get,

THEOREM C. (0'Neil [43].) Let A,B,C be Young's functions,

then




52.

(i) LA(o,w) 8 LB(o,m) c Lc((o,m) x(0,2)) if and only if
there exists a constant 8 > 0 such that A~!(t)B~!(s) € 8 C't.s),

V t, s > 0.

(ii) A necessary and sufficient condition for z(f,k) = zk(f)

to define a bounded bilinear operator, z: LA(O,w) X Lc((O,m)x(O,m)) > LB(O,m).

.

is the existence of a constant 9 > 0 such that V t,s > 0,

C"'(t.s) A"} (s) € 8 s B (t) .

Proof. (i) Notice that LA = z,(LY), Lg = ga(LY), Lc = r4(LY)
with g,(x,t) = A~1(t), zo(y,s) = B™1(s), and z3(x,y,r) = C"!(r). Therefore,
since L! % L! ¢ L' , the sufficiency part follows from Theorem B. The
necessity of the condition on the inverses of the Young's functions follows

from (4.1.2) below.

(ii) Follows directly from (i), Theorem A, and the duality theory

for Orlicz spaces. +

In.the above formulation Theorem C is due to O'Neil [h3 ],
and it is closely related to previous work by Ando [ l] who considered less
general Orlicz spaces of measurable functions on finite measure spaces.
The present simple proof seems new and in fact shows that the theory of
embeddings of tensor products of Orlicz spaces is a simple consequence of

the corresponding one for LP spaces.
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In (4.2.1) below it is proved that
A(x) (0,) § A(Y)(0,2) ¢ A(Z)(0,») if and only if
¢z(t..s) €8 ¢,(t) ¢,(s), Vt,s >0, where 8 is an

absolute constant.

Therefore using Theorem B we obtain the following generalisation

of Theorem C,

THEOREM D. Let A, B, C be Young's functions.
Then A~'(A(X))(0,=) 8 B~1(A(Y))(0,=) c C~}(A(Z))(0,)? , whenever the
n .

following conditions are satisfied,

(i) There exists 6 > 0 such that

¢,(t.s) € 6 ¢,(t) o,(s) , vYt,s >0 .

(ii) There exists M > 0 such that

Al (t) B 1(s) ¢ M.C"'(t.s), Vt,s >0 . +

In particular we get the following result of 0'Neil [h}](see

(4.3.3) below).

COROLLARY. E(p,q)(0,) ﬁL(p.q)(o.w) ¢ L(p,q)(0,2)? .

whenever 1€q € p <o , +




24,

The conditions of Theorem C can be formulated in terms of
the fundamental functionsof the Orlicz spaces involved, therefore we are
led to ask if a similar condition on the fundamental functions of X, Y
and Z gives a necessary and sufficient condition for X : Y ¢ Z to hold.
From 0'Meil's results for the L(p,q) spaces (see the above corollary) we
know tha; the answer is no ! . We insist in another direction: what
properties of the factor spaces are needed in order to generalise'Theorem

C to "arbitrary" r.i. spaces ? In this direction we prove (see (4.2.4)

below)

THEOREM E, A(X) 8 Y ¢ Z if and only if there exists a

constant 6 > 0 such that
lEisslly L 3€00,(s) . Ys>o,

where Ey/g is the compression operator and X is assumed to have the &, property. +

The above results are generalised for arbitrary ''tensor
product operators''(see (4.h.1) below) using the following interpolation

theorem (cf. (4.4.4) below).

THEOREM F. Let T be a tensor product operator.
Then,

T(f’g)**(t) € J f**(t/S)g*(s)d?s .+
0

Using Theorem F we obtain sufficient conditions for tensor

product operators to be continuous on 0.C.L.H.Z. spaces. Among the
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interesting consequences of Theorem F we point aut the following

COROLLARY, L(p=)(0,1) & L(p,=)(0,1) ¢ M(2)(0,1)2,

where ¢Z(t) a - ¢171/p log t, t e(0,1). +

in 4.5 we consider the analogous probiem of embedding the

space X(Y) = {f € M(Q, x Q2): || || Fix,0)]] vl x -IlfIIX(Y) < =} into Z.

THEOREM (3, Suppose that there exists M > 0 such that
oy (QuD g s Moy Ulull 1) ¥V ue L (0,).

Then, X{M(Y)) ((0,0)x(0,o)) is continuously embedded in M(Z) ((0,o)x(0,)).
Proof. See (4.5.2) below. +

The method of Theorem B can be modified to obtain embedding
theorems for Calderon spaces with mixed doubie norms. Therefore extending

the above results.

In Chapter 5 we consider the continuity of product operators
and convolution operators on r.i. spaces. These results are analogues of
the results obtained in Chapter 4 for projective tensor products of r.i.

spaces as Banach modules.

In particular -the classical theorems on Fractional integration

are generalised to the context of 0.C.L.H.Z. spaces.
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In the last part of the thesis we give an application of
our results to the theory of admissibility of integral operators. To do
so, we need to introduce still another class of B.F. spaces suitable for
our purposes. The main tools here are Theorem A and the observation that
continuity results for integral operators acting on r.i. spaces also give
corresponding results for r.i. spaces ''with weights'. These results are
of interest since, due to our generalised setting, they can Be applied to
obtain existence, uniqueness and asymptotic behaviour of solutions of

integral equations with strong non-linearities.
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CHAPTER 4

EMBEDDINGS NF TFNSOR PRODUCTS
OF BANACH FUNCTION SPACES

Let X(Q,), Y(R2), Z(Q; x Q,) be B.F.spaces. In this chapter we
give necessary and sufficient conditions for X # Y to be continuously embedded
in Z.

In §4.2 we consider the case where one of the factor spaces is a
A space, in §4.3 we consider tensor products of Calderén spaces, in §4.4. we
obtain estimates for generalised operators which behave like B and use these

results to obtain embeddings of tensor products of 0.C.L.H.Z. spaces.
In 84.5 we consider the problem of embedding X(Y) into Z.

These results are of special interest in the theory of non linear
parabolic initial value problems (cf.[ 16 ]) and of course in the theory of

integral operators and equations.

In §4.6 and §4.7 the reader will find some more technical material

that could be omitted in a first reading.

Finally §4.8 contains our usual notes and comments on the results

of this Chapter and a detailed bibliographical review.



4,1. PROJECTIVE TENSOR PRODUCTS OF B.F. SPACES,

In this section we establish some general properties of the operation

% , which are valid for a wide range of spaces.

In what follows we shall let X(0,®), Y(0,»), Z((0,o) x (0,))
be r.i. spaces of Lebesgue measurable functions on the half line or the

cross product (0,») x (0,). .

(4,1.1) LEMMA,. Suppose that X @8 Y ¢ Z, then

(i) 36 >0 such that |[f & gf| , < 0 [[f[l, {lally .

'Qf BgeXBY.

(ii) x @ Y is continuously embedded in Z.

Proof. (i) Consider the bilinear operator @(f, g) = f 4 g,
i: X x Y > Z. By the Uniform Boundedness Theorem we only need to show
that R( , ) is separately continuous, and this can be easily proved
using the Closed Graph Theorem. Indeed let f € X be fixed and let
Tf(g) =fdg, Te: Y » Z, and suppose g~ g in Y and Tf(gn) + h in
Z. Then there exists a subsequence {gnj} such that gnj +g a.e and

Tf(gnj) + h a.e., therefore Tf(g) = h a.e., and the result follows.
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(ii) Let u e X % Y, then for any representation
n n n
a= B i aap venave llull, < Bt aaill, € 0 200 Noill -

Therefore ”ul[z £ 0 ”ullx av +
™

In what follows we shall use the symbol ¢ to denote a

continuous embedding, unless otherwise indicated. N

(4,1.2) THEOREM. The following conditions are necessary

for X Y c Z,
T ¢

(i) 36 > 0 such that ¢z(t.s) €8 ¢x(t)¢Y(s), ¥ t,s > 0.

A

(ii) x ¢ 7,V c Z, where Z is the Luxemburg representation

of Z.

Proof. (i) Let t,s > 0, and define f = X(0,t)’ 9 = X(0,s)"

Then ||f & g]lz = ||(f a 9)*||2 = ¢2(t.s) = ¢z(t.s). On the other hand
by (4.1.1) there exists a constant 8 > 0 such that

|If & gl]z <0 ”fllx HQIIY , therefore

¢z(t.s) <0 ¢X(t) ¢Y(s).

(ii) Suppose for example that X ¢ 2, then there exists f £ X

such that f ¢ 2 . Let h=f X(O 1’ then h € Z by hypothesis, however

o0
I

f* which implies f* ¢ 2, a contradiction. +
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4.2, TENSOR PRODUCTS WITH A SPACES. !n this section

we consider the problem of embedding the tensor product of r.i. spaces

when one of the factor spaces is'a Lorentz A space.

In order to simplify the formulation of our results we shall
assume throughout this section that X(0,»), Y(0,*), Z((0,)x(0,=)) are

%

r.i. spaces verifying the §, condition.

(4,2.1) THEOREM. The following statements are equivalent

(i) A(X) 8 A(Y) c A(2)
(ii) A(x) 2 M(Y) c M(Z)
(iii)A(x) i MeY) E.M?Z)

(iv) 30 > 0 such that ¢,(t.s)< 8 ¢,(t)e(s), Vi,s >o0.

Proof. It is easy to see that if one of the statements (i),
(ii),(iii) holds then (iv) holds. For example if (i) holds, then since

X,Y and Z satisfy the &, condition, we have ¢A(X)(t) = ¢X(t),

¢A(Y)(t) = ¢Y(t). ¢A(Z)(t) z ¢Z(t), and therefore (iv) holds by (4.1.2).

We shall prove that (iv) implies (i), (ii) and (iii).

[(iv) => (iﬂ. Ltet f € A(X), and g = CXg o |E] < = .
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Then,
1F 8 6ll gy = [ (F 8 @(e)g, (05
0
® . dt
< | lel r(eslEDe, 08
0
* du
< lelfFre, (e en
0
< 8 le|og(E]) | Frluwey (W)Y
Y [x X u
(4.2.2) < Clisll gy IFI 5 ()

where C is an absolute constant.

Let g be a simple function, then using the Riesz Lemma
n
(cf. [33]), we can write g = i§19i’Where each gj, 1 € i £ n, is a

n
simple function taking only one value and g* = iélgi* . Hence,
n

llgl‘A(y) = fél ”gillA(Y) and

n
”f ] g”A(z) < iél ”f f gi” A(Z)

¢ C ”f” A(X) ”gHA(Y) (by (4.2.2)).

Finally one can extend the above inequality for an arbitrary g € A(Y)

using the monotone convergence theorem.

[(iv) ﬁ>(ii)J. Let f € M(Y), and g = CXg € A(X), then




62.

If 8 all y(z) = up LF 8 g)en (), ()
>

N

sup {|c|Fr(t/]E)o, (1)}
t>0

IN

ok|o (JE]) sup {Fxx(t)o, (t)}
X t >0 Y

sClisll o Il e

where C is absolute constant. The above inequality can be extended using

Riesz's Lemma and the monotone convergence theorem.

The proof of the implication [(iv) = (iii)] is similar and

will be omitted . +

The same method used above also yields the following

(4,2.3) THEOREM, Let A be a Young's function and suppose
that there exists a constant 8 > 0 such that ¢Z(t.s) <0 ¢X(t)¢Y(S),

v t,s > 0. Then,
(i) A(X) g AAG, 1) ¢ A(A,¢Z,1)
n

(i) A(x) 8 A(A,¢Y,1)m ¢ MR, 1) .+

The above results suggest the following
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(4,2.4) THEOREM, A(X) 8 Y ¢ Z if and only if there exists
a constant © > 0 such that ”E]/SHY .5 €6 éx(s), YV s > 0, where

(El/s(f))(t) = f(t/s) is the compression operator.

Proof. Let f e Y, g = cXg € A(X), then

(f & g)=(t) =[c| fx(t/|E|) = |c|E1/|Eff§(t)

Therefore,

IF & gll ;= II(F @ gl 5 = |ellEy ) g(F) 1 5

N

Icl ”E]/IE|” Y _,’z\ “f” Y

N

6 lc| oy (IED IIF]ly
£ CHQHA(X) el

where C is an absolute constant. It follows readily, using the methods

of (4.2.1), that A(X) 8Ycz.

Suppose that the condition on the compression operator is
not satisfied: then there exists a sequence of positive numbers {sp} such
that

”El/snllY >3 Al Oylsn)s =1,

Then there exists a sequence {fn} such that anIIY €1, fo ¥, n=1,...,
and

1E /e (Fd [l 5 3 287 o(sa) o mo= 1 -
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For n ¢ N, let 9, = [¢X(sn)]'1x(o s.) ’ then
'2n

(fn 8 gp)%(t) = _1 E f) . n=l....
P Ty Fm
Thus,
I (Fn 8 ga)xll 5 = 200, T I

Define f = z 2°" g,, then f € Y, g € A(X), and

[ (faa)llygs22" |, n=1........,
Therefore f 8 g ¢ zZ . 4+
(4,2.5) COROLLARY., Let A, B, C be Young's functions, then

(i) A, 1, €)™) g AGB, 1, )™ ¢ Alc, 1, %) where

O0<a € 1, if and only if there exists a constant 8 > 0 such that
(4,2.6) A-'(t) B (s) &« 6 C (s.t), Vit,s> 0.
(ii) Suppose that C satisfies the A, condition, and
O<a +B<1, 0<a, <1, then AA(A % cP)) 1i%A(B,tO‘,tB) c A(c,t%,tP)

if and only if there exists a constant 6 >0 such that (4.2.6) holds.

Proof. (i) The necessity of (4.2.6) follows from (4.1.2), the

sufficiency follows readily from (4.2.4) and (1.3.3).
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The proof of (ii) is similar and we omit the details (see

(2.2.9)). +

Li,5 TENSOR PRODUCTS OF CALDERON SPACES. In this

section we show the import of the Calderdn spaces in the theory of

embeddings of tensor products of B.F. spaces.

(4.3.1) THEOREM, Let £,(X)(C,»), £2(Y)(0,=), £(2)(C,=)x(0,»))

be Calderdn spaces and suppose that X % Y ¢ Z. Then,

z1(X) 8 72 (Y) ¢ 73(2)

whenever there exists a constant 8 > 0 such that

Cl(xrt) Cz(Y,S) < ) Cs(X,Y,t-S), Vx,y’tys € (0,°°)'

Proof. Let f e £(z (X)), g € E(g2(Y)), then there exist

A; >0, i =1,2, fez(X), gez(Y) such that
FO)] € 2 5l [F()]) Y xe (0,2
la) ] < Xz 220y, |a(n)]) Vye (0,@.

By hypothesis there exists an absolute constant M > 1 such that
|| f & g{lz <M Hfllx ||gHY . Therefore
| (f 8 9)(x,y)] € A A2 B Cax,y,|F 8 a(x,y)])

€ MAs OMoix,y,|f 8 g(x,y)|/M).

Thus,
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IIf & gllCa(Z)g 6.M ”f||C1(X) ”glICz(Y) -+

(1,3.2) COROLLARY. Let A, B, C be Young's functions,

then,
(i) L,(0,2) 8 L (0,®) ¢ Lo ((0,2) x (0,2)) if and only if

there exists a constant 6 > 0 such that

ATl(t) B-1(s) ¢<6C 1(s.t), VY t,s > 0.

(ii) ATH(A (X)) # B (A(Y)) c C"'(A(Z)), whenever there exists

a constant 8 > O such that the condition of (i) is satisfied andmoreover
¢Z(t.s) < 8 ¢, (t) o,(s) , Vit,s>o0.

(iii) Let q ¢ [l,m) and Aq(t) = t9. q°! , and suppose the

following conditions are satisfied
(a) ¢5(t) . ' ¥

(b)3 6 > 0, such that, q)z(t.s) € 06 ¢X(t) ¢Y(s), Vt,s > 0.

Then,

v Y Y

Proof. (i) Since L, = ATH(LY), Ly = B71(LY, L. = ¢ () and
L! 8 L} ¢ L}, the sufficiency part follows from (4.3.1). The necessity

follows by (4.1.2).




67.

(ii) Follows from (4.2.1) and (4.3.1).

(iii) can be proved directly or using the embedding theorems

of 83 . +
(4.3,3) COROLLARY. (i) Let g ¢ [1,%), p e (1,) and

suppose that q € p,then

L(p,q) & L(p,q) ¢ L(p,q)

(ii) Let ae:(O,l] , and let A, B, C be Young's functions,

then
M(AT2 (ML) 8 B (A(LY/®) ¢ Ml (AL /o)) fY
if and only if there exists a constart 6 > 0 such that

A"1(t) B !(s) € 8 C"¥(t.s) , vV t,s > 0.

Proof. (i) Follows from (4.3.2) (ii) . (Compare with 0'Meil

[43] )

(ii) Observe that M(A™1(A(LY/@)))™ = A-1(M(L}/%)™),

M(C-L(A(LY/2)))Y = ¢ 1 (M(LY/®)™Y). Therefore if the condition on the

Young's functions is satisfied we have by (4.2.1),
and by (4.3.2)

ATHM(L/)Y) B BTHA(LY®) ¢ e (mL /)

The necessity of the condition follows from (4.1.2). +
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(4,3.4) REMARK. Motice that the same proof given in

(4.3.3) (ii) yields, for 0<a < 1,
ATI(M(LM)) g BT AL ¢ et (MLt a))

if and only if the condition of (4.3.3) (ii) holds.However our argument
does not work, if we remove the tildes, for the case where oo = 1. Indeed

i this case A“!'(M(L!)) = La which is, in general, different from

[

M(ATE(LY)) = M(LA) .

(4,3.5) DEFINITION. Let (Q,u) be a measure space,

X1 (R), X,(Q) be B.F. spaces. For 0 < t < 1, define
xEx3TE@) = (e M@): |Fx)] € ARG 200,

V xeQ, where fj e Z(X.), i=1,2 andA > 0}

€1l xf x)-t = inf{l >0:3f; e £(X;), i = 1,2 such that

1F0x) A F200 | E1F. 078 ¥V xe b
it can be proved (cf. [9]) that Xf X;-t is a B.F.S.

Using the same arguments of (4.3.1) we obtain,

(4,3.6) THEOREM, Let X.(2), Y. (Q), Z,(2 x Q), be B.F.
spaces, i = 1,2. Suppose that Xi % Yi c Zi’ i = 1,2, then
xt x)°t g v ittt -t

4,4, TENSOR PRODUCT OPERATORS, !n this section we
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obtain estimates for the maximal rearrangement of operators which behave
like @, in some technical sense to be specified below. These results are
applied to obtain sufficient conditions for embeddings of tensor products

of 0.C.L.H.Z. spaces.

(L4,4,1) DEFINITION, Llet (Qi,u1), (Q2,u2), (23,us) be

LY

measure spaces. A bilinear operator is said to be a tensor product operator

(t.p.o.) if
(DN g,y € Tl gy ol g,
G T ] wig ) & Il =g ) Hlall (=g,
(4.4,2) exAMPLES. (i) If we let Q3= Q1x Q,, then
T(f,g) =fdg is at.p.o..

(ii) Let Q1= Q= 3=[0,1] 'x [ 0,1] , and define
1

1
T(F, g) (x,y) = [ [f(x,t> g (s,y) dt ds

0 0

then T is a t.p.o.

(4,4,3) LEMMA, Let T be a t.p.o., then ¥ f ¢ L1(Qy)+ L¥(Q1),

Ve c Q, , W measurable, 1,(E) < » , and Vee R, we have

T(f, exg)**(t) < [c| Frx(t/uz(E)).

Proof. Let r be an arbitrary, but fixed positive number, and
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write f = f_ + fr , where

"{ f(x) if |F(x)] ¢ r

f (x) =
r r sign(f(x)) if |F(x)| > r

and f" = f - f_ . Then

h = T(f, cxg) = T(fr, exp) + T(F ,exg) = hy + ha.

Y

Using-the conditions of (4.4.1) we get

<

I gy € 1EI oy e Xell ey

¢ le| w(E) [ A (u)du.

r
”hzlfLw(Qa) $ ”frIle(Ql) ”CXEIILw(QZ) < fef r
Therefore,
t h*% g ”h1||Ll(Ql) +t ”hZIILw(QZ)

clel e (E) j Ap(wdu + [c] r ¢
r

f*(t/uZ(E)), 2 = t/u,(E), we get

Now, if we choose r

t h*x(t) < |c| ua(E) I Ve (u)du + tlc|Fx(8)
f:‘: (2)
< el ua(E) [y (Fe(2) - F5(0)] + . fc|fx(n)

€ e t frx(g).
Thus,

h**(t) € |C|f**(t/u2(E)) * +
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(4,4,4) THEOREM. Let T be a t.p.o., and let f ¢ M(Q,),

g ¢ M(Q,) be such that T(f,g) is well defined. Then

T(f,g)**(t) < rf**(t/s)g*(s)ggs- .

0

Proof. Suppose first that g = cXg> B2 (E) = u < » , then

by (4.4.3) \

T(f,g)**(t) < |c| frx(t/u).
But f**(t/s)s~! decreases with s, therefore

u ds
lc| fx(t/u) <IC|1 Frrle/s)

¢ [ rmee
[1]

Therefore combining the above inequalities we get

T(Fg)r () € [Frr(e/s)on(s) €
(/]

n
Let g be a simple function, then we can write g = .gt g;

where each gj, 1 < i <€ n, is a simple function taking one value only,
n

21 g? . Then using the bilinearity of T,

and g* = 9

T(f.g) = .2, T(F.gi)

n
T(f,g)**(t) < iélT(f’%)**(t)

0 GL_ s (nds
< ingnk(t/s)gin(s)s
0

S f**(t/s)g7'=(5)g§—

O




Finally we extend the above inequality to an arbitrary g using the

monotone convergence theorem. +

(4,4.5) REMARK, The result in (4.4.4) was suggested to the

author by R. Sharpley.

(4,4,€) THEOREM, lLet A,B,C be Young's functi‘ons, and let
X(b,m) , Y(0,0), 2(0,0)%be r.i.spaces. Then every t.p.o. T defines a bounded
bilinear mapping,

T: AApys1) x A(B,oy, 1) ~ A(C,9,,1)

whenever there exists a constant § > 0 such that

(i) ¢,(t.8) € 0 ¢ (D)d (s) , Ye,s>0.

(ii) A™1(t) B™'(t) ¢ & t C'(t), Yt > 0.
Proof. We shall denote by @ the convolution product on
(R, .‘!ti)' that is

(f 8 g)(t) = Jf(tls) g(s)ds.
0

It follows from [44], that

dt. daty ¢ dt,
LA(t) 9LB(t) _Lc(t

whenever condition (ii) is satisfied.
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Let f ¢ Z(A(A’Kbxa])) » 9 EZ(A(B’(bY’]))i then by (l'-l'-l')y

T(Fighn() ¢ [ Fe(e/s)an(s)Le

0

T(F,) 4 (00 (1) < [Frr(e/s)ax(s)0 (0142

0

gle**(t/s)¢x(t/s>9*(5>¢v‘s)gi

s
0
*k *
< o(f ¢y 8 g ¢Y).

Therefore,

”T(f’9>**¢z||Lc(%go < 0 ||frxo, o 9*¢Y‘|Lc(%§9

€0 .M

where M is an absolute constant. <+

(4.4,7) THEOREM. Let X(0,), Y(0,»),Z((0,2x(0,2)) be

r.i.spaces, and suppose that there exists a constant §>0 such that

* 1 ds
0

Then every t.p.o. T defines a bounded bilinear operator,

T: M(X) x M(Y) > M(Z).

Proof. Follows readily from (4.4.4). +

4.5, EMBEDDINGS OF B .F .SPACES WITH MIXED NORMS. Let
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(Qyuy)» (QZ,UZ) be measure spaces and let X(Q,), Y(Q,), Z(Q,xQ,) be

B.F.Spaces. Define
XN (@yx2z) = {F e Mlauxag): | 1| FOxod [y lly = IFI] gy < -

It is easily seen that X(Y) is a B.F.S. and, moreover, that X % Y ¢ X(Y).

Therefore we may ask: when is X(Y) ¢ Z 7.

Consider first the case of the LP spaces, here the situation

is entirely trivial,

(4.5.1) THEOREM, (i) LP(0,) B L9(0,) ¢ L¥((0,) x (0,%)),

if and only if p = q = s.
(ii) Lp(0.°9(Lq(0,“9) c L>((0,) x (0,<)) if and only if
(iii) tP(o,1) 8 L9€0,1) ¢ L°((0,1) x (0,1)) if and only if
s ¢p and q £ s.

(iv) LP(0,1)(L9(0,1)) ¢ L5((0,1)x(0,1)) if and only of

S &P, q <€s.

Proof. (i) The necessity of the condition follows by (4.1.2),

the sufficiency follows by (4.3.2).

(ii) Suppose that LP(0,= (L9(0,2) ¢ L*((0,9x(0,%) then




75.

LP(0,) 8 L9(0,») ¢ L®((0,0) x (0,)), therefore by (i), p =q = s. The

sufficiency part follows readily.
(iii) and (iv) can be proved in a similar fashion. +

This state of affairs changes rather dramatically if we consider

more complicated B.F. spaces.

(4.5.2) THEOREM. Let Xx(0,»), Y(0,®), z((0,2) x (0,)) be
r.i.spaces. Suppose that there exists a constant M > 0 such that

V u e L(0,) we have

Fogr QuD g0 € Mol ull)

whereHuH1 =||uH R Then,

X(M(Y)) ¢ M(2) .

Proof. Let f e X(M(Y)), we compute || f}| M(Z)

Tl gy = sup {8, (1) Exx(2)}

t>0
= sup ¢Z(t) { sup t!? JJIf(x,y)ldx dy}
t>0 Ec(0,=fF 77
|E] =t

L)
[=

sup ¢Z(t){ s

-1 J J | £(x,y)|dy dx}
t> 0 T

(0,07
0,»
=t ° PX(E)

10

E
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< sup "¢Z(t)rlf(x ¥) | xp (E)(y)dx dy

0,0)2

-_— T
IIF\C

v
t

m
—t0 VvV

where Px(E) = {y e (0,):(x,y) € E}

Therefore using Holder's inequality we get

b 'ld)z(t)lm”f(x,') I M(y)llxpx(g) iy e

oo)2

llﬂ\O

su
>
¢
E|

.—mH

‘ €20, 0 | 170D 1 gy by (17, (B )
0

0 2
(0,)

—r"lf'?

sup
>
9
E|

o O I F00 I Moy TP @D

0,®)?2

—_— Tt
—i0 Vv C
n AO

E t

Now, let u(x) = IPx(E)I then by Fubini's theorem we have

”u|h = ITu(x)|dx = |E| = t.

Therefore using (ii) we get

”fIIM(Z) €M tsgpét”l¢z(t)¢zl(t)} l, ”f(x’.)llM(Y),lx

Mo LI FG0 y  -

We shall collect some consequences of the above result. In
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fact the complicated condition of (4.5.2) takes a particular simple form

when applied in concrete situations.

(4.5.3) THEOREM. Let A,B,C be Young's functions. Then the

following statements are equivalent,

(1) L, (0,0) (M(Lg) (0,)) ¢ ML) ((0,%)x(0,»))
(ii) L,(0,) 8 M(Lg) (0,0) ¢ M(L.) ((0,%)x(0,%))

(iii) There exists a constant 8 >0 such that

A" (t) B"1(s) ¢ g C '(t.s), V t,s > 0.

Proof. It is easy to see that (i) => (ii) => (iii).

We shall prove that (iii) => (i). We apply (4.5.2)

Some computations show that (iii) implies

¢L-(S)/¢L-(t) £ B. B‘-l(s/t)g V s,t >0,
B C

where B is an absolute constant. Therefore,
Ao, _(s)/B4, _(t)) < s/t, ¥s,t >o0.
Lz L
B (W
Let u ¢ L} (0,), ||u]];=t

and let |u(x)]| = s, then

Al _Culx) D78, _(lull)) < Julx) |/ {ju]
LB Lc 1
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7\(¢L§(l ul) )78 ¢ _(lulli)) < Jub) |/ ully
c

[’a<¢L_<|u<xm/e o Qlulh)ox < 1
B c
which implies

e Gl < 8 o Glell).

Therefore (i) holds by (4.5.2). +

(4,5.4) THEOREM. Let X(0,®}, Y(0,), 2((0,=)x(0,)) be

r.i.spaces. Then,

(i) 1f X and X' satisfy the 6, condition, then

AX) M ] ¢ M(2Z) <=>AX) 8 M(Y) ¢ M(2).

(ii) If X satisfies the conditions of (i) then, M(X)(M(Y)) ¢ M(Z),

whenevef there exists a constant 6 > 0 such that
" ' dt
[¢Y.(S/t) ¢>X.(t)—t- £0 ¢Z,(s), Vs >o.

Proof. (i) One implication is trivial. Suppose that

A(X) % M(Y) ¢ M(Z), then by (4.2.1) there exists a constant 8>0 such that

4y (t.s) <6 ¢, (t)e, (s) Vies >o.
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Some computations show that

oy (s/t)9y, (t) € 6 ¢,,(s) Yie,s>o.

We shall use (4.5.2). Let u € Ll(O,“).Ilu”it s, then

¢Y,(|u(t)|) is equimeasurable with ¢Y,(u*(t)), thus

oy CLuld Il g gy = Hoya CRul ey = Hoyu QulMl

by QuD Il WYy = { ¢, (ux(t))d,, (t)}
g (bl ey = sup € by un())oy

But, ux(t) €« st , ¥ t >0, so that
sup {oy, (ux(t))d,, ()} € sup { &, (s/t)d,,(t)}
t >0 Y X t >0 Y X
<0 9,,(s) =6 ¢z.(||ull,)

The result follows by (4.5.2).

(ii) The proof is similar to the one given in (i). The reader

should compare this result with (4.4.7). +

We consider Calderdon spaces with mixed norms.

(4.5,5) THEOREM. Let X(0,%, Y(0,%), Z((0,%)x(0,%)) be
B.F.spaces, and let A,B,C be Young's functions.Suppose that the following

conditions hold,
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(i) x(Y) ¢ z.

(ii) There exists a constant 6 > 0 such that

ATl (t) B Y(s) < 6 C'(t.s), V¥ t,s>o0.

Then, .
ATH()[BTH(Y)] ¢ €7 (2).
Proof. Let f $ 0, f ¢ A"(X)[B"(Y)] , h(x) =||f(X.')||B-1(Y)
and r = || [ FO) g1 vy Il g1 (xy -

Observe that h(x) = 0 <=> f(x,y) = 0 for a.e.y.

Therefore if we let E = {x g€ (0,): |h(x)] > 0} , we get using (ii)

c(| 0| 7r0) = b LUl y ) 2y 4 ey

¢ achlxdy gl FLONL x ()) aiexy
ety |7e.0) ], chal®ly sl BN Ly Gyl By(i)
< HA(ﬁf—’i)-)H g § 1

Therefore,

Il =12y € 8 HFI o2y (B=4(v))
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(4,5.6) COROLLARY. Let A,B,C, be Young's functions.

Then, the following statements are equivalent

(i) 1,(0,2) 2 Lg(0,0) ¢ L ((0,00)x(0,0))
(i1) Lp(0,0) (Lg(0,@)) ¢ L. ((0,00)x(0,00))

(iii) There exists a constant g > 0 such tha#

AT1(t) B"1(s) £ 6 CXt.s) V t,s > 0.

Proof. We only need to show that (iii) => (ii).

This follows readily from (4.5.5) since L*(L!) ¢ L} . +

(4,5.7) COROLLARY. Let X(0,o), Y(0,0), Z((0,%)x(0,w))

be r.i.spaces, and let q ¢ [l,w). Then,

(i) A(Aq,¢x,1)m(A(Aq,¢Y,1Y“) c 0(2), whenever there exists a

constant 8 > 0 such that ¢_(t.s) < 8 ¢,(t)p,(s), VY t,s > 0 and moreover
Z X Y

¢;(t).t", qbg(t)t'1 are non-increasing.

(1) A(Agudy o 1) (1 (Aqudy, 1Y) € AArsp,n1)" , where re [1,0),

whenever, (a) there exists a constant 8 > 0 such that

0,(t.s) €8 ¢,(t)oy(s) ¥ t,5> 0, (b) o3(t).t™ , gd(t).t™" are

1

. . r -1 .
non- increasing and ¢Z(t).t is non decreasing.

Proof. (i) Follows by (4.5.6) and (3.1.5)(i); (ii) follows
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from (i) and (3.1.5) (ii). +

(4,5,8) REMARK. When specialized to the L(p,q) spaces the
above results are sharp, in fact one can show that if 1 < p< o , 1< q; < o
j = 1,2,3! then

L(p,q,)(L(p,q,)) ¢ L(p,a,) if and only if g, =« and

4

9, ¢ P Or 4, <o and max {q,, 9,} <P < 4,

This result has been announced in [ho]and Will be published

elsewhere

44,€. SOME REMARKS CONCERNING THE §, CONDITION. In

this chapter we have often considered r.i.spaces X satisfying the 8, condition.

R4

In some cases this assumption was made in order to insure that ¢X(t)

¢A(X)(t) . This problem can be overcame if we consider the spaces

k(X)(Q) = {f e M(Q): |l o <
gy = o0 enar.
0

It fs not difficult to show that A(X) & k(X) whenever X

satisfies the 8, condition, and clearly

¢K(X)(t) = d)x(t).

The results proved in previous sections for A(X) spaces can be

generalised for k(X) spaces. This follows from the fact that
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Aegg(t) = fkf'(t/g*(s))ds.

See [43]

L,7. A SPACES WITH MIXED NORMS. !t is natural to ask
if a similar result to (4.5.5) holds for the Lorentz A spaces. The answer

is, surprisingly, no.

Some care is needed since the class of A spaces has a non-trivial

intersection with the class of Orlicz spaces.

(L!l7ll) THEOREMI Let X(O,°°), Y(olm)’ Z((o’m)x(o’m)) be r-i-

spaces. Suppose that the following conditions hold

(i) There exists a constant € > 0 such that

oo X-E
J W dx = .

1

(ii) J¢X(x)%? <o , and Y satisfies the 6, condition.
0

(iii) There exists a constant 6 > 0 such that
¢Z(t.s) =e¢x(t)¢Y(s) t,s > 0.
Then,

MX) (AY)) ¢ M2).

Proof. Let F(x) be defined as follows
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1/p () if xe [0,1)
F(x) =
(<1>Y(e")¢x(x)>{€)'l if xe [1,2).

Let
f(X,Y) =X’(o’ex) (Y) F(X), X,Y € (o’m).

~ We shall prove that f ¢ A(X)(A(Y)) but f ¢ A(Z). Observe that F(x) is

non-increasing, therefore
Ae(t) =[{(x,y): 0 €y« eX , F(x) 3 t}
=|{(x,y): 0 €y« eX , 0¢ x ¢ AF(t)}|‘

Me(t) ox A (t)
= {J dy} dx = e - 1.
0

Thus,

fx(t) = Fx(log(t + 1)).

We compute "f||A(Z):

IF 1l Aqzy = l Fr(log(t + 1) ¢, (0

= J F*(t)q)z(et-l).(et-l)-let dt
0

® 1 1 - t t -1 t

pY I t"€ g (et-1)(e"-1) e dt
EMCOIRENG) ¢z
00 t—l

i v (3 S L
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We compute ”fllA(X)(A(Y)):
0 g gy = 1%, ) PO vy = FXoy(eD)

Observe that F(x)¢Y(ex) is non-increasing, therefore

1 F G Ly g = [ FO08y (8, 0%
0

1

[

Fx00, (¥10, (0% + [ F (10, (X0, (0L

il
O\"—ﬂ

=

it
O
—
©-
>
———
x
e
Q
£
x
- 10
+| %
™
A
8
+

4,8, NOTES TO CHAPTER Y, The embedding theorems obtained

in this chapter generalise work by 0'Neil [hB] , for the Orlicz spaces and

L(p,q) spaces.

In the particular case of the Orlicz spaces we have stronger
results (See (4.5.6),(4.5.3)) than the ones obtained by 0'Neil. Moreover,
our techniques are different and allow us to treat a wide class of spaces

in a unified manner.

The result (4.5.2) originated in work by Walsh [59], who obtained
the corresponding result for the L(p,q) spaces. The results in 84.5 show that

our atstract version of his result is far from being trivial.

As far as the author is aware the embedding theorems for r.i.

spaces with mixed norms are new. For related work for the Orlicz spaces see
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Donaldson [ 16] .

In the case of r.i.spaces based on finite measure spaces one

is able to prove a result closely related to (4.5.1).

THEOREM, Let Xx(0,1), Y(0,1), z((0,1)x(0,1)) be r.i.spaces,

LY

then M(X) (M(Y)) ¢ A (2), whenever'?x < ‘!Z , ?Y <Yy (for the definition

and properties of the indices of r.i.spaces we refer the reader to [63]
an [55]).
- 1 < }

Proof. Let p be such that p> 1, andYX< ;< IZ’ YY< B— <YZ’
then

MO (M) ¢ LPAP) ¢ P ¢ Lipp) ¢ A(2). +

COROLLARY. Suppose that the conditions of the above theorem
hold; then

(i)  AX)(A(Y)) ¢ A2)
(ii) x(Y) ¢ 2z

(ivi) xgyez . +

In the above results we cannot replace < by g in the hypBthesis

on the iRdices. Indeed, Shimogaki has constructed r. i. spaces X such

:hu:1x=7x=%.butx¢l.2. L2 ¢ x.

The result in §4.7 extends previous work by Cwikel [14]for the

L(p,1) spaces, see also Milman [40].
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We have not considered in this chapter embedding theorems for
the A(A,¢x,¢Y) spaces. Results in this direction can be derived using the

same methods of section §4.4 and the convolution theorems of Chapter 6.

It would be of considerable interest to obtain embedding theorems

of the type studied in this Chapter, for other cross-norms. We remark that

Iy

embedding theorems for the 'e'' cross-norm can be readily obtained using duality

and our results for the ''f'' cross norm.

In the same vein the results of 84.5 give by duality embedding

theorems of r.i.spaces into r.i.spaces with mixed norms.

These results could find applications in the theory of ideals

of operators (cf.(5.4.3)).

We point out that our method to obtain embedding theorems for

A"!(X) spaces can be easily generalised for GA™!(X) spaces.

THEOREM., Let A,B,C be generalised Young's functions, and

X(Q1), YQ2), Z(Q; x Q2) be B.F.spaces. Suppose that the following conditions

hold

) 1faall, <l llaly ¥ (Fe)exxy.

(ii) There exist 6, a > 0 ~such that

A"1(t) B™'(s) < 6 € (a.t.s) Vit,s >0.
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Then,

”f a g|| Gc-](z) £ max {S’U} “ f” GA-l(x) ”g” GB"I(X) -t

For example{rsince L? % L{1,=) c L(1,o) we have, under the

assumption-that (ii) above holds,

CGATI(LY) 8 GB7H(L(1,2)) ¢ GETH(L(1,%)).

Compare with O'Neil [43], where the spaces GB™!(L(1,»)) are denoted by Wp-
Finally we should point out that(4.2.4) can be used to obtain a

general theorem for tensor products of r.i.spaces. Let ¢ be a decreasing

function Qn‘(O,w), the Lorentz spacé A¢(0,w) is the r.i.space of all

measurable functions f which satisfy

£l = wf*(t)q)(s)ds <o,
h 7

0

Then, for any r.i.space X(0,») we have

I T I (L

lally. <

t
Notice that ¢ (t) = J g*(s)ds, therefore, if Y(0,m), Z((0,x)x(0,x)) are
A,

g 0
r.i.spaces, we have Ag* # Y ¢ Z whenever there exists a constant 6> 0 such
that

s'IHE]/SI(Y > 53<8 g*%(s) , ¥ s> 0.

Thus, if there exists & >0 such that the above inequality holds for every

0fge S(X'), we get
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CHAPTER 5

TENSOR PRODUCTS OF R.I. SPACES
AS BANACH MODULES.

Let X(-o, o, Y(-wo,o), Z(~,o) be r.i. spaces. in this chaﬁter
we look at the problem of finding necessary and sufficient conditions for
convolution operators and product operators to act continuouslyon 0.C.L.H.Z.

spaces.

In §5.1 we treat product operators and in §5.2. we deal with
convolution operators, in §5.3 we give several applications of these results
and outline generalizations to the setting of non-commutative r.i. spaces.
These results lead to non-commutative versions of some classical theorems

in analysis.
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5.1, ESTIMATES FOR PRODUCT OPERATORS. Let X(0,),

Y(o,»), Z(0,®) be r.i. spaces, in this section we obtain necessary and

sufficient conditions for f(t) g(t) ¢ Z, whenever f ¢ X, g ¢ V.

These results imply embedding theorems of projective tensor

products of r.i. spaces as L modules (cf. [24]).

Our results are based onastimates for the maximal function
associated with a product operator and the properties of the Calderdn

functors. The result (5.1.2) has been stated, without proof, in 0'Neil

[4s5]-

The following definition is the analogue of (4.4.1) for product

operators.

(5.1.1) DEFINITION. Let (Qi,11), (Q2,u2), (Q,us) be

measure spaces. A bilinear operator Il is called a product operator (p.o)

if it verifies the following conditions,

O IRE QN =gy ¢ HFIE =gy ol o)

G INE 9l 2,y & NF L1y Mol (=g,

i {ImE, gl 2 (q,) € HFI Lo qq,y Mol L1,




(5.1.3) LEMMA. Let Il be a p.o. then for any r.i. space

X(0,0), we have

(i) | nif.ollfy < NFll, Hall 4
(i) | nf9 < [Ifll, el 4
CGED | e < I el '
where || |1, || || denote respectively the L' (0,m), L*(0,o) norms .

Proof. (i) Let f ¢ X, g ¢ X', then by (5.1.2)

t .
tn (f, g (t) Sl f* (u)g*(u)du

Therefore,

N(fF, o)l = Vim ¢ P(F,g)*x(t) ¢ | || x 19l xo -

t >

(ii) Let 0 % f ¢ L” and consider the linear operator

Hf(q) - %f;T?L .y then Hf'defines a bounded linear eperator,
[« o]

Loo > Loo
Ne:
f Ll > Ll

with norm less or equal to one, thus by the interpolation theorem of

Calderdn [10],
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Iig* X + X, continuously for any r.i.space X, and moreover

| mell < 1.

The proof of (iii) is the same as the one given in (ii). +

(5.1.4) THEOREM., Let A, B, C be Young's functions, and :
let X3, X2, X3, Y be r.i.spaces. Then every p.o. il defines a bounded

bilinear operator,
I: A(A’¢X1’¢Y) X A(B,<1>X2,<1>\,) +> A(C.¢x3,¢v)

whenever the following conditions are satisfied,
3 > ’
(i) J ©>0 such that ¢, (t) €@ by, (8) &), (€), V t>0.
(ii)  JM>0 such that A7'(t) B™'(t) « Mc"'(t), Ve > o.

(iii) The conditions of (2.2.1) are satisfied by C, ¢X3’ ¢Y'

Proof. Let f € Z(A(A'¢x1’¢v))’ g€ Z(A(B,¢x2,¢y)) then by
(5.1.2)

1 t
1ege(0) < L [Tentu gy
0

therefore by (2.2.1),

lm(f,g) |l <pllfr g* o, 07 dt
A(C,¢X3,¢Y) X3 Lc(¢v(tfjf

where D is an absolute constant. Thus, by (i)




(5,1.3) LEMMA. HLet Il be a p.o. then for any r.i. space

X(0,»), we have

el € Il sl 4
(i) | mlf.9 < HFll, Hsll &
CGED [ < IFl g Nl '
whefe.|| ”i, II undenote respectively the L! (0,), L”(0,) norms .

Proof. (i) Let f ¢ X, g ¢ X*, then by (5.1.2)

t
tn (f, g+ (t) SJ f*(u)g*(u)du
0

: < Nelly llsll . -

Therefore,

(e, oy = vim £ P(F,q) %5 () < [If]| y |l9]] x1 -

t » ©

(ii) Let 0% fe L™ and consider the linear operator

I X
Mg (g) -\ngjfl vy then Il 'defines a bounded |inear operator,
(A
Mg
f Ll > Ll

with norm less or equal to one, thus by the interpolation theorem of

Calderén [IO],
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”H(f’g)” A(C»(DX ’¢Y) < D” (f,'(i)xl)(g'd)xz)” LC(¢Y(t)gt_t_
3

and the result follows by 0'Neil's theorem for products of Orlicz spaces

(cf. [hh] ). +

A similar result can be obtained for products of 0.C.L.H.Z.

spaces ''with tildes''. Notice that if T(f,g)(t) = f(t) g(t), then

M(f,g)x(2t) ¢ fx(t)g*(t).

It is not difficult to prove that the conditions on the

fundamental functions are necessary, in fact we have the following

(5.1.5) THEOREM, Let X, Y, Z be r.i. spaces, and let
M(f,g)(t) = f(t)g(t), then a necessary condition for J| to define a bounded

bilinear operator, ®: X x Y - Z, is the existence of 6 > 0 such that
(5.1.6) ¢ (t) < e (t) ¢ (t), Vit o>o.

Proof. Suppose that (5.1.6) does not hold, then there exists

a sequence of positive numbers {tn}n such that

e N
8,(tn) > 2% ¢ (tn)e, (tn) T PO
et fn = X(o,t,) [ox(en)]™ + 9n = X(0,tn) ° [oy(tn)] 7!, then

L -
‘fn gn 2 2 n X(O,tn) 't(bz(tn)] ! ’ n=1....0......
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o f [
i = o = h :
Therefore if we let f niran 9 ngl 2h » we easily
verify that f ¢ X, g € Y , but fg ¢ Z . +

We shall now consider products of Calderdn spaces.

(5.1.7) THEOREM. Let A, B, C, be Young's

suppose that there exists 0 > 0

functions, and

such that

A" 1(t) B~ (t) € 6 ¢~ (t)

, ¢ t>o.

Moreover suppose that [||f + gllz S ”fllx + ”gIIY, v (fF,g) € X x Y.

Then, if f e A"XX), g e B-XY) , f.qg €C~(2) and

Proof. It is easy to see (cf [U4] , p. 303) that the condition

on the Young's functions implies

c(t.s/6) €A(t) + B(s) , Vv t,s 30.

The result

follows readily from the above inequality. +

A similar result can be proved for our generalised Calderén

spaces.

(5.1.8) THEOREM. Let A, B, C be generalised Young's

functions, and let X, Y, Z be r.i spaces verifying the condition of

(5.1.7). Then,
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(i) if there exist constants 6 > 0, a > 0 such that

(5,1.9) A-'(t) B! (t) < 8 C!(a.t), Vis>o

then f ¢ GA"'(X), g € GB™Y(Y) implies that fg € GC~!(Z) and moreover

IF all gor gy € max (20,8} [F1] gum1 5y Noll ggo1 gy

(ii) 1f X=Y =2 =L! and (5.1.9) does not hold then there

exist f e GA™'(L'), g € GB™'(L') such that fg ¢ e~ (LY)

Proof. (i) It is easy to see that (5.1.9) implies

C(t.s/8) € a(A(t) + B(s)), Vt,s 3 0.

Let f € GA='(X), g € GB™'(Y), ”f||GA-1(x) =r, ||g||GB_i(Y)== s,
then,
2a f g
”C(Wi' TS / Za)lchhl(Z) € 2ar.s
thus,
2a
”7? . f‘g||Gc‘1(Z) € 20 ”fI|GA-1(X) n9||GB-1(Y) :

From the above Inequality we get

”fglch-l(z) € max {Za,e} ”f||GA-l(X)|'g||GB-l(Y)

(ii) Suppose that (5.1.9) does not hold, then there exists

a sequence of positive numbers {tn}n N such that

o> A Hty) B Hty) > 80 . " N(t,.87), =1,
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Let {E,} be a sequence of disjoint measurable sets such that
NneN

|E

| =2t . For ne N define f = 27" A"(tn)xEn :

8

[ling}

gn = 27N B'l(tn)xEn and f = fn» 9= IL.9dn - It can beeasilyverified

n=1

that f ¢ GA"'(L'), g¢e GB () but fg ¢ GCTI(Y). +

5.2. ESTIMATES FOR CONVOLUTION OPERATORS. |In this

section we give an estimate for the maximal rearrangement of a convolution
operator from which we derive convolution theorems for the 0.C.L.H.Z. spaces.
The inequality referred above is due essentially to O'Neil [hS]for the

case of ''positive' convolution operators. The problem of extending these

estimates to more general operators is not entirely trivial (cf[b] , [5]).

The results in this section are partially based on some joint

work with R. Sharpley (cf. [hl]).

(5.2.1) DEFINITION, A bilinear operator T is called a

convolution operator if the following conditions are satisfied,

(5.2.2) IT(F.9)ll, < |Ifly llall,
(5.2.3) IT(f.9) ], < lifll, llolh

(5.2.4) It lh < NIfih llglh.

When we write T(f,g) we assume that its existence is forced by the
conditions above,(Notice that T(f,g) may not be defined for arbitrary pairs

of functions (f,g).)
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(5.2.5) ExaMpLES, (i) T(f,g)(t) = fnf(S)g(t-s)dsis

oo}

a convolution operator.

(ii) More generally T(f,g) (x) = IG f(y)g(y ix)dy is a

convolution operator, where G is a locally compact abelian group.

(ii) Let h ¢ LI L™ and define T(f,q) = J P(f,h) (s)g(t-s)ds,
. -0
where P is a product operator, then T is a convolution operator.

Notice that in general T(f,g) # T(g,f), and moreover T is not,

in general, translation invariant.

(5.2.€) THEOREM, (0'Neil [44]). Let T be a convolution

operator (c.o.), and suppose that _J<f*(s)g*(s)ds <o , then T(f,g) s
0
well defined and

T(f,a) ||, = ff*(s)g*(s)ds. +
0

(5.2.7) THEOREM, Let T be a c.o., and suppose that for

some 0 < t < o, tfak(t)g**(t) + Jw fx(s)g*(s)ds is finite, then T(f,g) is
well defined and t

T(F,g)#*(t) € tfs(t)gax(t) + j F4(s)g#(s)ds.
t

Proof. Let f,(s) = [|f(s)| ~ fx(t)] sgn(f(s)),

g1(s) = [[g(s)| ~ g#(t)] sgn(g(s)), and f, =f - Ff), g,=9g-9,
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then
(5.2,8) T(f,,q)%(t) = *(0) ¢ ¢ Ik < Tl falh Toll
=1
=< f[:t))‘f(s)ds g;(t)xg(s)ds
by (S.Z.h),
(5.2.9) T(f,,g,)%x(t) = hix(t) ¢ ||h|| < fr; ))\f(s)d;g*(t)
. e *(t
By (5.2.2),

(5-2-10) T(flygz)**(t) h’;*(t) € ”h3”m€ f*(t) [T?g(s)ds
t

g
by (5.2.3), and

(5.2.11) T(Fr.a0)%+(t) = hs(t) < || hull,, fff,e(s)g*;(s)ds

tFx(t)gk(t) + j F+(s)g*(s)ds
t
by(5.2.6). Comtining inequalities (5.2.8) and (5.2.10) we have

(5.2,12) T(f,gz)**(t) & h¥*(t) + h¥*(t)
<'l f” Ac(s)ds J“ A (s)ds + f*(t) [w lg(S)dS
t | f “g
fx(t) g*(t) g* (t)

] 00
= [+ ds + f ‘
k fi(t)xf(s) s + *(t)]g*(t)xg(s)ds

= fxx(t) Jw A (s)ds
g*(t) 9

on the other hand (5.2.9) and (5.2.11) vyield,
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(5-2:13) T(f191)7‘:*(t) £ h’;‘*(t) + hf:\‘(t)

¢ tFae(t)g*(t) + [ Fx(s)g*(s)ds .
t
Therefore combining (5.2.12) and (5.2.13) we get
T(f,g)**(t) ¢ T(f,gl)**(t) + T(f,g,)**(t)

¢ fex(t) [ Iw Ag(s)ds + tg#(t)) +rf*(s)g*(5)ds

*(t)
g* o t
= Fri(t)gre(t)t + J fx(s)g*(s)ds. +

t

Using (5.2.7) and Hardy type inequalities we caneasily derive

continuity results for convolution operators acting on 0.C.L.H.Z. spaces.

We shall consider first the abstract version of the celebrated

Fractional Integration Theorem due to Hardy-Littlewood-Sobolev- 0'Neil.

(5.2.14) THEOREM. Let X;, i =1,2,3, Y be r.i. spaces and

let T be a convolution operator. Moreover let A be a generalised Young's

function, then

(i)' if there exiéts a constant & > O such that

(5-2'15) (bxa(t?t £ B (bx‘(t) (bxz(t)r V t>0

and A is a Young's function such that A, ¢X , ¢, verify the conditions of
= 3

Y

(2.3.1), then there exists an absclute constant C > 0 such that

“T(f’g)I'A(A’¢X3’¢Y) < ¢ ”fllM(X1) ”gllA(A’¢x »¢y)
. 2
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(ii) If (5.2.15) holds and A is such that A, ¢X;’¢Y satisfy
the conditions of (2.3.4), then there exists an absolute constant C > 0 such

that

J A(T(f,g)**(t)¢X3(t))d)Y(t)th < ¢ ||l M(X1)l A(f:‘:(t)cbxa(t))q)Y(t)-d—tt—
0

Proof. We shall prove only (i) the proof of (ii) being similar.

Let f e Z(M(X1)), g € Z(A(A,y,0y)), then
¥ =1 K% -1 co*(u) i‘i
T(F,0)0(1)0, (1)) < grx(t)ay (£) + 6y (£)0 {%Zm :

Let du(t) = ¢Y(t)d—tt- , then

*k ' *x 92 87
O NTE o 1y gy € ooyl (o ”P( )”A(A byz0y)

but,
Ig_f;.e"

b %l e

1

B o) < ©
"
£C ”gllA(A’¢X2’¢Y) .+

On a similar vein we can prove a general convolution theorem
for 0.C.L.H.Z. spaces. We shall formulate the result for Young's functions
although a suitable generalisation holds for concave generalised Young's

functions.

(5,2.16) THEOREM. Let T be a convolution operator, let

Xi’ Y, i = 1,2,3 be r.i.spaces and let A,B,C be Young's functions. Suppose

that the following conditions are satisfied,




102.

(i) 3 8 >0 such that ¢>X3(t)t <0 ¢X1(t)¢xz(t)' Y t>o.
(ii) 3 M >0 such that A71(t)B™(t) ¢ M C71(¢t) , ¥Yt>o0.

(iii) c, ¢x and by satisfy the conditions of (2.3.1),
3

Then, there exists an absolute constant r > 0 such that

3

We shall show that conditions given above are best possible.

(5.2.17) THEOREM. Let X(- ®,2), Y(- o,@), Z(-o ,o) be

r.i.spaces, let T be the convolution operator given by

T(f,g)(t) = f x g(t) = f f(s)g(t - s)ds.

-00

Then,
(i) a necessary condition for T to define a bounded bilinear

operator, T: X x Y + Z, is the existence of 6 > 0 such that

6,(t).t € 6 ¢,(thp,(t), vV t>o.

(ii) Suppose that t ¢Z(t) 3 ¢X(t)¢Y(t), V> o.

then a necessary condition for T to define a bounded bilinear operator,

v g Vel clal
T: A(Aq1'¢x'1) x A(Aq2,¢Y, 1) -+ A(Aq3,¢z, 1), is thdtqg < ql+ 3, where
q.
q.(t) = 5;!— ,0<gq; €, i=1,2,3 with the convention that
i i

A (8) =X 1 (8) + oy oy (0)
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Proof. We shall omit the simple proof of (i) (cf [h] ]).

Suppose that T defines a bounded bilinear operator,

. v n n
T: A(Aq1,¢x,1) xA(Aq2,¢Y,1) > A(Aq3,¢z,1) and that

¢z(t)t > ¢x(t)¢Y(t), Y t > 0, but to the contrary %-+ 1ol Let

€ be such that l—+ l-+ 2c = 1 . Then define .
9 9 93
_(l +¢)
{log |2 t|) "9, / ¢x(|2t|) if |t] 3 e
f(t) = 1
(log |2 e|)‘(;; + &)/ 4 ([2e]) iF || < e
-(_].. +€) .
(log |2 t}) a, 7 ¢x(|2t[) if |t] >e
g(t) = 1 -
(log |2 e()-(;; € o, (2e]) it [t] < e

It follows that f and g are symmetrically decreasing functions and moreover

J[f*(t)¢x(t)]q1 %} '€ const 1 [f(t/2)¢x(t)]q! %}
0

-1-eq; dt
t

< oo

€ const J (log t)
e

. v - "
i.e. fe A(Aq1,¢x,1) and similarly g ¢ A(Aq2,¢Y,1)

However, for |t| > e , we have

(fxg) (t) > j f(s)g(t-s)ds = J f(s) g(s-t)ds
2t 2t

200

s ] fsrotsrs - [ [64(2)6,(29)] 1 (log 25)™ /9245
2t 2t

> Em[¢z(25)]'1(log 25) "1/ 9345
t
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> zr[¢ (25)]—1(loq 25)_1/q3 ds
> . 7 :
t

)'I/Q3

]
pY E;TETY (log 6t

Motice that (fxg)(t) > 2.e f(e)g(e) for 0 < t < e, therefore

(Fxg)*(t) 2 const. (log 6t)—1/q3 / ¢Z(6t), for t > e

hence,

[T(f*g)* (t)¢Z(t)]q3 %} > const I: (log 6t) "1 %}

2 ®
N
)

Thus, f & g ¢ A(Aq T , a contradiction. +
3

5.3, APPLICATIONS. !n this section we give several examples

illustrating the results obtained in this Chapter and outline several

generalisations.

(5.3.1) FRACTIONAL INTEGRALS, Llet 0<aqa < 1, and

define | f(x) = | —-~f(Xl—- dy , the Riesz fractional integral of
a n - IT(-]"(X)
RT - [x-y|
f of order a . It is well known and easy to see that r(x) = 1/|x|n(1-a)

£ L(%- , ®) (R"), thus since qu =f xr we get from (5.2.17)

THEOREM. Let X(RP), Y(RM) be r.i. spaces, then a necessary
condition for |1, to define a bounded linear operator lg : X > Y, is the

existence of 6 > 0 such that ¢ (t)t < 6 ¢, ()t* . +

Sufficient conditions for |1, tc act continuously on
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0.C.L.H.Z. spaces are given in (5.2.14). It should be noticed that our

results allow us to handle more general operators as well.

(5.3.2) SOBOLEV SPACES. Let X(R") be a r.i. space, we

may construct '‘range spaces'' for operators acting on X. For example, let
a > 0, and consider

Xo(RM) = {f: 3 g € X such that G xg = f}
with,

”f|lxa(Rn) = ”9l|x

where,

w
—
X
~—
[}
+

(1 + |x|2) %2

or explicitly
QO

J TAX|? on/2 +a/2 -1 -t

0

Ga(x) c dt

osn

observe that Ga e L1(RM).

Using our results for product operators we can obtain embedding

theorems for the Xy Spaces. We shall consider here the case where X = L(p,q).

Let 1 <p <2, then L(—E— , ©) % L(p,s) ¢ L{(q,s), where
o n-o =
i n-o i 1 o n
- = —Z —_— - = — - — < - . ’ Y s
p — + > 1 > = 0 <s g o, and L(a’rl) L(q,r;) ¢ L(p,r,)
where l-s 1,1 , 0<r, o, i=1,2,3, in particular L(Z,»).L(q,s) ¢ L(p,s),
1 M2 T3 ! a =

thus we have the following

THEOREM, Let 1 <p <Z ,0<s<®, and suppose that
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f € L(a'rl ,m), g ¢ La(P,S), then
198l o0y € CIFI L@ oy 8l (o)
. o

where C is an absolute constant.

Proof. Use the previous remarks together with the fact that

Gy ¢ L= ). +

In the particular case where s = p, the above result is

known as the "'Strichartz inequality' (cf [g7] and [18])

(5,3.3) Let G be a locally compact abelian group, and let
x(E) be a r.i.space, consider

X, (6) = {f ¢ L1(6): f e X(6))

Il 1] X~ " UFlh > Il xa)?

A

where f denotes the Fourier transform of f. One could easily formulate
theorems concerning the continuity of t.p.o. or p.o. on these spaces

using our results. See [11] .

(5.3.4) NON-COMMUTATIVE R.,I. SPACES. Let R be a von

Neumann algebra on a Hilbert space H, m be a faithful semifinite normal
trace on R, and let F denote the ideal of elementary operators, L the
algebra of locally measurable operators. (See [60] for notation and

background information).

We shall say that A € K if A € L and there exists. a projection
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E e F such that A(1 - E) ¢ R.

We denote by []I{wthe usual operator norm on R and for A ¢ L
we denote by |A| the operator (A*A)l/2 with spectral resolution
Q0
[A] = Jx d E(}).
0
Let A ¢ K then we define the rearrangement of A by '

A (s) = inf {X e [0,@):m(1 - EM)) <35} .5 ¢ [0, ).

It can be shown that

A*(s) = inf{||A(} - E)llw : EeF, m(E) ¢ s} .

Let X(0,») be a r.i.space, then we define a non-commutative
r.i.space of operators as follows: we say that A ¢ K belongs to X(R) if

and only if A, ¢ X(0,»), and we define

”Allx(R) = ”A*IIX

In this generalised setting it is possible to obtain a parallel

theory to the one presented in this thesis for the commutative case.

Consider for example the estimates that hold for a convolution

operator, i.e. let T be a bilinear operator such that

I T(ABYIE, < JJAllL I8,
IT(ABY I, < NIAllL (1Bl

1Al 118l

IT(A.B) ],

N

then, if we denote
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fe L(g',m), g e La(p,s), then
Hfsll Lp,s) € CHFll L@ o) llsll Ly (Prs)
_ a

where C is an absolute constant.

Proof. Use the previous remarks together with the fact that
n LY
Gy € L(n—_a— ). +

In the particular case where s = p, the above result is

known as the ''Strichartz inequality" (cf [57] and [18])

(5.3.3) Let G be a locally compact abelian group, and let
X(E) be a r.i.space, consider

X, (6) = {f ¢ L1(6): fe x(6))

(M X~ " UFll > 1 x(@)?

where f denotes the Fourier transform of f. One could easily formulate
theorems concerning the continuity of t.p.o. or p.o. on these spaces

using our results. See [ll] .

(5.3.4) NON-COMMUTATIVE R.I. SPACES, Llet R be a von

Neumann algebra on a Hilbert space H, m be a faithful semifinite normal
trace on R, and let F denote the ideal of elementary operators, L the
algebra of locally measurable operators. (See [60] for notation and

background information).

We shall say that A € K if A€ L and there exists: a projection




107.

E e F such that A(l - E) ¢ R.

We denote by |]||mthe usual operator norm on R and for A ¢ L

we denote by |A| the operator (A*A)”2 with spectral resolution

|A| = [ A dE(A).

0

Let A ¢ K then we define the rearrangement of A by
- A (s) = inf (A e [0,0):m(t - E(R)) s} , 5 ¢ [0, .

It can be shown that

A (s) = inf{]]A(} - E)”oo : Eg F, m(E) ¢ s} .

Let X(0,o) be a r.i.space, then we define a non-commutative
r.i.space of operators as follows: we say that A ¢ K belongs to X(R) if

and only if A, ¢ X(0,»), and we define

”Allx(R) = ”A*||x

In this generalised setting it is possible to obtain a parallel

theory to the one presented in this thesis for the commutative case.

Consider for example the estimates that hold for a convolution

operator, i.e. let T be a bilinear operator such that

7B < [[Afl. (Bl
IT(ABY ][, < (1Al (IB]],

IT(A.B) ], < ALl llBll,

A

then, if we denote
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K(T(A,B),t, L' (R), L"(R)) = K(T(A,B),t)

K(A,t,L*(R), L(R)) = K(A,t)

K(B,t)

K(B,t,L'(R), L”(R))
where K is the K-functional of Peetre [h7 ] , we get
[m du
K(T(A’B)’t) ES K(A,U) K(B’U)UZ—
X

and one can show (cf.[h7 ]) that

) t
K(A,t) = l A,(s)ds.

Therefore,

T(a,8),, (t) gj A, (u) B, (u)du

1 (M t
where A (u) = 3 J A, (s)ds, etc.
0

From the above inequality we can derive convolution theorems

for non-commutative r.i.spaces.

We can treat similary the case of product operators, indeed
let I be a product operator, then we get
N ] t
M(A,B) ,, (t) € © j A, (u) B, (u)du

0
using the K-method of interpolation . Moreover, we can prove the sharper

inequalities (5.2.7) and (5.1.2) using suitable modifications of the proofs
given in this Chapter. (See [60]where the casa of product operators is

considered.)

5.4, NOTES TO CHAPTER 5, The central idea of this




109.

chapter{i.e.to obtain inequalities for the maximal rearrangement of bilinear
operators from their behaviour in the ''extreme spaces'')seems to have

originated in the work of 0'Neil [hs] by suggestion of E.Stein.

Several results in this chapter can be also obtained using

interpolation theory. (See (5.3.4).).

Consider for example the case of convolution operators. Let
T be a ¢c.o. and let X(-w,x) be a r.i.space then by Calderdn's interpolation

theorem T defines a bounded bilinear operator

{M(X) x Alx') 5 L™
T:

M(X) x LT - M(X)

Let f ¢ M(X), and consider the operator
Te(g) = 7(f,9)
then applying the interpolation theorem (3.2.3) we can get a different proof

of (5.2.14).

Similarly we can get a different proof of (5.2.16), if all
the Young's functions are powers, using complex interpolation. (The theory
of complex interpolation for 0.C.L.H.Z. spaces follows from the inequalities

proved in Chapter 2 and the general theory derived in Calderén[Q].)

it could be of some theoretical interest to find representation
theorems for p.o. and t.p.o..(In [l,] it is shown that if T is a c.o. and T

is translation invariant then T is essentially the usual convolution operator).
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CHAPTER 6

APPLICATIONS TO THE THEORY OF

INTEGRAL OPERATORS
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0.1, BOUNDED OUTPUTS. We consider the following admissibility
or stability problems: we are given two B.F.spaces X(Q), Y(Q) (the input
space and the output space) and are asked to characterize

A(X,Y) = {Ke M(Q x Q): zk(f)(y) = J k(x,y)f(x)dx

Q
defines a bounded linear operator, z,: X+ Y} .

[

In general no simple characterization of the set A(X,Y) is
' . P ) .
known even when the given spaces are L spaces. However, in some special cases
which are of interest in applied mathematics, positive results are known. For

example A(LP,L®) has been completely characterized for 1 < p £ . (See Corduneanu

[13].)

In the applications one usually considers B.F. spaces with weights.
Naturally, when we consider B.F.spaces of vector valued functions the problem

of considering a suitable type of weighting scheme becomes complicated.

In this section we use ideas of [19]to contruct weighted B.F.spaces,

of vector valued functions, which are suitable for the applications.

Let X(0,») be a B.F.S.of Lebesgue measurable functions on (0,),
from it we can construct a B.F.S. X of Lebesgue measurable functions, defined

on (0,o) with values in R" , as follows

x((0,2), R") = {f: |f] e X}

e, = WeL I
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. , . oh
where |[f(t)] is the norm of f(t) inR . In what follows we shall only
consider B.F.spaces of vector valued measurable function constructed in

this fashion.

We shall now explain the method we use to construct weighted

B.F.spaces. .

tet G: (0,) > Hom (R",R") and assume that t - l6(e)|] is
uniformly bounded on compact subsets of (0,2), where ||G(t)|| denotes the
norm of G(t) in Hom (R",R"). Let R(t) and N(t) denote, respectively, the
range and the null space of G(t) and let PG(t): R" > R(t) be the orthogonal

projection onto R(t) and define

6 (t): R"-N(t)" , by

67 (t)x if x e R(t)

G_i(t)x = .
0 if x e R(t)

The operator G_l(t) will play in our theory the réle of a

weight.

Observe that if G is measurable, an assumption that we shall

make in what follows, then G_ is &lso measurable (cf.[19 ]).

(6-1.1) EXAMPLE, Let g;: (0,2) > (0,~) be continuous functlons,
¢ icn, let 6(t) = diag (g, (t),....,g _(t)), then G_, (t) = diag (g:(t),..,g:‘(t)).
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(€,1,2) DEFINITION. Let X((0,»),R") be a B.F.S. and let
G: (0,) - Hom (R",R") be a mapping verifying the above conditions. A
measurable function f: (0,o) » R" is said to be in Xg if and only if the

following conditions are satisfied
(i) POF(t) = F(t) a.e. te (0,0)

(Fi) ”G_l(t)f(t)llx < oo

It is not difficult to prove the following

(6.1.3) LEMMA. XG is a Banach space.

Proof. It is clear that Xg is a linear space and ”f']XG= ”Gq(t)f(tﬂlx

is a seminorm. Suppose that ”f}lx = 0, then G.;(t)f(t) = 0 a.e., and since
G
f(t) = G(t)G-,(t)f(t) a.e. we obtain f(t) = 0 a.e. . Therefore || le is a
G

norm.

Let {fn} be a Cauchy sequence in XG’ then hn(t) = G_l(t)fn(t)
is a Cauchy sequence in X , whence there exists h g X such that 1lim ”hn-h"X= 0.
Define f by f(t) = G(t)h(t). Observe that hn(t) e N(t)'a.e. ¥ nn€+Nf
therefore a simple argument shows that h(t) ¢ N(t)L a.e., thus

PG(t)f(t) = f(t) a.e.. Finally we observe that fn > f in XG is a simple

consequence of the fact that hn - h in X. +

We shall need some definitions which are standart in the theory

of stability of feedback systems.
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(€.1.4) DEFINITION. Let X((0,=),R") be a B.F.S. and

Y((0,=) ,R") be a Banach space of continuous functions, moreover let T be a
linear mapping, T: X - Y. We say that (X,Y,T) is a "linear system'; if T
is bounded we shall say that the linear system (X,Y,T) is 'stable', and
if in addition for everv bounded set B in X and every ty € (0,%) we have

that TB is equicontinuous at t, we say that (X,Y,T) is "strongly stable'.

(6.1,5) DEFINITION. Let G be a mapping G: (0,%) > Hom (R",R"),

verifying the conditions set out at the beginning of this section. We shall
say that a continuous function x: (0,o) > R" belongs to CG((O,w),Rn) if and
only if

(i) P(O)x(t) = x(t) Vte (0,0.

(i) x|l g = SUP | 6o (O)x(e) | <=

’ m)

. : n
where | | denotes the euclidean norm of R .

n

Let k: (0,9)x(0,%) -~ R™" be measurable and consider the

integral operator K(x)(t) = l k(t,s)x(s)ds.

(6,1.6) THEOREM, Let X((0,<),R") be a B.F.S. such that X
has a.c.n.. Then a necessary and sufficient condition for (X,CG,K) td be

a strongly stable linear system is that the following conditions hold:

oo {oe]

(i) PG(t) {I k(t,s)f(s)ds} = I k(t,s)f(s)ds, VFfeXx, te (0,9.

(ii) ”G-l(t)k(t,-)llx, = b(t) e L™
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(i) Vim Jlk(t,e) = k(tg,*)|] 4o =0 Y, ¢ (0,m).
t->t,

Proof. Let f ¢ X, and assume that conditions (i), (ii), (iii)

are verified. Then

621 (OK(F) (0] < f [6-1 (£)k(t,8)| |F(s)]ds
0
< |iv]], Hfl]x. (by H81der's inequality)

Moreover, VY t, e€(0,») we have
[K(F) (2) - k(F)(to) | < [[k(t o) = klto, )|l ,0 [IFIF
+0 as t >ty .

Thus the system is strongly stable.

We shall now prove that conditions (i), (ii), (iii) are necessary

for (X,CG,K) to be strongly stable.

Suppose that (X,CG,K) is strongly stable, let

S(f)(t) = J G-, (t)k(t,s)f(s)ds = G_,(t)K(f)(t), then by our assumption there

0
exists M > 0 such that

Is(E) 11, = MK Q1 g <« MIF]]

Let {e;,...... ,en} be the standart basis of Rn, <, > the standart

inner product in R", and define

Sl_j (f)(t) = J <G_1(t)k(t,s)eJ-, ey f(S)dS
0
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where f € X, 1 € i, j € n. Then,

S'J(f)(t) = <S(f€j)(t), e;>
where éj(t) = ej Yt e (0,0). Therefore by the Cauchy-Schwartz inequality
ISij () ()] < Is(f.&;) (¢}

HS;j(f)ILnS thP(O’m)ls(f-ej)(t)| < M|f X

[

It follows that each Sij defines a bounded linear operator from X into .

let t ¢ (0,) be fixed, then Sjj(+)(t) defines a linear operator Sij(-)(t):i + R

for each (i,j) ¢ {1,...... n} x {1,....... n} , and,
Cosup [Sij(A)(E)] = sy ()l e M|[fll g€, YV FeX
t € (0,)

By the Banach-Steinhauss theorem we obtain constants Mjj such

that
sup |[[Si()(e) ]| € Mjj» 1 &0 ¢n, 1¢J&n, where
t e (0,0
|||Sij(°)(t)||| denotes the norm of the operator Sjj(+)(t).

Since X has a.c.n., it follows that
afj(s) = <G.,(t)k(t,s)ej, e;> ¢ X' for each t ¢ (0,=), 1 61 &n, 1¢jsn,

and moreover

EARICIHEN BT
Now we estimateIIG-l(t)k(t,')” X'

‘G.l(t)k(t,s), £ C i§j| <G, {t)k(t,s)ej , ey>]
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) . t
”G-I(t)k(t’ )” X! « C '};J “al_j” X! £C l{:_j Mij < e
where C is an absolute constant.

Therefore, |[b]|_ < ® , and thus (ii) holds.

It remains to prove that (iii) holds. Let € > 0, and ty € (0,»),

then there exists § > 0 such that
AR (E) - K(F) ()] <e VY Fez(X), [t -ty <.

Let t be fixed such that |t - to] < §, and define
¢; X > Rby ¢.(F) = < K(F)(t) - K(F)(ty), e, >, 1 i & n, then ¢, e X¥,
”¢;” € € and using the a.c.n. property of X as above we get the necessity
of (iii). +

Similarly we obtain the following

(6.1,7) THEOREM, Let G and H be mappings,
G,H: (0,») - Hom(R” , R") verifying the usual conditions, and let X((0,»),R")
be a B.F.S. such that X has a.c.n., then (XH’CG’K) is strongly stable if
and only if the following conditions hold:
(i) PG(t){rmk(t,s)f(s)ds} = [:(t,s)f(s)ds, fe Xy Vit e(0,).
)
0
(i) Iy (B k(t, )H() || i e L7

(i) Vim|JHC){K(t,+) - K(to,*)}] 44 = 0. +
t >ty

(6,1.8) REMARK. The condition (i) in (6.1.7) is easily seen
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to be equivalent to PG(t)k(t,s)H(s) = k(t,s)H(s).

The above results show that stability problems involving B.F.
spaces of vector valued functions can be reduced to stability problems of

B.F.spaces of scalar valued functions.

The problem of characterizing A(X,L®), where X is a B.F.S., is
simple because X Q(L“)' = L' (X), therefore (see §2.5. below) A(X,L®) = L®(X'),

whenever X has a.c.n. (Compare with Corduneanu [13].)

For positive kernels we have the following dual result,

(6.1.9) THEOREM. Suppose that k:(0)x(0,0) + R, and sign k(t,s)
is a functions of s only, then(L®(0,»),X(0,o),K) is stable if and only if

ke X(LY) . +

€.2. STABILITY RESULTS AND TENSOR PRODUCTS OF FUNCTION

SPACES. In view of  the results obtained in the previous section we
shall restrict ourselves to consider B.F.spaces X(0,®), Y(0,), Z((0,*)x(0,))

of real valued functions.

(6,2.]1) DEFINITION. We shall say that (X,Y,Z) is stable if
and only if Vk ¢ Z the integral operator zk(f)(x) = lk(x,y)f(y)dy defines

a bounded 1inear operator, zk: XY,

Similarly we shall say that (X,Y,Z) is ''strongly stable" if
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z,: X >Y is compact, Yk e Z.

k
(6€.2.2) LEMMA. (X,Y,Z) is stable if and only if 3C >0
such that
(6.2.3) lizl <clill, + ¥kez,
where |z, || = sup Nz ()]l y: f e z(X)}
“Proof. Suppose that(6.2.3) is not verified, then there exists
a sequence {kn} , kn eZ,n=1...... & kn 20, n=1 ..., and
z > nd® ||k . Let k = % n , then k ¢ Z but ||z, || = =,
| lknll I I |2, |l
thus (X,Y,Z) is not stable. +
Combining (6.2.2) with the Arzela - Ascoli theorem we obtain

the following

(6.2.4) THEOREM. Suppose that Y and Z are separable B.F.

spaces, then (X,Y,Z) is stable if and only if (X,Y,Z) is strongly stable. +

The admissibility results can be now derived from the following

consequence of Holder's inequality (‘'direct' and "inverse'')

(6.2.5) THEOREM. (X,Y,Z) is stable if and only if X 8 Y' is

continuously embedded in Z' . +

Combining (6.2.4) and (6.2.5) we obtain the following generalisation

of classical results concerning Hilbert-Schmidt operators acting on P spaces
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(cf. [13]).

(6,2,6) THEOREM- Suppose that X' and Y have a.c.norms,

then (X,Y, Y(X')) is strongly stable. +

We look now at the case where the spaces involved are
rearrangement invariant (of course these results can be then applied to
obtain admissibility theorems for r.i.spaces with weights). From (6.2.5)

and (4.1.2) we get

(€.2.7) LEMMA. A necessary condition for (X,Y,Z) to be stable

is the existence of 8>0 such that

(6-218) 5¢y(t) £ e(&(t-S)(bx(S), Vt,S >0 . +

Positive results can be now derived using the results of

chapters 4 and 2. For example,

(6.2.9) THEOREM.,  (A(X), M(Y), M(Z)) is stable if and only

if (6.2.8) holds.

Proof. Follows from (6.2.5) and (4.2.1). +
The reader will have no problems to state and prove the

admissibility results for 0.C.L.H.Z.spaces that follow from our previous work.

6.3 NOTES TO CHAPTER b, The reader will find a complete

set of references for the theory of admissibility of integral operators
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in [13]. In [13 ] it is shown how these results can be applied to obtain
existence and uniqueness of solutions of integral equations, and moreover

to study the properties of the solutions of non linear integral equations.

The results concerning the stability of triples of function

spaces generalise the important work of 0'Neil [43].

Jt is interesting to point out that for bilinear operators
which behave on the ''extreme'' spaces in a similar way as ordinary integral
operators we can obtain a parallel theory. Let T be a bilinear operator such
that

1T, <kl NTFlL

IT GO Ml <kl NIFl,

then, (cf. [h3] )

T(k, f)*x(t) < Jmk*(t.s)f*(s)ds.
0
Using the above inequality one can obtain continuity results.

The general setting of 0.C.L.H.Z. spaces is of particular
interest since we can prove results that hold simultaneously for L(p,q)

spaces and Orlicz spaces with weights.
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LIST OF MOTATIOM

page
I(x) = {f e x: llfHX 1}
S(x) = {f e x: ||f||x =1}
B.F.S. ‘ (xi)
r.i.space {Xiii)
X! g (xii)
;, Luxemburg representation (xiv)
8, condition | (xv)
ny condition ‘ (xv)
Young's function ‘ (viii)
Generalised Young's function (viii)
Young's complement (viii)
Inverse of a generalised Young's function (viii)
A, condition (ix)
V2 condition (ix)
A condition (x)
a.c.n. property (xii)
Measure space ' (x)
M(Q) (x)
Spaces
A(X), Lorentz space associated with X (xvi)
M(X), Marcinkiewicz space associated with X (xvi)
M (X) (xvii)
LA’ Or!icz spaces (x)

£(X), Calderén spaces ]
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page
A" (X) 5
GA™H (x) 8
0(X), Orlicz space associated with X 38
x° 12
MR, 9y00,), A(A,¢X,¢Y)'“, 0.C.L.H.Z.spaces 22
x(Y) 74
Xg " 113
Operators
b 12
4 28
t.p.o. {tensor product operator) 69
p.o. {product operator) 90

c.o. (convolution operator) 97
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