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Some results are given connecting the concepts of
g-derivatives and Jacobians on differentiable manifolds.
Also some general properties of Gauss structures on manifolds
important for our problems are discussed here. The connection
between g-derivatives and Jacobians is given by studying
the following problem: Given two differentiable manifolds

M and MI’1 and a differentiable map ¢ : M > Mr’1 with

Wy ¢ )] > 0% for each x e M, find a g-function f and
b

families of coverings (V,V°) such that f: (Mn,V) > (M;l’ V)

generates ¢ , and for suitable Gauss structures F, F~ the
g-derivative DF generates a continuous function ¢ , such that

for all x ¢ M : Y= |[J; ) ¢ (x)| for convenient local
b

charts U,U”.

* J

.y ¢ (x) means Jacobian of ¢ for 1local charts U,U” with
b

x ¢ U and ¢ (x) ¢ U".



Actually what we have is an intrinsec concept of

derivative in manifolds ( this concept can be defined in

.

any T, space ) which in the case of differentiable

manifolds coincides in a very reasonable way with
the wusual concept of Jacobian which is an extrinsec
concept to the manifolds in question , like all
differentiation concepts on manifolds. (this concepts
are extrinsec because we have to get out of the
space in question by means of the local charts in order

to define them .

Now for the first time we have an intrinsec

concept of derivative or velocity on manifolds.
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NOTATIONS AND SYMBOLS IN THE TEXT

3 means :  the empty set
=,& means : contained or equal
M means : intersection of sets
s. t. means : such that
means : such that
‘ means : such that
£ means :  belongs to
U means : union of sets
3 means : there exists
¥V x means : for all x
N.D.A. means : Non-deterministic Analysis
int means : interior
A, clos A means : closure of A
> means : implies
: means : if and only if
min = minimum
max = maximum
sup = supremum
inf = infimum
d = topological border
N = natural numbers
R = real numbers
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INTRODUCTION

This thesis studies the problem of how g-derivatives
(i. e. derivatives in topological spaces, used in
non-deterministic analysis) are related to Jacobians when
one 1s dealing with differentiable manifolds. This will.
be a . generalization of V. Buonomano“s result in his Ph.D.
thesis which deals specifically with the Euclidean spaces.
Theorems 6.5 and 6.7 show that the correspondence is an

acceptable one.

Every proof given in the thesis 1is my own.
References are provided for the non-proved statements.

In Chapter 1, we collect the main results from
the theory of differentiable manifolds for later use.
Analogously in Chapter 2, we collect elements from the
theory of simplicial complexes, and finally in Chapter 3,
we review briefly the fundamental ideas of non-deterministic
analysis relevant to this work.

Chapters 4, 5 and 6 represent the core of this
work. In the last two chapters we deal with our main problem.

(See page Uu40)



By non-deterministic analysis (N. D. A.) we mean
a mathematical system in which the wusual concepts of
analysis (continuity, differentiability, etc.) are
expressed in a non-deterministic way; namely we take as
fundamental objects open sets instead of points.

Functions then operate on open sets rather than
on points. f(We call this kind of function a generalized
funqtion, or more specifically, a g-function: cf. 3. 1.)

We shall now discuss the intuitive and
philosophical background of this system as an introduction
to owr work. The remainder of this section is taken from
Sections 1.2 - I.5 in reference (8).

Let us consider some fundamental concepts of
mathematics such as function, continuity and derivative.

When we have a function f : X > Y, where X and Y
are topological spaces, we always adopt a deterministic
position relative tc X and Y, in the sense that we say

that for each x € X, f has a well-defined value f(x)e Y.

A non-deterministic position would sound 1like this: if x is

in some open set in X we can guarantee that f(x) is in some

well-defined open set in Y. This 1s precisely what a

physicist wusually assumes when he is, for instance, observing

the motion of a point; because in general the most he can



guarantee 1is that in a certain small interval of time
the point is in some open set of space, perhaps very small,
depending on the accuracy of the experiment.

Consider the concept of continuous function
f: X > Y. As everyone knows this means that if y is very
close to x then f(y) is very close to f(x). In terms of
open sets it should be reasonable to formulate a non-deterministic
concépt like this: if AC B are open sets in X then f is
continuous in a non-deterministic sense if we can guarantee
that f(A) < f£(B).

Therefore, if we want to formalize these non-
deterministic concepts of function and continuity, we have
to begin to think about functions defined on domains whose
elements consist of open sets and not of points. The idea
of derivative nowadays is always associated with some 1linear
map, since to define derivative we need a certain linear
structure. Because of this it 1is impossible to define a
derivative on a general topological space without freeing
the derivative from linearity.

Immediately, it occurs to wus that perhaps we could
make 1t possible to speak about derivatives in a topological
space X by introducing into X a new kind of structure. This
sounds reasonable because, in a few words, topological
structures were invented to make it possible to generalize
the idea of continuity.

1. To clarify these statements let us begin by



mechanics, which primarily is supposed to study wmovement,
must have a distinguished place in the theory of knowledge.

In this way, trying to generalize the idea of
movement, we were naturally led to generalize and change
such fundamental concepts as continuous functions and
derivatives due to their close relationship with the idea
of continuous movement and speed. This is nothing new
bec;iuse, for instance, Newton was mainly concerned with
the idea of movement when he introduced the concept of
fluxion, and we are going to follow his steps here. Indeed,
‘we have done nothing else but to generalize his ideas.
So we begin, as Newton does, by trying to compare the movements
of two bodies. More precisely, he was interested in
determining how far the speed of one of them was greater
than that of the other, as the reader can see in his work
on fluxions.

In analytic language, if we have a function y = f(x)
graphed in the Cartesian plane, the derivative of f(x)
at x can be interpreted as the relation between the speed
of a point y along the y-axis and the speed of a point x
along the x-axis, where x and y satiéfy the
equation y = f(x). We try now to do the same thing in a
more general situation.

Suppose X and Y are htopological spaces and
f: X+ Y is a function from X into Y. As x changes in



X in general, (suppose f is not constant) y changes in Y.
How can we possibly know how much the speed of y is greater
than that of x?

To do this we must have some way to measure how
far x has moved from one given initial position to another
and also in what direction. To solve this question, let
us analyze the simple case when X is the real line. * In
this case, one says: let us simply use the concept of
distance given by the real numbers: Indeed, that is what
we do, but let us look at this situation from a slightly
different point of wview. Consider in X the set of intervals
defined by the integers, namely all intervals of the form
[n, ntl] . Now if we want to know the position of a point
x after a certain time from the moment it has started from
zero, let us say in the positive direction of X, we simply
count how many intervals it has described. If we need to
improve the accuracy of our experiment, we define a new
family of intervels of length 1/2, and so on. Thus, by
considering intervals of 1length 1/n for arbitrerily large
n, we are able to improve the accuracy of our measurements
as much as we want. Let us remark that this situation is
exactly the one a physicist is ;nost often concerned with.
Now if we have a paper with a millimeter net printed on it,
we can observe and measure the movement of a point P on it

by simply counting the little squares described by P. In



these experiments 1if we consider the time t as a  paramenter
defined by the movement of a point t in a 1line, the average
speed of x in X is nothing else but the number of intervals
described by x dividéd by the number of intervals described
by t.

Analyzing the situation described in the examples
above we conclude that: :

(i The position of the moving point can be
given with the accuracy we want, if we define in advance
in X (a line or a plane ) a family F of collections of subsets

( intervals or squares ) with the following properties:

(a) If o is a collection of F, then o 1is
made up of sets which are closures of
open sets of X, namely, G ¢ a~> A = G,
where A 1is open in X. We see this clearly
if we think of a as a collection of intervals
[n, n#l] in the line for n an integer.

(b) For any G;, 6, € a we have int(Gl)ﬂint(G2)=D

For instance, we see this for [ n, n+1}
and [m, m+l] , with m#n.

(c) Given any open set A of X, there is a
collection @ € F such that some G € a is
contained in A. In the line it suffices

to take a as the collection of intervals



of length 1/n for n sufficiently large.
(@) Giyen any point x € X, there is a

neighbourhood of x which intersects only

a finite number of sets of a, for any a in

F. In the line this is true for our

previous collection of intervals.

(ii) If we consider the question of measurihg
the bosition of a moving point as a question of 'counting
sets", we immediately realize that no question of "homogeneity
of space" is involved, and at this point we believe that
since Kant, through Riemann until B. Russell there has
been a continuous mistake in trying to put at the very
beginning of the possibility of measure in geometry, the
homogeneity of space. We think this was due to the Kantian
conception of space as an intuition " a priori which
seemed to carry with it, for some unexplained reason, the
idea of homogeneity of space and, therefore, the idea of
measure based on it. We cannot understand why the concept
of space, as an intuition "a priori”, has to imply the
concept of homogeneity. By accepting the space as a pure
intuition there is no reason to infer the statement '"the
space 1is homogeneous”, as a synthetic Jjudgment "a priori" .
Neither can we maintain that statement as "a posteriori® ,
because even in a common and everyday experiment of measuring

land with a chain, it is an ideal conception to suppose that



the chain 1is always of the same size. It is not, for many
reasons: change in temperature, change in the strength

we apply to it, etc. Therefore, we don”t see any reason

why the possibility of measurements in geometry has to start

with homogeneity assumptions.

2. To advance a further step towards the general
case, we now discuss more fully the concept of novement.
Llet . us see what a physicist really does when he observes
the movement of a point. First of all he needs a scale for
measuring time. Let us suppose, to fix ideas, that time
is running from 0 to 1 and so t 1is a real variable in the
interval [O,l] . Now, the movement of P in space (for the
moment supposed to be the usual euclidean space R3) is given
analytically by a function f : [O,l] > R3. But this is an
ideal situation, of course, in the spirit of classical
mechanics, because first of all we can never have precisely
an instant t and secondly we cannot find an exact position
for P. So really what the physicist does is to subdivide
[0,11 into a finite number of intervals and then to assert

that in the interval [t TR +l] the point is 1in a certain

open set in R3. (We use open sets to prepare for the ideas
we have to introduce later.) In a few words, our experiment

suggests a study of a correspondence between open sets in

[O,l] and open sets in R, If our physicist wants to

improve the precision of his experiment,
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all he has to do is to consider finer subdivisions of
[0,1).

In the present case, at 1least theoretically, by
using finer and finer subdivisions of [Oglj , we could get
the position of P as accuralety as we want, because all

3

points of R” are of countable type. A completely different

situation would arise if we consider maps f : [0,1] -+ X,
where X may have points of arbitrarily large transfinite

type. Let us discuss this question further.

Suppose Xg is a point of X of transfinite type

a > X with X, the first infinite cardinal number, namely

) 0

X, has a base of neighborhoods whose power is equal to a.

0
Now suppose we know that in the interval of time [ti, t; +1]

of [0,1] the moving point x is in a certain neighborhood

V(xo) of X In this case, even if we refine more and more

the intervals in [O,l:[ we have, theoretically, always an

imprecision in the position of x around X, because we cannot

have a countable number of neighborhoods of X let us say

Vl(xO)’ VZ(XO)’ . e ey Vn(xo), .

such that
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Therefore, the non-deterministic character of the

position of x around X, is due to a geometrical property

of space and nothing else. We call attention to this point
dut to its relation with many situations in modern physics.

3. The examples above suggest that if we want to
extend the concept of continuous movement to general
topological spaces, we have to change fundamentally our usual
conceptions of continuous functions. Also, as we show
later, the concept of derivative has to be completely
changed if we want to introduce the concept of speed into a
topological space. Of course, besides these physical reasons ,
there are many mathematical vreasons to suggest that we
should abandon the wusual concepts of continuity of functions.
This leads us to the concept of generalized functions or
g-functions and their continuity.

At this point one could ask how the idea of speed
can be introduced if the movement of a point is defined by
such a correspondence of open sets as above?

To answer this question we take again our example
of the movement of a point P in the plane. We suppose, as
before, that a family F of collections a of rectangular
sets is defined in it, made up of squares of smaller and
smaller diameters, and let D be a subdivision of I= [O;g
consisting of intervals of the same length which covers

I. So we can imagine "an ideal point” P in some open subset,
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A, of the plane in some time interval J < I. Now if we
did this for each J < I we would have the path of P. But
instead let us fix a J and its corresponding A.

Now suppose that to each subdivision D of I we
associate a collection o € F such that to a subdivision D”
finer than D will correspond a collection o € T finer than
a. So given the sets Jand A let us call n(J,D) and n(A,a)

the. number of sets of D and o intersecting J and A, respectively.
Then we can say that an “average speed" of P in J is

n(A,0) .
nJ,D)

Now if we consider finer subdivisions D and correspondingly

finer collections we can consider the “limits"
- n(A,C(,) . n(A-,OL)
Lm o a@ny ™ HRLEny

as possible bounds for the average speed of P in the interval

J.

This example suggests how a possible generalization
of the concept of derivative could be defined. All we Thave
to do is to define precisely, in a general situation, the
several concepts sketched above.

So looking back, we see that the study of the

movement of a point led us to the idea of generalizing

two fundamental notions in mathematics:  continuity and
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differentiability. From now on, in a certain sense, we
can forget about the physical motivations and start
creating a ‘"generalized calculus" or a ‘'non-deterministic
analysis". In Chapter 3 this 1is done formally.

4. Before closing this section we want to remark
that one so far has received the impression that the concept
of a g-function was motivated only by certain situations in
physics. This is not the case. The concept of a g-function
was motivated alsoby certain problems in homotopy theory, which
arise because of the fact that, in general, one can”t map
continuously a point of one transfinite type into a  point
of higher transfinite type.

After g-fuctions were first applied to homotopy
theory and algebraic topology then it was thought that
g-functions might be a more "natural" way to express paths,
etc. This then led to the development of the g-derivative

and other concepts in N. D. A.



CHAPTER 1
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MANIFOLDS

DIFFERENTIABLE
1.1 Definition: A C* -

of dimension n is a pair (M50
i

and second countable space, and ¢

such that the following conditions

1) {dom ¢} .

i e ¢
2)

open set

3) for

the map {¢j(¢i _l(u))} (u ¢

from ¢, (dom ¢, M dom ¢.?
J

smcoth  or
4) ¢
O’
for k finite
than
k

call it a

is maxinal

(o]
1, 2 sy, w0,

k may be

means all paprtial

equal to ¥ > 0 ewist énd

or

AY - -
C* ¥ k. €% nmeanz veal analytic.

Ui is the domain of ar is

called a 1local chart

where M_rl

a homeomorphism

differentialble
relative
where C° means continuous, C

derivatives of

called

homeomorphism

Sometimes we will call Ji a

1.2 Definition: Let ¢&:

iocal «<¢hart

differentiable manifold

is a Hausdorff

is a collection of maps

hold.

is an open covering of M.

onto an

¢ ¢ (dom é;) ¥ (dom ¢)# 0,
¢5)
into R™ (we will

(*)

anda

Ck map) .

to 2) 3).

k

order less

. [o+]
are continuous. C means

Th where

D

pvair {(U. )
pair {U., ¢l),

a lccal chart. ¢i is

coordinate.
itself.

or locail

in

Mn+.£ be a continuous function

P

(*) For brevity,

¢; O . -1

-1
3 for ¢j(¢i (Wi, ue

we shall sometimes use (improperly )the notation

¢; (dom ¢i(?'dom ) j).
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from the differentiable manifold Mn to MP° We say that

¢ is differentiable or smooth of class Ck if the function

. -1
given by {Wj(¢(¢i (W)}, u ¢ ¢i(Ui{ﬁVj), from ¢i(Ui(\Vj)
into RP is differentiable of class Ck, where (Ui,¢i)

and (Vj,wj) are coordinate neighbourhoods of M, and Mp’

respectively. .
1.3 Definition: If AC Mn, a function

¢ ¢ A-+Mp is differentiable if it can be extended to a

differentiable function defined on the open submanifold #*
induced by Mn on a neighbourhood U of A.

1.4 Definition: ¢: M+ Mp is a diffeomorphism

if ¢ and ¢—1 are defined and differentiable.
1.5 Definition: If ¢: M » Mp the rank of ¢ at

X 1is the rank of J(u;j ¢¢i_l) at ¢i(x), where (Ui,¢i) and

(Vj, wj) are local charts around x and ¢(x) respectively;

and J(g) represents the Jacobian of g for any g:Rn-+ RP.
1.6 Definition: The differentiable map

¢ : Mn+ Mp is an immersion if rank ¢=n everywhere (n < p).

¢ is an imbedding if it is also a homeomorphism into.
1.7 Definition: ACM, is a differentiable

submanifold of Mn if i A ~» M (the inclusion map) 1is an

imbedding.

* The 1local charts of U are {(U;,

$5))

ieA

is a coordinate neighbourhood system of M, and U; = Ui(ﬁ [§]

where {(Ui,¢i)}

and ¢£ is the restriction of ¢i to Ui”
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1.8 Proposition: If ¢ : Mn"Mp is an imbedding
then ¢(Mn) is a differentiable submanifold of MP; cf. [;].

Notation: If x ¢ R" and x = (xl ce xn)

[Fox || = max | %y |

c™(r) = (x| || x || < r}.

From now on our manifolds will be of class C* for the sake
of convenience; this is not a very drastic restriction in

view of Whitney”s result that on an n-manifold M_, every
differentiable structure of class Ck(k > 0) constains a

structure of class <C°

1.9 Theorem: Let M_ be a differentiable
manifold, {Ua} an open covering of M . There is a collection
(Vj, hj) of coordinate systems on Mn such that:

1 {Vj} is a locally finite refinement of {Ua}

_ AN
2) hj (Vj) = C (3)

-1
3 If W. = h.
) ] ]

Proof: See [9].

(c™(1)) then {Wj} covers Mn'
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CHAPTER 2

SIMPLICIAL COMPLEXES

For the proofs of all propositions in this section,
see |11]. .

2.1 Definition: Let R™ be the euclidean vector

space over R and let C be a subset of R®. C is convex if

c5 ¢y e Crte  + (-t c,e C¥tels=[o,1].

13
2.2. Definition: A set {VO, Vl, oo Vk} of

points in R™ is convex independent or C-independent, if

the set {V1 - Voo Vo = Vg seees Vk - Vo} is 1linearly

o

independent.
2.3 Proposition: Suppose {VO, Vis vees Vk} is
a C-independent set. Let C be the convex set generated by
{Vo’ Vl’ ceos Vk}; that is, C is the smallest convex set
containing {VO, Vl, cecy Vk}° Then C consists of all points
k k

of the form iEO aiVi where a; 20 ¥1 and ifoai = 1.

Furthermore, each V ¢ C is uniquely expressible in this

form.
2.4 Definition: Let R" be the euclidean space.

A convex set generated by C-independent vectors or points
{Vo, Vl’ ceey Vk} is called a closed k-simplex and is

denoted by [Vo, Vis ooes Vk], k is the dimension of the
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simplex. If V ¢ [VO, Vis «ees Vk]9 then the coefficients
) k k
as with a; > 0 and .E a, = 1 such that V = Zay Vi’ are
i=0 1=0

called the barycentric coordinates of V.

2.5 Definition: Let {Vo, Vl’ . Vk} be a
C-independent set. The set {V ¢ [VO, cens Vk];
ai(V) >01=20, ..., k} (ai(V) is the ith coefficient of V)
is called an open simplex and is denoted by (VO, Vl, cees Vk)
we will also denote an open simplex by (S) and the
corresponding closed simplex by [S].

2.6 Definition: Let [S] = [VO, Vis vees Vk]

be a closed simplex. The vertices of [S] are the points

Vos V5 «--5> V. The closed faces of [S] are the closed
implices [V. V.
Simp [ ]Oa jl)
a non-empty subset of {0 , 1, ..., k}. The open faces of

09
Y an] where {j 5 Jys.--5 3} is

the simplex [S] are the open simplices (V. , V. ,...,V. ).
]O 31 Jn

2.7 Definition: A simplicial complex k is a

set of open simplices in some R" such that
1) if (S) e K then all open faces of [S]e K;
2) if (Sl)’ (82) ¢ K and (Sl)(ﬁ (82) #1115
then (Sl) = (82).

The dimension of K is the maximum dimension of the simplices

of K (topological dimension).

Remarks: If X is a simplicial complex,

let [K] denote the point set union of the open simplices
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\/
(*)
.

of K with weak topology Then if K has only a finite

number of simplices, it is compact and

= = ) -D
K] = U (s (\§€K(SJ

(S)eK
If [S] is a closed simplex, the collection of its open
faces is a simplicial complex which we denote by 8.

2.8 Definition: Let K be a complex. Let r

be an integer less than or equal to dim K. The r-skeleton

K' of K is the collection
r - v .
K= {(8) ¢ ¥X|dim S < r}.
2.9 Definition: Let S be a k-simplex. The

barycenter of S, denoted by b(S), is the point in (S) with

barycentric coordinates ( E%T 5 e oo E%T); that is if
7 k
(s) = (VO, Vl, . Vk) then b(S) = L iEO Vi.
2.10 Definition: A subdivision of a complex K

is a simplicial complex K" such that: 1) [Kﬂ = [K];
2) if S ¢ K~ then (S) e some open simplex of K.

2.11 Definition: Let X be a simplicial complex.

A partial ordering is defined on K by Sl 3_82 z Sl is a

(*) Besides the weak topology it 1is also possible to
consider the metric topology, but we do not discuss
this here because all complexes we shall use are locally

finite and in this case both topologies coincide.
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o .
face of 82. The notation Sl< 82 means Sl < S2 and
S1 # SQ.
2.12 Proposition: Let K be a simplicial complex.
If SO’Sl’ e Sk e K and SO <Sl <...< Sk5 then
{b(SO), b(81>’ s b(Sk)} is C-independent and
1 . . - ‘
K = {(b(8y) , ..., b(5)) | 8(<51 <+ <8y 3815 Syye.us5y € K}
is a subdivision of X. Furthermore, for each SO’Sl"'°’Sr€ K
with S,<8; <...< 8, (b(5y), ...,b(Sr))C(Sr). The

(1)

is called the first barycentric subdivision
(l)) (l)) )(1) th

subdivision K

K(n) = (K is the n

of K. TIterating:

barycentric subdivision of K.

From now on, we are going to use the terminology smooth-

differentiable, interchangeably.

2.13 Definition: A smoothly triangulated manifold

is a triple (Mn’ K, h) where Mn is a n-dimensional C

manifold, K is a simplicial complex and h: [Kj > M is

a homeomorphism such that for each simplex S of K, the

map hl[S] : [SJ - Mn has an extension h  to a neighbourhood

U of [S] in the linear space of [S] such that h :U>M is

an imbedding (or hS(U) is a differentiable submanifold).

to
each
of
to

n we only need

Remark: As dim Mn =

require that this last condition be satisfied for

n- simplex of K, since every simplex of K is a face

an n~ simplex and since restrictions of smooth  maps

submanifolds are smooth.



21

2.1u Proposition: Every compact differentiable

(smooth) manifold can be smoothly triangulated. Note
that smoothly finite triangulated manifolds are compact
because [K] is compact for each (finite) simplicial
complex K. See [ll] .

2.15 Definition: Let B be the matrix whose ith

row.is

Bi = (bils o s bin) (1 =1, ... 5, n).
If 0 = (0, 0, ..., 0), we call %‘[det B| the n-area of the
n- simplex (0, Bl’ Bz, Cee Bn)°

If the origin is not a vertex of the given n-simplex,
we can transform it by a rigid motion in such a way that
the origin will be a vertex of the transformed n- simplex.

We then define the n- area of the original n- simplex to
be that of the new n- simplex.

2.16 Definition: A simplex with faces of the

same k- dimension (0 < k < p) all of the same k- area
shall be called a standard Euclidean p- simplex Ap or a
fundamental p- simplex.

As well known such simplex can be built in many

ways, for instance if x = (xo, Kys Xps anes xD) is a point
. +
in Rp l, the set

P
AP = {(Xo, Xys eees X )t %; >0, I % = 1}

is an example of such simplex.
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2.17 -Proposition: Each simplicial complex kn

of dimension n can be realized as a subcomplex of the
fundamental simplex.

Proof: The proof 1is analogous to
that of the corresponding well known result in the theory

of simplicial complexes.

2.18 Lemma : Let Cp be a p-simplex; then

the barycentric subdivisions produce simplexes of the same

measure in each subdivision.

Proof: If o, ° (0, B

B B_)

13 29"‘, n 9
where 0 = (0, 0, ..., 0) and Bi = (bil’ ...,bin)(i=1, ceey M)
are the rows of the matrix B, then the volume of o, is

given by
v -1
uo ) = = |det B].

A simplex in the first barycentric subdivision will appear

as:

The measure of an n-face ¢ of op is

i 1
u(o™) n

det (Bl, .-c,B'

= i~ det (B :
~ (n+l)n ¢ 12072
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2.17 -Proposition: Each simplicial complex kn

of dimension n can be realized as a subcomplex of the
fundamental simplex.

Proof: The proof is analogous to
that of the corresponding well known result in the theory
of simplicial complexes. .

2.18 Lemma: Let cp be a p-simplex; then

the barycentric subdivisions produce simplexes of the same

measure 1in each subdivision.

Proof: If o, = (0, B

B B )

1‘3 2,"', n b

where 0 = (0, 0, ..., 0) and Bi = (bil,
are the rows of the matrix B, then the volume of o, is

given by
: 1
u(o ) = = |det BJ.

A simplex in the first barycentric subdivision will appear

as.
ol = (o, B B 1 .. B B )
’ 1° ) i-1? n+1l j=l j9 1+1° . b n’’
The measure of an n-face g+ of op is
. n
i, _ 1 1
u(o ) - n det (Bl, ..‘,Bi—-lg n+l j_z—_lBj, Bi""l, ¢ ey
1 n
- m det (Blgac.,Bi-l’jElBj’Bi*‘l, . . 3
1 n
- —('?l—q)—-— ]E det (Bl, LY Bi"l,Bj’Bi‘*'l,. 9

1

...,bin)(i=l, cees M)

Bn)
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- (n+1l)! det B (i=1, 2,..., n).

If we replace 0 in (0, Bl’ cee Bn) by b(cn) = Dbarycentre
of 0. We then rotate and translate o in such a way that

some Bi coincides with 0. Then we proceed as before.
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CHAPTER 3

NON-DETERMINISTIC ANALYSIS

3.1 Definition: Let X and Y be two topological

spaces and V, V° be two families of open coverings of X
and Y respectively.
Suppose that for eachyue V we can associate some

p° € V° such that each A € p is associated with some A" e u~.

We will call this association a g-function and denote it by:

f : (X, V) > (Y, V') or
fy : we V +u” e V7 (fy,n) = u’)
and
f : A A~ 7 (f = A7),
y € U e u ( u(A) )

In the special case where Y is the real line we allow
u” € V° to be a collection of open intervals and/or points.
To differentiate between the two cases we call f

a special g-function and denote it by f: (X, V)»> [R, VRJ.

For convenience we will use the term g-function to include

the special case too.
3.2 Definition: The g-function f: (X, V)+ (Y, V°),

is continuous if for all pw, A € V such that A > u and for
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A e u, Be A with BSA, then f (B)Qf_fu(A) (> means

A
"pefines"). We know that in order to talk about continuity
in a space we need a topological structure. We are going
to see now that in order to talk about differentiation or
velocity in a topological space we shall need what we shall

call a Gauss structure or a standard family of coverings.

3.3 Definition: A standard family of coverings,

F in a topological space X is a family of collections a,

of subsets of X such that:

a) Any set A of o € F is the closure of an open
set of X.
b) Given o £ F and twe distinct sets Al,A2 € o,

then int Al(\ int A, = [3 (int = interior).

c) Any o € F is a covering of X.

d) Given any point x € X there 1s a neighborhood
N of x such that any o has only a finite
number of sets intersecting N (each a € F is
locally finite).

e) Given any open set 0 of X there is a covering
a € F such taht o has a set A & 0.

) Ordered by refinements, F is a directed set.

3.4 Definition: We will also call a standard

family of coverings F a Gauss structure on X. A Gauss space

is a topological space with a standard family of coverings.
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Notation: If there is a Gauss
structure F on X we call (X, F) a Gauss space.

3.5 Proposition: Each space X satisfying the

T, axiom is a Gauss space. cf. [1].

.

3.6 Proposition: Each T2 paracompact topological

space is a Gauss space. cf. [1].
3.7 Corollary: Each differentiable manifold

is a Gauss space.

The reason for the above nomenclature is due to the
fact that a standard family of coverings is a generalization
of a system of Gauss coordinates on a surface S.

3.8 Definition: Let (X, F) and (Y, F’) be two

Gauss spaces. A Gauss transformation is a function
G : FT+T° compatible with the order of refinement of F and F~,
i. e., if a, B € F, a < Bthen G(a) <G(B).

3.9 Definition: A continuous g-function

f: (X, V)+ (Y, V') is called g-differentiable relative to
the Gauss transformation
G : F»T° and the standard family of coverings
F, F¥* of X and Y, respectively, if for any w € V, a ¢ F, A e u ,
the number of sets of o which intersect A is finite and the same

holdsfor o = Gla),u” = fv(u), A7 = fu(A). We denote these

numbers by n(A,a) and n(A”, a”), respectively.

3.10 Definition: Let the g~function

f: (X, V)> (Y, V') be g-differentiable relative to F, F~
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and G. We define the g-derivative of f as a special
g-function.
Df: (X, V)~ [R, Vp]. To construct Df we must
have the following:
a) f: (X, V) > (Y, V') is a continuous g-function
or special g-function.
b) The Gauss spaces (X, F) and (Y, F7).
c) The Gauss transformation G : (X, F)~+» (Y, F7).
Then the construction procedure 1is:
a) Let n (A, u, o) denote the number of sets of
o that intersect the set A, which is an
element of pu e V.

n(A”, u’, a”)
n(A, u, a)

e) Let Dfu (A,a) = , where

»

fv () = u”°, fu(A) A” and G(a) = a

f) Let ﬁfu (A) = Iinm DfU (A, a),

o€l
lim
Df (A) = =— Df (A, a), where:
_ * acl o
lim = upper limit over the net F (directed set)
o€eF
and lim . lower 1limit
aeF )
g) So for each B € A and A € V we have two real

o

numbers i.e Df, (B) and Df, (B). Let us call
Efu (A) the set of all such numbers for BC A,

with B e A and A > u, l.e.:
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Df, (A) = {Df, (B), Df, (B)

A
BC A, Be A, A > u, A ¢ V}.

h) Finally we define Dfu (A) to be the open

interval or point in R : Dfu (A) =

R If‘ the

(inf Eiu (A), sup Eiu (A)) = A
inf and sup are equal we understand the
above to be the set consisting of that point.

i) So for each A € p we get a point or interval

in R. We denote this collection Dfu (A) by MR-
As u runs through V we get a family VR of

such collections:

Ve = lugl
which we call the g-derivative, Df of f. We
note that by the definition of g-derivative ,

Df is always a continuous special g-function.

cf. [M].

3.11 Definition: The g-function f: (X, V) (Y, V7)

is called cofinal if the family {fu (A)] A e u}uev is
(*)

cofinal in cov Y , in the sense that given any o ¢ Cov Y,
there exists p € V such that for any A € p there is a C € a

with fu (AYCC. We do not require {fu (A) | A e u} to

be a cover of Y.
3.12 Definition: £ (X, V)» (Y, V) is

(*) Cov Y = family of all open coverings of Y.
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pointwise cofinal if for any x ¢ X and any a ¢ cov Y there

exists y € V and A ¢ p such that x ¢ A and fu A YC C

for some C ¢ o Obviously a cofinal g-function is pointwise

cofinal.
3.13 Definition: f: (X, V)+ (Y, V') generates

the map (continuous function) ¢: X-+Y iff: for any x ¢ X
ard any neighborhood W of ¢(x), there exists ye V, Ae u

such that:
X g A, $(x) ¢ fuZA) and fu(A) & W.
Clearly if Y is regular Tl’ then Definition 3.13 can Dbe

replaced by:

3.1u Definition: f: (X, V)+ (Y, V') generates

the map ¢: X»Y iff for any x ¢ X and any neighborhood
W of ¢(x), there exists pyu € V, A e pu such that x ¢ A e u

and ¢(x) ¢ fu(A < w.

3.15 Proposition: If f: (X, V)~ (Y, V7) is

pointwise cofinal, continuous and if V is cofinal, and
X, Y are regular Tl, then there is a unique continuous map

¢: X + Y generated by f; cf. [7].

3.16 Definition: f: (X, V)»> (Y, V') dis the

g-function constructed from ¢: X + Y (usual function) by

the image method if: for A e u € V, fv(u) = u’, "where

u” = {int ¢(A) | A € u} and fu(A) = int (4CA)) # 1
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3.17 Proposition: Let ¢: R"+ R® such that

j ¢ (= Jacobian of ¢) has absolute value > 0 (|J¢| > 0).
Let V be the family of all open coverings of R such
that each set is bounded. Let V° be the family of open
sets constructed by the image method, f the g-function

f: (R"

s V) » (Rn, V) built by the image method. Then f
generates ¢; cf. [4].

3.18 Definition: The standard family of coverings

we will be using on the real line R will be denoted by

F and called the Canonical standard family of coverings

R
on R. It is defined by:

(-]
FR - {ai} i=l a. = {I--} j=l

= {xeR —Ar<x<+F,3=0,71, 2, ...},

ij 1-1 — A1 - -

2 2
This is simply the family of closed intervals of length
——= , starting from the origin, which have only their end

points in common.

3.19 Definition: The Canonical standard family

of coverings on R™ will be denoted by Fg and:

n
n - . .
FR = {izl Ai : Ai €Eal : o€ FR}.

Gg will denote the Canonical Gauss transformation which 1is

the identity Gauss transformation, i.e.,
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-+ Fn s.t: Gn

n
¢ FR R R

(ai) = g..

n
R 1

3.20 Definition: Let (X, F) be a Gauss space

and ] # AC X. If the set Fo, = {{ANB : Be a} tae Fl

is a standard family of coverings on A with the relative
topology, we call (A, FA) a Gauss subspace of (X, F).

3.21 Proposition: Before completely stating this

inportant proposition let us fix the following:

a) Q: R - R" is continuously differentiable and
|3 Q (x) | >0 ¥ x e R

b) V is the family of all open coverings of R"
such that any set A in any cover has a finite
Jordan measure.

c) f is the g-function constructed from Q and V
by the image method.

d) We speak of the g-derivative of f  relative

to the canonical Gauss space (Rn, Fg) and its

identity Gauss transformation Gg: FE - Fg o

Then there exists a g-function f which generates Q such
that Df generates |JQ]. (f is the g-function defined in c¢);

cf. |3].
3.22 Proposition: If U is a non-empty open subset

of X then (U, FU) is a Gauss subspace of (X, F). If U is

not open this is not necessarily true, cf. [1], Example 1.
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3.23 Definition: If (X, F) is a Gauss space

and o, B € F, with o < 8 let us define n (a , B) as the
supremum of the number of elements of B contained in some
element of a, and n (o , B) as the infimum of the number of
elements of B contained in some element of a.

If these numbers are finite we say the Gauss space
is of finite type. If moreover n (a , B) = n (o , B) . for
any a5 B € F with ¢ < B we say that the Gauss space is
equitable and we use the notation n (o , B) for either one
of the numbers defined above.

Sometimes we will use n (A, a) = n (A, u, a) for

A e u € V whenever it is clear what the covering u is.
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be the g-function defined as follows:

n, ~n ~n ~
If AeuthhenA=¢l(A)fOI’Aeu e V,

n
where p is the image of 1y by 1 in the canonical way.

We then define:
N v
fa o (A) def ¢, (£ (A)).
u — '2 U

A"
f is called the g-function induced by the pair (¢l, ¢b)

A
and G : ¢; (F) » ¢2(F') defined in an obvious way is called

the Gauss transformation induced by the pair (¢1, ¢2) and

the transformation

G: F > F":
n,

(G (¢>1 (a)) = ¢y (G (ad)).

4.3 Lemma : Let f: (X, V) > (Y, V7) be

a continuous g-function and let (¢ ¢2) be a pair of

homeomorphisms
N
¢l X + X
n
cbz Y > Y.

Then for any o ¢ V and any A ¢ ¢ we have

oY "
D f (A) D fo (A,
g g

AV} v
where ¢ = ¢l(c), A

¢1(A) and the derivatives are taken

v n n
relative to G : F » F” and G : F + F”, respectively
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XK= {(x ,vy) :x >1, o« x2y < 1}

which is the figure bounded by the curve x2y = 1, the

line x = 1 and the real axis. Define a collection 85 of two
sets by considering a point (xl, 0) such that the area of the
subset of X lying between the lines x = 1 and x = X, is
equal to the area of the subset of X, given by x > X .

Define 82 by considering a point (xz, o) with 1 < X, < %y

and a point x, > x, such that the sets

3 1
Ay = {(x, y) € X : l <x < x2}
Ay, = {(x, y) e X : x, <x <%}
Ay = {(x, y) € X : %, <X < x4}
A, = {(x, y) € X : X > x3}

have all the same area. Proceeding in the same way for

33, Bu, e.3s B 5y ..., we have a family {Bi} satisfying (i)

and (i1i).
To define {ai} we start with Bl and consider

a subdivision of the two sets in Bl by a line parallel

to the x axis for the set

{ (%, y) ¢ 1 < x < xl}

such that the upper and lower part have the same area and
for the set

{5 y) 0 x> %}
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we consider a similar curve such that the upper and lower

part have also the same area. Define a, to be the collection

1

of these four sets. In the same manner we define a a

2-, 3; s 00

As easily seen a; SO defined satisfies (1)
and (ii) but not (iii).
b) Another important point to observe is that

.

. n . n . .
in R or in open sets of R we cannot have admissible
structures with more than countable coverings, namely

a <a, < ... <o < « < ... < o, € ...
1 2 w wtl X ?

where yx 1s a non-countable ordinal, assuming of course

that all a. are distinct. Indeed, suppose the contrary

and take a point x € rR" together with a sequence of balls.

B, (x) with center x and radius 1/i, i > 1. Inside B, (x)

take Aj(i) € aj(i) such that

Aj(i) c Bi(X) (1)

Aj(i) # Aj(k) if 1 £ k

and j(i) is the first index satisfying (1). This is possible

by condition (iii).

Now as ax refines all aj(i)’ due
to the way we select j(i), this implies that in each Bi(X)
there is some c; € ux and this clearly contradicts condition

d) of definition 3.3.
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Therefore, there is no loss of generality assuming

that we are always dealing with countable families of

coverings.
4.8 Lemma : Let A and A be two Jordan

measurable sets in R” with A having non-zero Jordan measure
u(A).

Suppose (R", F) and (R", F”) are Gauss spaces.
with F and F~ admissible Gauss structures. Let G: F =+ F~
be a Gauss transformation such that if a; = G(um),

a € F, a; € F°, then the common measure of the elements

of a is equal to the common measure of the elements of a;.

In this case we have

7 n(A', a&) lim n(A’, a;) U(A’)

im = -

(y,mgF D(A, am) oy,m € F n(A, am) u (A)
Proof: Consider the sequence

{(n(A”, o). , where is the common measure of the
m’° Hm Hm

Pl

elements of g and o
m m

By definition of Jordan measure: for any ¢ > 0 we
can choose an N such that for all m > N

[n a”, a&) Mg u(A%) | < €.

So lim n(A”, aé) T u(A”) which implies

a&ef'
lim - » - ——— - » _ -
== n (A7, am) M. = i}m n (A7, am) My = p(AT).
Q.

m m
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In the same way we have the analogous result for A,

Then since:

lim n(A”, am) My n(A”, a’) u

. = 14 m m u (A7)
1im n(A, am) W 1m n(A, a ) Mo u (A) °?
e tave (A”) e n(A”, am) _ lim n(A”, am)
(A) ameF n(A, am) ameF n(A, am)
4.9  Corollary: If £: (R", V) » (R", v*) is

a continuous g-function, for ¥ w € V and any A € w , Jordan

measurable such that A = fw(A) is Jordan measurable, we have

= - _u (A7)
4.10 Theorem: Under the condition of
Proposition 3.21, except that we will now deal with our

new Gauss structures F. F” used in Definition 4.6, if

Q is a continuously differentiable function from rR" to R",

then Df generates IJQ].

Proof: It is analogous to that of Theorem 1,
Section 4.2 in [h], where only the canonical Gauss structure

is considered.
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CHAPTER 5§

THE MAIN PROBLEM

5.1 In this chapter we start the discussion of
the main problem of this work, namely:

Given differentiable manifolds Mn and M; and a

differentiable map
¢: Mn > Mn
with.
1JU,U,¢(X)| > o,

where Jy U,q>(x) is the value of the Jacobian of ¢ at
b

a point X ¢ Mn for the local charts (U,h) in Mn and

(U°, h”™) in M;, we want to find a continuous g-function
f: (Mn,V) > (Mn,V’)

such that
(1) f generates ¢
(ii) Df generates a function y: M_ + R (reals)

such that for every x e Mn there exist local charts (U,h)
at x and (U",h”) at ¢(x) such that
y (x) = fJU,U,¢(x)| .
In this work we solve this problem for the case

where the manifolds involved have triangulations which
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satisfy certain conditions to be specified. However
without any additional condition we are able to prove

the following theorem:

5.2 Theorem: The main problem has a solution
if instead of condition (i1) we consider the weaker condition.
(ii)7: Df generates a function y: (M - H) » R

. %
where H 1s a meagre( )

set, such that for every x ¢ Mn - H,
there exist local charts (U, h) at x and (U”, h”) at ¢(x)
such that

px) = |JU,U,¢(X)|

Proof: Without loss of generality
we can assume that ¢ is surjective, because as the Jacobian
is never zero by hypothesis, ¢ is locally a diffeomorphism
and by the theorem of invariance of open sets for manifolds,
the image of local charts by ¢ are open and therefore their
union is a submanifold of M; with the induced differentiable

structure.

Let us begin by introducing the notations:

F ¢™(1) = Gauss structure in C™(1) defined by means

of intersecting the elements of the Canonical Gauss structure

in R™ with ¢™(1); thus

n - n
P et = {g, M CPW) /8y e FRn}.

o
(%) A meagre set is a set A : A = [
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Now we define a Gauss structure in Mn’ calied the Cancnical

Gauss structure on Mq.
p

We suppose our manifolds to be connected without
losing generality.

If the manifold is not connected we work in each
component. Then having built the Gauss structure in each
component we have it in the whole manifold. We also suppose
in what follows, that Mn is not covered by only one local
chart, which case has already been considered by V. Buonomano.
We can suppose that our manifold is covered by a countable
family and locally finite collection of local charts
(Vi’ ¢i)ieN such that
1) ¢ (Vo) = c™(3) and

i

k = . - n
2) {Uj ¢] (C (1N}

are also local charts covering Mn as stated in Theorem 1.9.

We are now going to re-index our set of local charts:
Suppose we have the sequence of charts in some order. Then

we index them in the following way: We call Ul the first

local chart in the sequence, U2 will be the first 1local chart

in the original sequence different from U such that

1

# 1 and U, - U, # 1 . U

2 1 will be the first different

Uzt“\ul 3

from U; and U, that intersects U; and U,, and Uy - UlLJ u, # 1,

etc.
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This process might end in a finite number of steps
or not.

We can construct a Gauss structure in the closure
of each of these local charts in a canonical way. Take for

instance Up: we build the Gauss structure in Ui taking

as members of it the image by means of homeomorphism of

1

local charts ¢i- of the elements of the Gauss structure

3 Cnfl) in C™(1) (For each covering in F c™(1) we have a

covering in Gi.) As we said, this can be done in every

local chart Ui'

This means that we have a Gauss structure in the
closure of each local chart, but they are superimposed
inside the intersections of the different local charts.
We are going to avoid this in order to have a nice and

suitable Gauss structure in the whole manifold. Let us

denote by 63 = leml c™(1) the covering in c™(1) obtained

from Bj e F n by intersectiong the elements of Bj with ¢™(1).
R

The elements in U which come from 63 through ¢£_l are denoted

'3
by Agj'
We denote also by ¢l_l(F c™(1)) the Gauss structure

in Ui obtained by taking the inverse images of the coverings

in F ¢®(1) by means of ¢1"1.
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The elements in F C"(1) shall be denoted by

ny
Alj’ Azﬁ’ Now to build a Gauss structure in ﬁiL)U

2

we will proceed in the following way.

We have the elements Alj in U1 belonging to the

Gauss structure in ﬁikj Uz. Then we preserve in U,

those elements of the Gauss structure on 1t which do not

intersect Ul, and then we add the elements of +the form

A,. - U, for any A

23 belonging to the Gauss structure in

23

U, which intersect U,. We denote by ¢12‘l (F ¢™(1)) the

2 1

family of coverings in ﬁlLJ U, obtained in this way.

2

Claim: ¢12—l (F ¢c™(1)) is a Gauss
structurc in Ul 520 Indeed, if ¢12_l (83) denotes the covering
in ¢12—1 (F ¢™(1)) which comes from 83 in Cn(l), it is composed
of: N "

a) those elements Alj = ¢l (Alj) which come

i N
by means of ¢l from Alj € Bj.
b) those elements which are of the form
_‘l(\l N
¢2 (AZj) - Ul for A2j € Bj.

Now we check all conditions of a Gauss structure

as defined in 3.3.

1

-1, . -
a) Any set A;s € ¢), " (B]) € 6., (F c(1)

is the closure of an open set.
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Indeed suppose the set we are dealing with is

1 v av

- s - n -
of the form Aij = ¢ (Alj) where Alj € Bj e F C (1) =

A"

Gauss structure in C7(1). Alj is the closure of an open

-1,

. n . -
set in C (1). The same 1s true for Alj = ¢q (Alj)

because ¢, is a homeomorphism and the theorem of invariance
of open sets guarantees that Alj has non-empty interier in
Ul W u,-

The same could be said about an element

A2j 3 z%zjfﬁ Ul = [3 . The other kind of element we are

dealing with is of the form ¢2—l (AQj) - ﬁi =z A2j - Ul’

with Azj(j Ul # 1. We have to prove now that any of these

elements is the closure of an open set.

¢2_l (Z2j) = A2j is the closure of an open set in
Ulkj 52, so A2j = A. A is an open set in ﬁi\y} 62' This
is true because A - Ul = A - Gi (A is open and Ul is closed
so A - ﬁi is open).
b) Given ¢12_1(Bg) € ¢12_l F ¢™(1) and two distinct

-1
sets Al’ A2 € ¢12

(int A denotes the interior of A). We have

to deal with several cases:

g B
i) Suppose Al =4 (Alj) and A2 = 9 (Alj),

(Bg) then int Al(\ int A,= a
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n,
A. . and A”j £ 33 e F c™).

N n
As we know, in Cn(l), int Alj ™ int A

‘-=B ’

13

so taking inverse images by ¢l—l, we have

4" N

l Y . ‘1 P
(Alj)) Vi int (¢l .(Alj))

int (¢l_

=int (A)) 7V int (A)) = {1 (¢, is homeomorphism).

I -1V —
ii) Suppose Al =9, (Alj) and A2 = 9, (AZj) - Ul'

In this case clearly int (A;) ™ int (A) = |

n
‘s _ -1 —
1i1i) Suppose Al = ¢, (Azj) - Ul and
I —
A2 = ¢1 (AZj) = Ul' Then
1" - 1Y -
int (¢, (Azj) -0 M int (¢, (Azj) - U

=(int <A2j) -0 N (int (A5j> -0 = 2

1

c) Any ¢12_ (83) € ¢12_1 F ¢c™(1) is a covering of
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U, U U,. Take any point x e U, U U If

1 2’

X € Ul, then ¢1(x) e ¢™(1), and B

v

n
A . s.t. ¢1(T) e A

13 ., which obviously

13
S
implies that x € ¢l (Aij).

IfxeU, -U

2 1° then ¢2(x) £ Cn(l) which

N

C c™1) » x e¢2‘1 (A

4"
> ¢2(X) € A2j 2j) - Ul'

d) We have to verify now that, given any point
X € Ui \J U,, there is a neighbourhood N of x

1

such that any ¢12* (Bg) has just a finite

number of sets intersecting N.

That is obvious , because for anu ¢12-1 (83)

there are a finite number of elements belonging to ¢12-1 (83)
in Ul and ﬁz so any neighborhood of x ¢ Ui U ﬁé intersects
a finite number of elements of ¢12—1 (83).

e) Given any open set 0 C.UICL Uz, there is

1 1

a covering ¢12- (F ¢™(1)) such

(Bj) € ¢12

that ¢12_l (85} has a set A C 0:

Take any 0, C U., 0, open in U, U U

1 i 1 2 and

0i C 0,i =1 or 2 (at least one of these

choices of i is possible).
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Suppose 1 = 2, and take ¢2(02) = 05 .

Then as C"(1) has a standard family

of coverings T c™(1), there exists

V) "
Ayy € B; A, & 05. Then
-1,y -1, .-
% (AM)C ¢, (03 =0, C 0, and so
I — .
¢2 (AZQ) - UlC: 0.
£) Ordered by refinement ¢12-l F (c™1)) is a

directed set: if ¢12_1(85) and ¢12-l(8i) are

members of ¢ 2_1(F Cn(l)), then there exists

1

"‘l P “l - —l ”
¢12 (Bm) 2 ¢y, (Bm) > ¢12 (Bj) and

-1

-1
¢12

91, (B2 (B7), where m > j and m > 2,

Now we can construct a Gauss structure for the
whole manifold by induction.
Suppose that the Gauss structure is already defined

for U, U T, U ... U Uh. We take now U such that

1 2 h+1

U

ey - G U T, U Lo 000, U

SRR D (VL W RNRVIAS LW g

If after Uh all the remaining Ui are such that

Ui-(UlUUZU...UUh)=D,
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6] U. cover the whole manifold and we don”t

then Ul’ oo vee s Uy

need to go ahead with the construction. If this 1is not
the case, we continue our construction by induction in the
following way:

We restrict the Gauss structure, which we have

in U to U,

h+1 ne1 - U Y U0, U... 0T, as we have done in

2

the steps of building the Gauss structure from Gl to

U, U Uz, and then all the steps of the proof are the same

as for ﬁllJ U,, except for some changes in notation; for

2)

instance, we will have ¢12“l (h+1) instead of ¢12—1. We

call this Gauss Structure the canonical Gauss structure in Mq:

1

n . - - e - . . N
F(M); 9153 .. .h.. (Bj) will denote the covering in F(M)

which comes from 83 in ¢™(1).

As said above, we suppose that we are dealing with

a function ¢: Mn - M; which is onto and so we <can assume

that the locally finite covering by closed 1local charts

ﬁ; = ¢£-1(Cn(l)) is pairwise diffeomorphic to the

covering {Ui} we already have in Mn' So in the same way
as we have a Gauss structure in Mn’ we also have one in

M; =z ¢(Mn), using this family of pairwise diffeomorphic
local charts.

Let us call Border of the Gauss Structure in Mn with

respect to {Ui}, the meagre set:
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The same sort of set can be defined in M;:

3(es™) = 307 L [T - U7] U [803 - (U] U U7]

U B0, - (LUT, U0 U ...

Let us now introduce the following Gauss

transformation G, : F(M_) » F(M_),
1 n n

-1 -

Gy (byp 7 n. (B3 = 07,7 L BPIGeT 5 y,

. - -1 .
plays the same role in Mn as ¢; 5 ... in Mn).

We are going now to define our family of open

coverings in M_ (M7).
n n

We take as family V (V”) of open coverings in
M (M;) the one built in the following way:

Let us consider a family W [Cn(l)] of open coverings
of ¢™(1) each of which is composed of open, finite

Jordan measurable sets, and ¢£ o ¢ o ¢i_l is injective

(%) (3 means topological border).
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in each one of these open sets in which this composition

is defined, for all pairs of local charts (Ui5¢i), (U;, ¢£)

in Mn and M;, respectively. After that we take the dimage

1 --1

: ) of these

(¢

by each local chart homeomorphism ¢£
coverings and we obtain a family of coverings in Mn (M;).

Now the required g-function f is defined by the

image method, i.e., w » u” = {int ¢(A) | A € u}, fu(A) =

int ($(A)) for A e w e V, and V is the family of open

coverings in Mn already defined.

Observe that, int (¢(A)) # CJ by the theorem of
invariance of open sets because A is inside a local chart, and
int (¢(A)) is the image by homeomorphism of local charts,
of an open, finite Jordan measurable set.

(If ¢i—l(A ) = A, then ¢£ o b o ¢i_l is a diffeomorphism,

1
and diffeomorphisms preserve all these properties.) Obviously

f generates ¢.
The Gauss structure we have now in Mn - 9(GS)

(M; - 3(GS”)) is the one obtained by restricting the canonical
Gauss structure in M_ (M) to M_ - 3(GS) (M- - 3(GS7")).
n n n n
We can place this restriction on Mn - 9(GS) because

this set is obviously open. The family of open coverings

is the same as in Mn(M;) but this time the open sets  are

restricted to Mn - 3(GS) (M; - 3(GS")).



52

Then as ¢+ [a(GS’)] is meagre in M_, considering
- _l Ed ”» ~ ”~
the pair Mn - 93 (GS) - ¢ [B(GS )1 and Mn - 3 (G87), we

can apply V. Buonomano”s result; cf. [3], Theorem 15,
Chapter VI.
Our theorem is proved and so the Main Problem 1is

solved on Mn except for a set of first category cor a meagre set
namely:
2T, U (3T, - T,u [o0, - [T,uT,J1 U ... U ¢ [acesH].
We finish this chapter by proving a lemma which
will be useful later.
5.3 Lemma: The covering V (V7)) defined

in the manifold Mn (M;) is cofinal.

Proof: Let A be any covering of Mn'

We wish to find u e V 3 u > A (y refines A).
Let us take the intersection of A with the 1local

charts, namely:

A A {Ui}(“)°
ien
This i1s a refinement of ), each of whose elements is
contained in a local chart.
Next, we take the images by homeomorphism of local

charts of these open sets into the cube c™(1). In this cube

=)y A A {ul={aN U [ Ae 2 u; e {U;}}
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we refine the image of these open sets by means of small
cubes or spheres, which are finite Jordan measurable.

Besides thesc properties ¢£ o ® o ¢i_1 is one to one in

these cubes or spheres for each 1i.

After this, we take the images of these cubes or
spheres back to Mn and with those images of cubes or spheres
we have our desired covering u which refines A (p > A).
Note: The same can be said when V, is the family of
coverings V restricted to Mn - 23 (G3). Interchanging
M_ by M;, V by V7 V, by V:, we sec that our result

is also true in (M;, V7)) and (M; - 3 (GS™), Vi).
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CHAPTER 6

MAIN PROBLEM FOR MANIFOLDS WITH SMOOTH TRIANGULATIONS

6.1 Definition of a Parametric Manifold:

Let X be a subset of an euclidean space E of

dimension p. We call an admissible parametric representation

of X of class ¢’ and dimension n:

a map ¢Y: U =+ ¢ (U) of an opun set U in R" into E

with the following properties:

i) Y 1s a homeomorphism from U onto X of class et
2) rank of ¢= n at each peint of U. (y 1is an
immersion).

A parametric manifold is a differentiable manifold

imbedded in RP where local charts have parametric representations
given by the homeomorphisms attached to those charts. More

precisely if (U, ¢i) is a local chart of Mn, then ¢i—l is

a parametric representation of U.

6.2 Measure in a parametric manifold Mj.

Let (V, y¥) be a local chart in Mrl defined in a parametric
way, $: U =+ y(U) = V, U open in R™. Let us define the

measure of V in Mn as 1ts n-arca given by



55

, (%)
uy (V) = b/rb/éet ALy | L gy,
X ij

SR

and in the same manner we define the measure of any subset
of V which is image by ¢ of Jordan measurable sets in U,

According to [10] we have the following result:
6.3 Theorem: Let M be a parametric manifold.
Then there exists on M,1 a measuvre yu, and only one, such that

in in each local chart (V, y¢), u coincides with u, : this

ilj
measure 1is called 'n-dimensional area'®.

Proof: See [10].
6.U In this section we solve the main problem

stated in 5.1 for the case where the manifolds involved
have triangulations which satisfy a certain condition to
be specified. This is done in Theorem 6.7. TFirst we sclve
the main problem for a particular case which is Theorem 6.5

and then, we obtain the main Theorem 6.7 by using Theorem 6.5.

(%) (W) oA : B (W) B ()
IX. I9xX. k=1, 9%, * 9X. ’
1 J h i J
where yY(u) = (wl (w), ... wp (u))
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We believe that Theorem 6.7 1is a 7reasonable
solution of the main problem in the sense that it includes

many important cases commonly found in the applications.

6.5 Theorem: The main problem has a

solution under the following two hypotheses:

1) There i1is an imbedding y: Mn-* RP and Gauss

structure I, such that for any a € F all sets A € o Hhave

3

the same n-dimensional area. Similarly for Mn

-

we have an imbedding ¢~ : M; > RP , such that all sets

of any o € F” have the same n-area. The Gauss transformation
e I~

G : F »F  takes a covering a, e F into another ai I3

such that the sets of ai have the same n-area as those of

a.. Also we require that the standard family of coverings

are countable and that for m > n, o > a_ (a” >d).
m n m n
2) For any x € M there is a local chart (U, h)
of the atlas of Mn such that h(x) belongs *to the closure

of an open set W Z h(U) whosc Gauss structure induced

by h is admissible. The same for M; and local chart

' N
(U°, h”™). HMoreover, if y = ¢(x) and G is the Gauss
transformation induced by the pair (h, h”), then the sets

N Y
of a in W and those of G(a) in W™ C h”(U7) have all the

AY

same n-area. (Here, ¢ is the mapping of 5.1.)

Proof :
i) Required family of coverings (V, V7)
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We will choose as family of coverings V in Mn
(the samc can be done in M;) the family of all coverings

such that each covering is formed of inverse images by
local charts homeomorphisms of open, finite Jordan

. n , . .
measurable sets in R, &xactly as considered in Theorem 5.2.

2) "Required g-function

"The g~function f will be the one obtained from
¢ by the image method: u - u”, where p° = {¢(A)]| A € ul,
fu(A).= 6(A), A e py e V.
¢(A) is open because |Jj ,;-¢(x) | # 0 fer all x e M_

exactly as in Theorem 5.2.
3) Required Gauss structure or standard family

"of coverings

"We will take as Gauss structures F in Mv1 and F” in

M; any of those satisfying hypotheses 1) and 2) in Mng M;
respectively, and the Gauss transfcrmation 1s the one
satisfying hypothesis 1), as in the hypothesis of +the
theorem. Now we proceed as follows: Suppose all the

requirements 1) to 3) are fulfilled. Recall the definition

of measure as given in 6.2, 1i.e.,

-1, -1
3. ~(u) 3. ~(u)
u(B) = \ det ( 13' 13 ) d u, where
Xg X,

9, (B)
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B C Ui is an open set in Mn (the same can be done in M;).

If

Mw = f98t L . )

this function is > o, whenver u g U;, by the definition of

a parametric manifold. By the mean value theorem of integral
calculus:
u(B) = ] M(u) d u = M(P) u (B) ,
¢i(B)

where P ¢ B = ¢i(B), and p(B), is the measure of B = ¢i(B).

We have to remember that acccrding to the way the family

of open coverings in Mn is defined. we will not deal with

open sets B which are outside the local chart in gquestion.
Now let B, B” be two open sets belonging to the

coverings w € V, w” = fv(w) e V', in V, V7 of M and M;,

respectively. Suppose B C UQ’ B C Ui; Uy Ui, local charts

in M and M;, respectively,

Then:
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uw(B?) _ B” M@ H (BT |
wie) j MCP) du M(P) T (D)
B
- N { .) _
M - 3 =y k= E=~ - ~ =g
= Joo 2 e D 5y ! P e B, Pe B, Q €¢ B". Indeed,
M‘_Q‘"(-ﬁ) v, vy ? @
- A
E_£§fl = lJU U'¢(F)( by the mean value theorem of integral
u (B) L2 "R

calculus in Rn; B e ¢R (U ) and ¢2, ¢E are imbeddings.

Now we have, exactly as in 4.8,

w (87 . — n (B7, am) - lin n (B7, am)
v (B) o eF n(B, Olm) % er B (B, Of-m)
m m
This implies that we have:
I'l (B"g a’) - - -~ ) v o—
. m = u(B7) M~ (Q) 5
lim = Df (B) = Df  (B) = = J ~9(P)
n (8, o) ® w HBY (P |"Ups U ‘
- L - n
and F (P, P,Q) = M—Lg% Iy ue ¢ (P) is a
M (P) L2 CR

continuous function from B X B X B » R in the variables

Q, P, P, because M(P) # 0. Moreover as M_ and M; are

locally compact, we can assume that F is uniformly continuous
in B X B X B~.

4 '—l
() $= ¢50 6o o)
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Let us show now that given € > 0 and % € Mn, there 1is

an open set A in Mn with x € A such that ¥ w ¢ V and

Indeed, select

m

¥ B e w, BEL A, we have diam [wa (B)j <

t ®x such that

m

A contained in some local chart (Ui’ ¢i)

whenever we take points P, P ¢ ¢, (A) and Q

m

¢ o ¢ (A,

with (Ui,¢£) the corresponding chart at o¢(x), we have

|IF (B, P, © - F (F", P", Q)] < ¢

for BP°, P° €9 (A) and Q7 ¢ ¢1 o ¢ (A), as well. This

is possible due to the uniform continuity of F in A.
Therefore by the definition of g-derivative, for

cany w € Vand B e w with BRC A and any vy >w, Y € V, we have

== Df
|DfY (By) - ==y (B < ¢

B, C 2. 8o by the definition of

for anu Bl’ 82 £ v and B15 )

g-derivative again, we have
diam [wa (B)] < ¢

Let us now show that Df i1s pointwise cofinal.
According to what we just proved we have

B e w= diam |wa (B)] < €, and so given any covering T of
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the set R of real number, we restrict it +to the interval

wa (B) = clos (DFm (B)). This interval is compact, and

so we have a Lebesgue number for the covering [ restricted

to this interval. Let this number be denoted by €q -
And now let us put € = min (e,el). Then by what

we have seen above, there exists Bl B (Bl ey e V, ¥y >w)

x €8, such that, by the continuity of Df, diam [DfY(Blﬂ<ﬂf+DfY(Bl)

(. C for some C ¢ T rlfow (B)).
Finally, we are going to prove that Df generates

Py

a function ¥ which coincides with the Jacobian IJU
L2 L

on each point x for suitable local charts
Upg(x) Uy (9(x)).

As Df is pointwise cofinal, it generates a function

y: Mn + R, as V 1s cofinal. When ¢>2 takes x € UQ into the

. . . n .
interior of a set in R~ whose 1nduced Gauss structure by

¢y is admissible, then we can prove that Df generates

|JU U $(x)| as in Theorem 3.21. Otherwise, by the hypothesis
L2 “L

of the theorem, the point x in question is such that ¢£(x)
belongs to the boundary of a set E, whose Gauss structure
(induced by ¢2) in clos (E) is admissible. Now Df generates

a unique continuous function ¢: Mn + R (Reals, and in U2 we

have that ¢ o ¢£l and |J y-o | o ¢£l coincide in all points

Ug» Ug
of the interior of E. As int EC g (U ) and both @ o'¢2_l and
Jy .y ¢ o ¢£l coincide in int E, and are defined in
bl

L L
¢2(U2) > E, they also coincide in x ¢ a(E).
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Therefore

-1
Y ¢, = |J
° Ta Ugs Uy

in EMN¢, (U, which implies

yx) = |J S 000, .
Ugr U

because x ¢ E () ¢, (UR),

This completes the proof of the theorem.
6.6 Before we prove the next theorem, let us

discuss a few questions.

Let Mn be a differentiable manifold of dimension
n and assume Mn has a triangulation T satisfying the

following property:
(a) for a convenicnt subdivision T of T the

star St(a) of every vertex a of T 1is simplicially equivalent
toc an n-complex K in R having a1l n-simplices with the same

n-areca.

We call T a balanced triangulation if it has

property (a).

Related to this concept, we can prove the proposition
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which follows, whose statement depends on the concept of

n-complex inscribed in the n-ball. A n-complex K is

inscribed in the n-ball B™ if one vertex of K is at the

center of B and all the others lie on the boundary gh-1

n

of B Now our porposition 1is:

(B) There exists for every n > 0 and every
k >n + 1 an n-complex inscribed in the n-ball B" with k
vertices having all n-simplices with the same n-area.
Proof: We proceed by induction on n.
It is true for n = 2 and k > 3 as is easily checked. Suppose
the proposition is true for n - 1 > 2 and k > n. For n
and k = n + 1 the proposition is true because we can take
as K an n-simplex with all edges of the same length. I1f
k >n + 1, consider k - 2 > n. Then by the induction hypothesis

n-1

there is a (n-1) - complex inscribed in B with k - 2

vertices. Consider Bn_l as the equatorial hyperplane of
Bn, and put the remaining two points from those k points

given before at the north and south pole of Bn, respectively.

Now, joining the poles with all the k - 2 points in
n-1 . .
B , we obtain the required n-complex.
6.7  Theorem: Let M , M and ¢: M_ » M7,
—_— n n n n

be as in the main problem and assume that both Mn and M;

are compact and have smooth triangulations satisfying
condition a) stated above. Then the main problem has a

soclution.



by

Proof: If we analyse the proof of
Theorem 6.5, we notice that its fundamental =steps are:
1 The proof that Df 1is pointwise cofinal and

therefore generates a continuous function

v Mo R

2) The proof that ¢ coincides with the absolute
value of the Jacobian for suitable local
charts.

So, roughly speaking, to prove cur theorem we

should somehow obtain 1) and 2) above, and that is what we
take as guide for the proof of our theorem,

Let us analyse 1). The property of being pointwise
cofinal at x is a local propertyv, i.e., it depends only on
what is going on in the neighborhood of x, and due to
Lemma 4.3, it is invariant under a homeomorphic transformation,

in the sense of that lemma. Now as Mn and M; have balanced

triangulations, by hypothesis, property a just says that

x e M and ¢(x) € M; have small neighborhoods which are

homeomorphic tc the interior of a certain n-complex L in

R". tlow the set of barycentric subdivisions of the n-complex

L is clearly an admissible Gause structurc in the sense

N

of 4.6 and so, locally, ¢ induces a map ¢: L - L which

is differentiable with Jacobian different from zero. For
N
such ¢ according to what we said before, and [u], we can find
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a g-function f generating ¢ where g-derivative Df generates
v

the absolute value of the Jacobian of ¢. So all we have

to do according to Lemma 4.5 is to provide for Mn and M;,

Gauss structures, having local images in L, which are
precisely the barycentric subdivisions of L.
We proceed as follows:

Reasoning with Mn’ we have a homeomorphism *
h: K +-Mn, where K is a n-complex, because Mn is triangulable

and for cach n-simplex 5.5 h[s fos; > Mn has an extension

e

hs to a neighborhood Ui of 5, in R" (plane of Si) such that
i

h : U, » M_ 1is an imbedding (i.e. h (U.) is a smooth -
S i n S i

i i

submanifold), because the triangulation of Mn is smooth.

So (h (U.y, h_l ) are local charts; h—l
s i s s

i i i
is differentiable because it is the inverse image of an
imbedding and hs (Ui) is open, because of the theorem of
i

2,
w

invariance of domain or open sets

(*) Brower”“s theorem on the invariance of domain: Let

X be an arbitrary subset of R" and h a homeomorphism of X
on another subset h(X) of R". If x 1s an interior point
of X, then h (x) 1is an interior point of h (X). In

particular, i1f A, B are homeomorphic subsets in R™ and A is

open, then B 1s open.
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We also know that K is simplicially equivalent

to a subcomplex of the fundamental simplex Hp9 P > n,

(o) .
Let H = H

p p’
Hél) = the firts barycentric subdivision of Hp’
Hém) = the nth barycentric subdivision of HP9 and
SO on.

call o the family of all simplices in HD,
al i ¥ 7 [ % 71 H(_‘]:) s
OL2 i 1 ) 1 17 i1 H(2)
p -’

am it 1 A\l ¥ i H(Yp) s etc:

Then 1t i1s obvious that the family of all al, is a standard

family of coverings or a Gauss structurce in Hp° This

impli¥s that {h(ai)}, i > 1, is a Gauss structure (standard

'

family of coverings) in Mjh
K

Therefore we can identify Mn and M; wlth subcomplexes
of HP with structures of differentiable manifolds induced

by M_ and M7, Now ¢: M_ > M~ will be regarded as a
n n n n
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differentiable map of a subset of Hp into another.
Now we are able to prove step 1) referred to above,

i.e., Df is pointwise cofinal and so generates a function

Indeed, let x ¢ Mn be arbitrary and take a star

St(a) @ x € int St(a). Then according to @) we can suppose

that St(a) is simplicially equivalent to a complex L in

R™ defined by some barycentric subdivision of an n-simplex
L. Again by Brower s invariance theorem, the open star
(int St(a)) is taken into an open set in R", the interior

of the complex referred to above, which is a differentiable
manifold in R” with differentiable structure induced Dby
the differentiable structure of int[St(a)]. This is an
easy conscquence of the implicit function theorem. We

do the same for M; obtaining a complex L and a star St(a”)?2

¢ (x) € 1int (St (a”)).

Let h1 i St(a) » L
hi : St(a”) » L7 be the corresponding

pair of homeomorphisms.
We have reduced the problem to the interior of

St(a) because pointwise - cofinality is a local property,

as said before. By Corollary 4.4, (Df 1is pointwise
v
cofinal [ Df is pointwise cofinal), the

Y] v

h?  induce a g-function f 2 Df

pair of homeomorphisms h13 :
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is pointwise cofinal, by restricting ourselves to the
interior of the star St(a) and St(a”), as discussed above.

4
Therefore, as Df is pointwise cofinal, this implies that Df

is also pointwise cofinal.

Qur second step ig to prove that ., generated
by Df, coincides with the zbsolute value of the Jacobian of
¢. Again, analysing the proof of Theorem 6.5, we conclude

[y

that this depends essentially on condition 2 of that theorem,

and so we are going to show that this condition is also
true in the present situation.

Indeed, let x € Mr and ¢(x) ¢ M;. As the triangulation

of M is smooth, we can take as local chart (U29 hz) at
X, the open set Ug which contains the simplex By> to which
x belongs, and is in the hyperplane defined by Sy We take

as h, ‘the restriction of the homeomorphism h: K - Mn to

s together with i1ts extension to Ul’ We do the same for

2

dp(x).
Clearly (UQ R hl) and (U;, h;) satisfy condition

2) of Theorem 6.5, where the W required in that theorem 1is

given by the interior of = in UQQ

This completes the proof of the theorem.
Remark: Condition 2) 1is introduced
n

to obtain locally an imbedding in R, The more general

situation, where we have a manifold M" homeomorphically




imbedded in RP and we want to know if it is also
diffeomcrphically imbedded in RP, is studied by B. Hajduk

in [5].
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APPENDIX

We want to finish our work by pointing out
several possibilities open to further research suggested
by what we have done so far. We believe this might
indicate that our ideas could produce new achievements in

non-deterministic mathematics in the future.
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Measure Induced by Gauss Structures

1. The reader certainly noticed that frequently
we have approached the concept of derivation of g-functions
with the concept of measure. This is clear, for instanmce
in the proof of Theorem 6.5. We believe that it is
possible to define a measure every time we have a Gauss
space satisfying certain conditions. This we want to
discuss briefly at this point.

Let (X , F) be a Gauss space. Call a figure
in X the union of a countable set (possibly finite) of
elements of coverings of F (such that no two of them have
common interior points). We emphasize that if H 1is a
figure of X, the sets whose union is H are not necessarily
taken from the same covering of F; they might belong to
different coverings.

Let us assume that F satisfies the following
conditions:

C.) T has a cofinal, countable, well-ordered

I

set of coverings
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II) There 1s a monotone sequence {mi}i>l of

positive integers with lim m, = o, such
that the number of sets of a4y contained
in one set of a, is precisely m.=n (ai,ai+l).

We observe that F being directed by refinements,

we can drop the word “well-ordered’™ from CI because it

is a consequence of cofinal + countable; however we
believe it is good to have it explicitly stated.

The collection {a.}. of C., will be called a
1°1>1 I

base for F.

We believe F can generate a measure 1in X as

follows: first select as measure of any set 1in o, an
arbitrary numkter K > 0, called the gauge of F. Then
. K _ K

as measure of each set in o, take = = ————-—t |

2 m n(a, a,)

1 1,72
and for any set A in a, we take
K K
p(A) = =
mysMy «vw Mo n(al, az), n (a2 R a3) .o n(ai_l,ai)

Clearly the measur«e of each set in o, tends to zero as 1 = o,

Now let H = Ai be a figure in X. We put

8

[s]
m(H) = Im (Ai)’ which may be finite or infinite.
1
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Finally if E is an arbitrary set in X we define the

exterior measure of E as the number

m, (E) = inf m (H), H a figure in X.
ECH

To have a measure in X we have only to verify that m, (E)

s0 defined satisfies the requirements of an exterior
measure in the sense of Caratheodory. Unfortunately ?y
the time this thesis was written we did not check these
points, but what we have said is enough to show how a theory
of measure can be built in a Gauss space. Certainly many
interesting connections with derivatives must exist and there
is also the question of deciding if every open set | is
measurable when X has a countable basis of open sets. We
plan to investigate all these questions in our future work.
2. Another question suggested to us by our work

connected with measure is the following: Suppose ¢ 1is a

. n . n . .
function of R" into R~ which maps measurable sets in R
into measurable sets, taking measure, for instance, in the

Jordan sense. Suppose there is a real continuous function

f defined in R" such that for any measurable set A there

is a point x ¢ A such that

Bff-ﬁi-: £ (x). (1)
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We ask if ¢ is then necessarily differentiable, or if that
is not the case, what conditions we have to assume for ¢
such that f as above does exist.

If ¢ is differentiable with Jacobian different
from zero, we know that a function like f does exist
precisely, f is the Jacobian of ¢ and also relation (1)
is true.

If we can answer these questions, other théorems
similar to 6.5 and 6.7 can be established. So far, we do
not know anything about them. The classical theorem of
Radon-Nikodym is connected with these questions but in

general, f, the Radon-Nikodym derivative, is not continuous.
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IT

Brownian Motion and N.D.A.

Just to make references to possibilities of
applications of g-derivatives in physics, we recall the
work of Wiener about the Brownian motion of particles in
a fluid.

i Roughly speaking, the result is that the path
of such particles is mathematically represented by a
continuous curve without tangent at any point. Now ,
classically the speed of a particle is always connected
with the tangent to the trajectory, which in the present
case cannot be represented at all. However, following
the ideas discussed in this thesis, a reasonable approach
to this problem could be as follows:

Let ¢: [0, 1] - R? be the path of the particle
in the Brownian motion. So ¢ 1is continuous but nowhere
differentiable. Our aim is then to find a continuous
g-function

£: ([0, 1], V) = (R%, v*)
which generates ¢ and whose g-derivative Df is pointwise

cofinal. If we can do this we can regard Df as the velocity

of the particle, because under these circumstances Df generates
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a usual function y: [0, lj + R which is continuous. For
more details about other applications of non-deterministic

mathematics to physics, see V. Buonomano”’s Ph.D. thesis [3].
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Complexes Inscribed in the n-Ball

We wish to make a few comments about property

o) used in Theorem 6.7.

Let K be a n-complex inscribed in the ball B™.
Consider the following statement: B) "K is always simplicially
isomorphic to another n-complex L inscribed in g™
having all n-simplices with same n-area®.

So far we do not know any rigorous proof of this

fact, even though we believe it to be clearly true on
intuitive grounds, i.e., one might be able to "move"
the vertices of K lying on the boundary Sn"l of B" until

we get the desired result. As a matter of fact this is

evident for n = 2.

Assuming B) to be true, it is often helpful to

use it toc prove property a). For instance, if a manifold
Mn has a triangulation such that the star of each vertex
is simplicially isomorphic to a n-complex inscribed in

the n-ball, then it will satisfy also property o).
Usually that is the situation we encounter in the applications
and so it is of some interest to investigate the property

B) above.
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Extension of N.D.A. to Infinite Dimensions

Another natural question is the extension of

our results to infinite dimensions. More precisely, let
p: X > Y

be a differentiable map with X, Y Banach spaces.

We ask if there is a g-function

f: (X, V) » (Y, V%)

for convenient families V, V~ such that f generates ¢ and
its derivative Df is pointwise cofinal. If such an f exists,
Df generates a real function ¢ defined in X. Then what is
the meaning of ¢? More precisely, when we deal with a finite
dimension, the derivative is connected with two things: a
linear map and a real function which is the value of the
Jacobian at each point. Now, for infinite dimensions the
derivative is still associated with linear maps, but what
replaces the Jacobian?

So far we do not know any reasonable answer to
this question, but it certainly deserves attention and the

function ¢ referred above might tell us something about it.
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Possible Intrinsic Study of Manifolds

Analysing Theorems 6.5 and 6.7, we realize that
they show how, in some cases, the Gauss structure does, in
certain sense, reproducce the usual differentiable structure.
However, we do not need nccessarily to restrict ourselves
to thése cases; we might just start the study of manifolds
directly with g-functions and Gauss structures. More
precisely, instead of looking to the category D of differen
tiable manifolds and differentiable maps, we look at the
category P of pairs (M, V), where M 1is a topological
manifold with Gauss structure and the morphisms are
continuous differentiable g-functions.

From this point of view, our theorems merely
state conditions under which objects and morphisms of P
can be identified with objects and morphisms of D.

The advantage of starting with P is that most of
the concepts defined will be topological invariants, due
to Lemmas 4.3 and 4.4, and this avoids one of the serious
problems with manifolds, namely, every time we define

something using local charts i1t is not usually easy to
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verify the topological invariance of the concept
introduced. In few words, we have always to worry

about local charts which were really introduced because

we did not have any other way of speaking about derivatives.
Now that an intrinsic theory of derivatives does exist,
it seems to us that the natural thing to do is to use Gauss
structure instead of leccal charts. We agree that it‘ is
perhaps too carly to decide which philosophy to adopt, but
the 1dea of reconstructing all of differential topology and

differential geometry in terms of Gauss structure seems to

us a fascinating enterprise.
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