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HEREDITARILY LOCALLY COMPACT SEPARABLE SPACES
BY ,
”
Vi KANNAI AND M. RAJAGOPALAN

ABSTRACT: We first obtain some neat characterizations of
hereditarily locally compact separable spaces, The first section
includes alsoc some characterizations of minimal one among then.
The second section describes intrinsically the one-point-
compactifications of such spaces. It is also proved that a
compact Hausdorff sequential space of type (2,1) fails to be
Frechet if and only if it contains one such space as a subspace.

Thus a good class of test spaces for Frechet prcperty is obtained

here in answer to a problem of Arhangelskii and Franklin, In
constrast no this we like to mention that it was proved in [Ri]
that 82 cannot be a test space for sequential spaces of order 2,

()
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Throughout, N denotes the set of all natural numbers; w,
is the first uncountable ordinal number; 'p.a.d.' is the
abbreviation for 'pairwise almost disjoint'. Two sets A and B
are sald to be almost disjoint if their intersection is finite;
they are said to be almost equal if their summetric difference is
finite; if ANB 1is finite, we say that A almost contains B,
We use the word 'clopen' in the sense of 'both closed and open',
'hol.ces.' is our abbreviation for 'hereditarily-locally compact
and separable'. The h.l.c.s. spaces may contain monseparable

[

subspaces.

Let P be a family of infinite, p.a.d., subsets of N. Let
Y(F) denote the disjoint set union HNUF, topologized as bolow,

-

If F 1is an element of T, it is on one hand an element of Y(F),
and on the other hand a subset of ¥ and hence of ¢(F), Since
this may create some confusion in our later discussions, we shall

¥
denote by I , the element F of F, when viewed as an element
of Y(F), Thus we have

W(E) = Fu{r i Fe F}.

Each element of U is declared to be isolated in Y(F). If
F e F, a set containing F~  is defined to be a neighbourhood of

L

F if and only if it almost contains F.

An easy application of Zorn's lemma shows that every such T
is contained in a maximal family of infinite p.a.d. subsets of N,
The spaces Y(F) for such maximal families F, play a special

role in this paper,

Remarks: These spaces were first introduced by J.R., Isbell
and considered in LG-J, P. 79]; they appear in [F] to provide
an example of a compact lausdorff sequential non-Frechet space;
[Rl] contains some non-embeddability theorems concerning them;
[K1] and [R2] have used them to construct compact Hausdorff
spaces of higher sequential orders; [K?J speaks of them as the
spaces that let to guess the result of that paper; [M] has
utilised them in connection with rings of continuous functions;

BS] has implicit}y used them to answer a question of Semadeni,



With this background, we are ready for the main results., All

spaces considcred, are assumed to be Hausdorff,
§ 1

Theorem 1,1:

A) The following are equivalent for a separable space X:-

1) X is hereditarily locally compact.
2) ¥ is locally compact and the set of accumulation points
of ¥ is discrete, .

3) X 1is homeomorphic to Y(F) for some F,

ws
N

The following (4 through 7) are equivalent for a

separable space X:=-

4) X is pseudocompact and hereditarily locally compact,

5 ¥ is a minimal h.,l.c.s. spacej that is, X 1is
hereditarily loczlly compact and no strictly coarser
Hausdorff tcpology is so,.

6) X is homeomorphic to Y(E) for some maximal F.

7) X is regular; the set of accumulation points of ¥ is
discrete; and every clopen discrete subset of X 1is

finite,
Proof:

1) implies 2): Since X 1is separablc, it has a countable
dense subset Y; since ¥ 1is h,l.c.s., this ¥ is locally
compact. It follows by an easy application of iaire category
theorem (or from known characterizations of countable locally
compact spaces) that Y <contains a discrete dense subset, say N.
It is easily seen that every point of ¥ has to be isolated in
X and that there can be no other isolated points, !iow suppose
its complement XN\ ¥ has an accumulation point x., Then the
subspace HiJ{x} is not open in its closure, namely X, Hence
it cannot be locally compact. (For, in a locally compact space,
a subspace is locally compact if and only if it is open in its

closure)., This contradicts 1),

2) implies 3): Let & Dbe the set of all isolated points



w

of X. Then 1§ must be contained in every dense subset of X.

oy

Since is separable, it follows that i 1s countable, This K
is dense in X, because the set XN of accumulation points of
X is assumed to be discrete, How for each x in X\N, let VX

A

be a compact neighbourhood of x such that VXC:HK}{X}. We now
claim that {VX : x € XN\NU} is a family of p.a.d. infinite
subsets of i, For this, we first observe that each V¥ is the

set of a scguence in # converging to =x. This is because every
compact countable space with @ unique accumulation point must be

homéomorphic to w+rl., f foﬂ Vy is infinite, then we get a

sequence converging to both =x and y3; this is impossible in a
Hausdorff space unless x =

yo It is now clear that the topology
of % is same as that of p({v, : x ¢

¥\N}s.

3) dimplies 1,: Clearly (F) is locally compact, The
pairwise almost disjointness of members of I assures the
Hausdorffness of this space, If A 1is any subset of this space,
the set ANA  is closed. {In fact, any subsct of XN\N is
closed, since any subset containing J is open). Thus A is

open in its closure and therefore locally compact,

4) dmplies 6): 5ince we have already procved that 1) implies
3), we may assume that X is Y{(F) for some family F of p.a.d.
infinite subsets of . ‘e have to deduce the muximality of [
from the pseudocompactness of X. If F is not m=ximal, there
is an infinite subset A o¢f H¥. almost disjcint with every

1.

(where T ¢ E) has a

o
YT de
I

member of F., Then every
neighbourhood disjcint with A, Thus A is infinite and clopen,
Clearly then there is a continuous real function on X which maps

A onto any countable set we plcase,

6) dimplies 7): ¥ dis locally compact and Hausdorff and
therefoure regular. The set of accumulation points of X is
discrete, because every such point has a neighbourhood containing
no other such point. If 4 is a clopen discrcte subset of Y(F),

then consider & Mi; the maximality of T implies that ecither



AAN is finite or AMSAF is infinite for some T in F; in

b

the latter case F is a limit point of 4, contrary to the
assumption that F is clcsed and discrete; conscquently, AN
iz finite; but since W 1s dense and 4 1is open, we hawe
ACANN, thereby proving that 4 its elf is finite.

73 implies 4): Tirst, we shall prove that X is locally
compact. &t isolated points, the singletons form compact
neighbourhoods. Let X Dbe an accumulation on point. Then since
the set c¢f all accumulation points of ¥ is discrete, there is a

neighbourhcaod Vx of ® such thzt =x 1is the cnly accumulation
poinf of Vx’ inside Vx. 2y regularity, we may assume that this

v is closed. If A 1is any infinite subset of Vx\‘{X}’ then A

*

is open (since every point of 4 is isolated in X)) and AU {x}

is closed (since ACV _ = Vx and since =x is the omnly

accumulation point of Vx); our assumption that averu clopen

discrete subset of X 1is finite, therefore implies that =x 1is a
limit point of A. Thus x 1is a limit point c¢f every infinite

subset of Vx. Clearly then, Vx is compact.

wow the discreteness of the set of all accumulation points
inplies (as we have already seen) that every subset is locally
closed (that is, closed in a bi-ger open set, ¢r equivalenty open

in its closure) and therefore locally compact.

In the space X, therec is a dense subset (namely, the set of
all isoclated points) every infinite subset of which has a limit
point in ¥ (since every clopen discrete subsst is finite).
ffence if f 1is any real valued continuous function, the range
£(X) must contain a densc subset, every infinite subset of which
has a l1limit point. 1In other words, some bounded subset is dense
in f(X). Clearly then f£(») itself is bounded, Hence X is

pseudo compact,
5) dimplies 6): By what we have proved already, 5) implies
that X is Y(F) for some F, if this F is not maximal, there

is an infinite subset & «of ¥  which meats every member of F



*
in a finite set. Now weaken the topology at the point F (for

one fixed F in F) by de claring that every neighbourhood by
must almost contain FU 4. [That is, we consider Y(G), where

F::
6 = (EN{FH) {y{ruU4i}l] this is a coarser T, topology that is

2
h.,l.c.s.
6) implies 3): We claim that any coarser h,l.,c.s. topology
gives rise to a family ¢ of p.a, infinite subsets of N and

d.
an one-to-one map 6 from & to T such that ¢ almost

contains 6(C) for every ¢ in G. For each F im F, take a

w

compact neighbourhood G of F in the coarscr topology,
containing no cther accumnulation point in that topology; this is
possible because that topology is also h.,l.c.s.; G is the
collection of all such G; the map © is cleavr, if G and 0(@G)
are not almost equal for some G in G, then G\ 8(G) is
infinite, therefore mcets some member F of ' infinitely,
therefore has F* in its closure in both the topologies,
therefore has bsth F . and (8(G)) in its closure in the coarser

topology, a contradiction to the choice of &,

Yow I and G are two families of p.a.d. 1infinite subsets

cf ® and @ is a bijection. (Reason: There cannot be non
accumulation points in the coarser topology. For, in any h.,l,c.s.
space, the set of accumulation points is discrete; hence, if X

is a new accumulation point and V_ is a compact neighbourhood

S

of x containing nc¢ other accumulation point, the some infinite

]

subset of Vx has scme ¥ in its closure, by maximality of I}

hence a contradiction) fron G to r such that ¢ and (G) are

almocst equal for each G in G. It follows that the two

topologies that we are considering, are identical.

Corcllaries 1.2:

a) The following are equivalent for a separable space X:=-
1) X is hereditarily locally compact, pseudo compact,
1t not compact,
2) ¥ is minimal h,l.c.s. and uncountable,

3) X is homeomorphic to Y(I) for some maximal and



b)

c)

d)

e)

1i

infinite T.

space & 1s a subspace of an h.l.c.s. space if and

only if ¢ither X itself is h.l.c.z. or X 1s the sum

of an h.l.c.s. space with an uncountable discrete space

of cardinality < c.

tvery hereditarily separable hereditarily locally compact

space 1is countable,

The class of pseudo-compact h.,l.c.s. spaces 1is stable

under the formation of finite sums, clopen subspaces and

gquotients that are one-to-one except on a finite subset

of the domain.

Every h.l.c.s. space has an h.l.c.s. pseudo compact

extension,

Remarks 1.3:

b)

c)

The assumption of separability in Theorem 1.1, cannot

be deleted, The one-point-compactification of an

uncountable discrete space satisfies 1), 2), 4), 5) and

7), but not 3) and 6) of the Thecorem. There may even

exist (we d¢ not know) spaces satisfying 1) but not 2).

The following can now be easily proved: A noncompact

T

5 Sspace is Y(F) for somec maximal F if and only if

there is a subset D suech that i) 1 1is countable,

ii) D is open, iii) both © and its complement are

discrete and iv) every sequence in » has a
subsequence converging in X,
Proposition: i space X 1s a continuous image of a

pseudo~compact h.,l.,c,.s. space if and only if X

contains a countable dense set D such that every

sequence in D has a subsequence convergent in X.

To prove the 'if' part, take a maximal family F of

p.a.d. infinite subsets of D that are sets of

convergent sequences in X, Our asumption implies that

if &4 1is any infinite subset of D, then there is an



infinite subset B of A that is the set of a

convergent sequence; BNF  is infinite for some F in

i
'; hence 1 NF is infinite. Thus F 1is a maximal

1—
te subsets of X (without any

]

family of p.a.d. ini

ini
furthcecr condition on its

members ;. Clearly “ 1s the

image of wi¥) wunder the abvious continuous map.

d) It can be proved that the following are egquivalent for
an h.l.c.s. space: i) ~compactness, ii)} Lindelofness,
iii)  hereditarily separability iv) motrizability v)
the first countability of its one-point- compactification,
vi) normality, vii) second countability and viii)

cocuntability.,.
§ 2

Ye say that a space is of type ¢ iz it is homeomorphic to

o

P(F) for some maximal [I; we say that it is of type ¢ if it is
homeomorphic to the c¢ne~point-compactification of some space of

type Ve

%
Theorem 2,1,: & topological spnce {  1is of type ¢ if

and only if it satisfie¢s the following four conditions:-

i) ¥ is compact Hausdorff,
ii) ¥ 1is separable,
iii) The set of accumulation points of ¥ has a unique

accumulation point X,

A%4

and iv) Ho sequence of isclated points of { converges to X e
Proof: If X is a2 space of type ¢ , let X be its point
————— S

such that X \{xo} is of type $. Then A N{» } satisfies the

)
conditions of Theorem 1,1 and is in particular separable; hence

A 1s separable, Clearly, X 1is compact and rausdorff. To prove
iii)

we observe that the set of accumulation points of X‘\{xo}

infinite and discrete =2nd hence cannot be closed in X, whereas

is
it is closed in X¥N{x_}. To prcve iv) let 2 be the set of a

sequence of distinct Iisnlatcd points. Then by the maximality of



F, (where F is the family such taht X‘\{xo} is homeomorphic

to  Y(F), there is F din F such that BT 1is infinite. (A

set 1s not distinguishad by us from its image under the above

homeomorphism and hence this is meaningful,) Then F is in
the closure of i, iience the sequence that we started with,
cannot converge to any point other them T . In particular, it

can not converge to X .

Conversely, let ¥ be a space satisfying these four
conditions, Let Y Dbe the subspace X‘\{xo}. Then' clearly Y
is locally compact, Hausdorff, non-compact and separable, Further,
the set of all accumulation points of Y is discrete., If W is
a clopen discrete infinite subset of Y, them ¥ Ll{xo} will be
closaed in X and hence compact; since every point of ¥ has to
be isolated, this means that ¥ is the set of a sequence of
isclated points of i <converging to X This contradicts iv),
Thereby proving that every clopen discrete subset of Y is
finite, Thus Y satisfies the condition 7) of Theorem 1.1

W

and therefore is of type Y., Thus ¥ 1s of type v .

Thecrem 2,2: Let i Dbe any space such that

1) It is lccally compact and Hausdorff,
2) It is scattered, with derived langth 2.

and 3) It is sequentizl, with sequential order 2,

Then ¥« contains a subspace of type wk. (Conversely, it
is easy to prove that any space of type wd satisfies these
three conditions), (Zee [K] for the definitions of some new

terms here).

Proof: Let X be a point in X with sequential order 2,

Let W be a compact open neighbourhood of X containing no

other point of derived length > 2, Since the sequential order
at X is 2, there is a subset A ¢f W such that X, is in

4, but no sequence from & converges to X e Let B the set
of those polnts of /4 that are accumulation points of X. Ve

claim that x_ is not in ©T. We observe that ?(}{xo} has at

A4



most one accumulation pcint and hence Frechet, (Since it is
already sequential). Therefore, if x, were in %, there would
be a sequence from ® (and hence from 4) converging to X s
contradicting our choice of A, Thus X ¢ T and hence we may
as well assume that every point of A4 1is isolated in X, Since
every sequential space is countably generated, we can choose a
countable subset C of 4 such that X, E T, dow let Y = C.
Then the space Y satisfies the four conditions of Theorem 2.1.;
therefore it is of type w“.

Hemarks:

o,
”

~a) The spaces of type Y are thus test spaces to verify
Frechet property, among a fairly gocd class of spaces, A (locally)
compact space is said to be of type (2,1) if there is a unique
point in its second derived set, (This is a standard terminology,
intrcduced by sierpinskil), & restatement of our theorem reads
like this: < compact iflausdorff sequential space of type (2,1)
fails to be Frechet if and only if it contains an uncountable
minimal h.l.c.s. subspace. In this connection, the equivalence
of the following threce nsscytions, is also an easy consequence of
our results, for a separable compact Hausdorff space X of type
(2,1),

i) X dis not first-countable,
ii) X centains an uncountable discrete subspace,

iii) ¥ —contains an uncountable h.l.c.s. =subspace,

b( It will be interesting to know whether 2} can be deleted

in Theorem 2.1,
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