M. RAJAGOPALAN P, V. RAMAKRISHNAN

"USES OF ES IN INVARIANT MEANS AND
EXTREMELY LEFT AMENABLE SEMIGROUPS”



NOTAS DE MATEMATICA

NS 17

“USES OF @S IN INVARIANT MEANS AND
EXTREMELY LEFT AMENABLE SEMIGROUPS”

POR

M. RAJAGOPALAN P, V., RAMAKRISHNAN

DEPARTAMENTO DE MATEMATICA
FACULTAD DE CIENCIAS
UNIVERSIDAD DE LOS ANDES
AERIDA - VEREZUELA
1976



Abstract: A semigroup S 1s called extremely left amenable if
there is a multiplicative left invariant mean on the space m(S$)
of all bcunded real valued functions on S, A subset A ¢ S
is called left thick if given a finite subset 3 C S there is
an element 'a' in A so that Ba « A. We prove the following

in this paper:

The following are equivalent for a semigroup S:
(a) S 1is extremely left amenable.
"(b) There is an ultrafilter on S so that all members of
this ultrafilter are left thick.
(c¢) The collection of all left thick subsets of S can be

expressed as a union of ultrafilters.

We further show that the set of all multiplicative left
invariant means on S 1is either finite or has cardinality
greater than or equal to 2%, If a semigroup has a unique multi
plicative left invariant mean then it is alsc extremely right
amenable. We investigate the relationship between continuous
extensions of the semigroup operation in S +tc RE and extreme

amenability and when will the collection of left thick subsets

of 3 form a filter.



INTRODUCTION: One of the important problems in mathematics is to
find when will a given collection c¢f self maps of a set X have
a common fixed point. This led to the study of existence of
invariant means on certain function spaces associated with a
semigroup A, We mention in this connection, the works of Day
[5]s Rickert [20]; Furstenberg [7]; A. T. Lau {22], among many
others, In 1966; Mitchell [17,18], introduced the class  of
semigroups which have tho fixed point property on compacta and
showed that they coincide with the class of semigroups S which
admit a multiplicative left invariant mean on the space m(S) of

bounded real valued functicns on 3. Granirer |3] gave algebraic

]
characterization of extremely left amenable semigroups and proved
that it is a large class of semigroups. So far no topological
characterization of extreme amenability of a semigroup in known.
In this paper we study the extreme left (or right) amenability of
a semigroups S from its Stone-Cech compactification @S or
equivalently in terms of ultrafilters on 3. 7This point of view
gives us two dividends. first of all we are able to study  the
cardinality of the set of all multiplicative left invariant means
on S$. Ve remark that the parallel study of the dimension of
the set of all ‘left invariant means on a semigroup 3 was a
difficult problem and formed the subject matter of investigation
of the doctoral dissertations of I. S. Luthar [14] and E. -
Granirer [8]. 1In another direction we get the interesting -
result that if S is an Arens regular semigroup or a weakly -

almost periodic semigroup then the uniqueness of multiplicative

left invariant means on S implies that S is uniquely extremely



right amenable as well and that S has a unique multiplicative

two sided invariant mean.



W

_otations: For purely topological notions and Stone-Cech compac

tifications of completely regular spaces we follow |21].  The

notions on Banach spaces are as in (13]. S denotes a semigroup

with discrete topology. m(3) denotes the Banach space of all
bounded rezal valued functicons on &% with usual vector space

operations and supremum norm. If X 1is a llausdorff, completely
regular space then BiX denotes its Stone-Cech compactification.

If X 1s a 1o completely regular space, X 1ts bLtone-Cech

compa¢ctification, ¥ a compact T2 space f : X »+ Y a continuous
v
function then f : (8% » ¥ denotes the unique ccntinuous -

extension of f to RX. If a e S then Qa : S > 3 denotes

I

the map x + ax on o and r. denotes the map x =+ xa on S,

\ A"

Qa, r, are the unique continuous extensions of Qa and r,
< ~

respectively to maps from £S into iteelf. We put Za(x) = ax
for all x € £ and a € 5. If E d1is a Banach space E*<kxmtes
its dual. Given 5 and a subset A S5 we denote by ¢, or
X, the characteristic function of A. Thus ¢.(x) = 1 if x € A

and ¢A(x) =0 if x e S - A, Ifuce Un(S))n then u(A) denotes

U(¢A)’ The constant function ¢S is denoted by 1.

Definition l.1: Let a € S and f a complex valued function on

5. e denote by qu (similarly raf) the function
fo ﬁa(f o ra) on S. The map f - Qaf (f » raf) on m(S)

defined by an element a € S 1is also denoted by Qa(ra). This

will not cause confusion with the earlier meaning of ﬁa(ra).



2,(r ) denotes the adjoint operator of ho(r ) on (m(u)) -
for all 2z € O.

A mean on 8  1is a positive linear functional py  on m(S) so

that ui(d.) = 1. A mean g on S5 1is called left dinvariant
[
(right invariant; two sided invariant) if ¢ _u = u(r.u = u,
A L
LH = ou o= rau) for all a € S. A semigroup & 1s called left

(right, two-sided) amenable if there exists a left (right, two-
sided) invariant mean on %,

befinition 1.2: A multiplicative mean on S 1s a mean u on S

so that u(fg) = u(HHu(z) for all f,g € m{3). A semigroup S
is called extremely left (right, two-sided) amenable if there 1is

a multiplicative left ( right, two-sided) invariant mean on S.

Definition 1.3: A subset A 0 8 of a semigroup 3 1is called

left thick (right thick) if given a finite set Q45 Anseees Ay
of elements cf S +there i1s an element g € A so that
a;g € A(gai € AY for all 1 = 1,2,3,...sn. “hc subset A is
called a left ideal (right ideal, two-sicded ideal) if

hY

xa € Alax € A, both xa and ax € A) for all x € 3 and a € A.

The ideca for left thick sets and extremely left amenable
semigroups were introduced by T. Mitchell [17]. Algebraic -
characterizations of left extreme amenability are given in a
nice paper of E. Granirer [2]. e approach the problem of charac
terizing extreme amenability from topological point of view. -
For this we investigate how to find means on S, The easiest

means on S are evaluations at points of 8S. Thus it 1is -



important to know when will a mean defined by evaluation at an

element of (5 1is left or right invariant. This leads us to
v
consider the extended multiplication & on £8 for all a e 3

and finding out when will 385 have a right zero, This brings
us back to viewing the non isolatecd elements of (5  as free
ultrafilters and studing the existence of special ultrafilters
on S. 3So we give below some properties of 65 wihich we need

in the future.

Definition 1.4: Let 3 be a semigroup with discrete topology.

Let a e 85. Then ¢ is the mean defined on S by the formula

~

ea(f) = f(a) for all f e n(S).

The follewing is an easy consequence of the fact that every
bounded complex valued function f on 8 extends continuously
to BS and a theorem on characterization of multiplicative -

linear functionals on the space of all continucus complex-valued
functions on a compact ilausdorff space proved in [13].

Lemma 1.5: Lvery multiplicative mean on & 1ig of the form €,
for some a € @S.

Lemma 1.6: Let a e g5 and V_ = {V (Y S | ¥V is a neighborhood

of a in £3.}. Then v is an ultrafilter in 3 and

St PR .
{a} = /1 7. Every ultrafilter U on S dis of the form Vg
Wev i
a

’ o - - * .(“"':\
for some a € BS and U, is free if and only if {1} = Va for
some a € [BS/S. Further, let a e 83 and L < S. Then E ¢ Va

if only if a € E.



(e}

Proof: Lemma 1.6 is well-known and can be seen for example in
[4].
v
ow we note that if a ¢ S then e&(f) = f(a) for all

f e m(8). Thus € is left invariant if and only if

<

ea(f) = ea(ﬁb(f)) for all f e m(8) and Db e S. ‘iow
" .y n,
ea(f) = (f)(a) and ea(lbf) = (zbf)(a) = f{ba) for all b e 8

[a¥]

and f e m(38). So ea(f) = Ea(ﬁbf) => f(a) = f(baj. Combining
this with lemma 1.5 we get:

Lemma 1.7: A semigroup S has a multiplicative left invariant
mean, or in other words S 1is extremely left amenable if and
only if there is an element a € BS so that ba = a for all

b € S. Likewise 35 1is extremely right amenable if and only if

there is an element a € RS sco that ab = a for all b e 3.

Definition 1.8: Let & be a semigroup. An element a € 38S 1is

called a left zero (right zero) of £S5 if and only if ab = a
(ba = a) for all b e S. An element of B3 1is said to be a zero
of RS if and only if it is both a right zero and left zero of
BS.

The lemma 1.7 can be restated as:

Corollary 1.9: A semigroup S 1is extremely left (right) amenable

if and only if B3 has a right (left) zero. BS has a two sided
zero if and only if 5 1is two-sided extremely amenable.

n
Now 1if b ¢ 8 then Ly ¢ BS = BS is a continuous function



from £5 into 5. So if a e 55 dis 2 raight zero of B8 and

, b & § then w: have that given a neighborhood W

of a in 35 there are neighborhoods V,, V,, ... , V of a in

1 2 n
Y]
35 so that Qb_(Vi) < 4 for i=1, 2, ..., n. Thenchoosing
i

an element x g W /) VltW ceos N v, we get that bix e W/ S
for all < = %1, 2, .. s 0, So W 1 S is left thick in S and
also 1s a member of the ultrafilter van Thus an easy application
of lemma 1.6 gives us:
Lemma 1.19: Let 3 be extremely left amenable. Then there 1is

’ "

N
an ultrafiiter (L) Jn & so thal all memrers of (U are left
£ )

thick in 5. £& osiadilar recsult holds for exitrvemely right or

two-sided ~nerable instead of extremely Zeft amenable.

tiote that lewma 1.10 and lemma 1.5 give
extremely left amenable then there is an eisment a ¢ S and a

€ 350 that E 1is left

¢
3
jos
O

multiplicative ieflt invarian® me-

thick and w(E) = 1 for all E ¢ V_, <Take u = €_).

The ~onveyse aiso holds ac Ze shown in ~he fellowing lemma.

Lemma 1.%21: Let S be an evitremely left amenable semigroup. -

=

Let E LS be left thick. Then there ewists a multiplicative
left invariant mean & on S 5o "hat €(b.) = 1, Moreover -

there is an ultrafilter () on 5 so that [ ¢ (ﬁ; and  all

members of (g} are left think subsets of 5, A simijiar theorem

hclds if left is vepliaced by right tocughout in the lemma,

Procf: Let a e fS be a rigal zero of 25. Tor each finite non
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empty set I C & let X be an e¢lement ¢f £ so that YxF e L
for 2all y ¢ F., Let L be a cluster point of the net Xp when

F varies over the filter of all finite subsets of S wunder con

tainment. Let ry o 5 - £5 bhe the map rb(x) = xb for all

V)

x ¢ 5 and let r, be its unique continuous extension to i<,

"y

Let =z = rb(a), Thernn 2 ¢ L. 'To sze this let fu be a net in 3

convarging to 'a', Yor a fixed =, Y, ¥Xp € ~ eventually  when

T wvaries over the filter cf all finite subsets of S. So
n,

= = , s F’ Nov . -
rb(Ya) Yab it Ya Xp belongs to E low Y -+ a So

n ny
z = r,(a) = 1t r. (Y ) ¢ E. dow €_ 1is left invariant. To see
b b ' "a z
N
this let f e m(S) and t & S. low ez(f) = f(z) and
Y]
ez(ﬁtf) = f(tz). So it is enough to show that tz = z. dow
Y] 2V}
= z = ) = Y b 5 ~ 2 . Q
z = rb(a) 1t rb(Ya) 1t ub for some net {a + a. So
n\J ’\I "U
= = Y VY) = Y o= &) = { &) =
tz 1tYab rb(lt(truA) rb(ta) rb( ) z since ta a

for all t e€ S. Fut 6 = €_. Since 2z € L we get that E € VZ

L

and 9(¢E) = 1 by lemma 1,6. Moreover V is an ultrafilter

all of whose members are left thick. Thus we get the lemma in
the left invariant casc. The pright invariant case is proved -
similarly.

T. Mitchell [16] proved that a subset L C S of a left
amenable semigroup 5 1is left thick if and only if there is a

left invariant mean Y4 on S so that u(¢E) = 1. We note that



lemma 1.11 is an analogue of this theorem of Mitchell in the

multiplicative case.

We also get most part of the following characterization of
extreme left amenability by an easy application of lemma 1.11, -

1.10 and 1.6,

Theorem 1.12: Let S be a semigroup. “Then th:e following are

equivalent: .

~(a) There is at least one ultrafilter (Q} on S all of
whose members are left thick subsets of U,

{(b) The collection <§) of all left thick subsets of S
can be expressed as a union of ultrafilters of 3.

(¢) If A, B are subsets of 3 then & U 3 1is left
thick if and only if at least one of the sets A or
3 1is left thick.

(d) RS has a right zero.

(e) & 1is extremely left amenable.

Proof: The equivalence of (d) and (e) has been proved in -
corollary 1.9. The implication (e) => (a) is lemma 1.10. To

see that (a) = (e) let (é} be an ultrafilter in S all of
whose members are left thick subsets of S, Let a € BS be
such that <§) =V, as in lemma 1.6, Let b e S. It is enough
to show that ba = a, UFor that it is enough to show that

ba € T where E € (g) Jow given T ¢ (@D, choose xp € L N\ F

so that bxp € E (\ F. (This can be done because E () F e (U
and each member of <§> is left thick.) If t 1is a cluster

point of the net (x.) then t e T for all T e (@). So

F



10

t = a by lemma 1.6. So Xp 7 a- Likewise bXF »~ a, However,

Ny
the continuity of QD sives that bxr + ba. So ba = a. So we

get ()& (d) &= (e), It is easy to see that (b) = (a). To
see that (a) =¥ (b), apply the equivalence (a){=> (e) and lemma
1.11. So, we get (e) <=y (d) < (a) <=y (b). e now prove
(b) = (¢). Assume (b) and that A, B are subsets of S and
A B is left thick. Now A () B belongs to an ultrafilter
() all of whose members are left thick from (b). Since ()
is ulérafilter, it follows that either A or ¢ belongs to (i).
So either A or 3 1is left thick. Sc (b) =y (¢). To prove
(c) = (b) assume (c). Let (L) be the collection of all left
thick subsets of S. Let E € (E), Apply Zorn's lemma to the
collection of all filters (F/ so that L e (&) and @® < ®.
Then we get a filter (;} so that the following hold:
1) @ c®

(ii) Ee (i)

(iii) (H) is a filter

(iv) (:) is maximal with respect to the properties (i), -

(ii) and (1ii) above.

We claim that (E) is an ultrafilter of subsets of 8. For this
it is enough to show that if A ¢ S then either A or GS/A
belongs to <g>, If A Y i1 1is left thick for all M € <:>
then it follows that a e (L) and A () M # ¢ and left thick
and belongs to @g for all M € (E). So the maximality of QD

e

implies that A € (El Suppose that there is a set K e (E) SO

-

. Then A MK MM

that A/ K is not left thick. Let M ¢

is not left thick., However, we have K (A M is left thick. So



o - 7Y

an application of (c) gives us that (S/A) .1 &y i1 1is left

thick for all . e {1'. This in turn impnlies that (5/4) /) w

. . . . T . o e .
18 left thick for all “e {1 and hence 3/%4 e 1. So we

get that (¢) =) (b). 7dhus we have the theoren,

Finally we remark that the statoments in theorem 1.12 hold
when left is replaced by right in that theorem 1.1:7 and can be

probed in a similar fashion, .

How we come to the cardinality problems related to multipli

cative invariant means.
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SECTION 2.  CARDINALITY OF MULTIPLICATIVE INVARIANT MEANS,

In this section we study the cardinality of multiplicative
left invariant mcans. An analoguous problem of unigueness and
dimensionality of left invariant means on a left amenable -
semigroup was considered to be an important problem and formed
the subject matter of investigations by I. 3. Luthar [13] and E.
Granirer LBJ. Jur results on the multiplicative invariant means
are sharp. We get the surprising result that if a semigroup has
a unique multiplicative left invariant mean then it has also got

a multiplicative right invariant mean.

de need the fcllowing results for future discussion. If A

is a set let |A] denote its cardinality.

v
Lemma. 2.1: Let X be a discrete space and £X 1ts Stone-Cech

compactification., Then cvery closed subset ¥ < BX 1is either
. . C . . . . .
finite or |F| > 2~ wher: ¢ 1is the cardinality of continuum.

For a proof see [19], [6] or [4].

[

Lemma 2.2: Let S be a2 semigroup. Let a,b,c g g3 and at

least two among a,b,c be in 5., Then all the products (ab),

(be), a(be), (ab)e are defined and (abl)c = a(be).

Proof: We prove it only in the case when a,c € $. The other

cases are proved similarly., Let ba be a net in 5 so that

a ¥
ba + b. Then (ab) = %ab = 1t aba. Moreover
ny 4" LAV
(ablec = rc(ab) = 1at(aba)c = if a(bac) = ”a(ItQhC)): %ﬁrcﬂﬂ
n
= 2 _(be) = a(bey.
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The corollary 1.9 gave the relationship between a left zero
of {5 and fixed points of the maps ;b where b g S, Motivated
by this we pu*:

T

Definition 2.3: Let € be a semigroup and b g 5. Define the

left fixed point set L ¢cf b to be the set {x | x & BS and
bx = x}. Define Ry the right fixed point set of Db, to be the

set {x | x € £3 and xb = x}.

The lemmas 1.5 and 1.7 give us that the set of all multipli

cative right invariant means on S is exactly () L. and the
bes

set of multiplicative left invariant means on & 1s N Ryye
bes
3ince each Lb and &, is closed in S we get using, lemma

2.1, the following.

Theorem 2.4: The set of all multiplicative left invariant means

as well as the set of all multiplicative right invariant means
are closed subsets of 5. iHence a semigroup ¢ can have either
only finitely many multiplicative left invariant means or has at

c . . . . D
least 2 multiplicative left invariant means. A similar result

holds for the set of multiplicative right invariant means.

\\.\
Hote that the simplost of all infinite cardinals namely fyo

does not appear as a value in many natural cardinality problems

in functional analysis. The theorem 2.4 1s cone instance where

we sce that 5?0 is not the cardinality of the set of miltiplicative

invariant means on any semigroup S. Analogucusly Bhaskara Rao

[3] prcved that the cardinality m of a DBanach spaces satisfies
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N
the equation m ~ = m and S. Janakiraman and M. Rajagopalan

112] proved that there is no interval of cardinality }Co of
locally compact group tepologles on any Abelian group.

It would be interesting to know what cardinals can appear as the
£ PP
cardinals of the set of all multiplicative left invariant means
on a semigroup 5.
It is easy to sc. that every integer n > ¢ 18 well as 2

can be such cardinalities due to the following examples:

Example 2.5: Let 2 Dbe the set of all integers under usual -

addition. Then Z has no multiplicative left invariant mean.

Proof: This follows from the algebraic characterization  of
extreme left amenability due to Granirer [9]. Granirer showed
that a semigroup S 1is c¢Xtremely left amenable if and only if
given X, y € 3 there is an a € 3 so that =xa = ya = a. This

obviously is not satisfied by Z.

cxample 2.6: Let n > ¢ be a given integer. Let X be a set

with n elements with right zero multiplication. That is ab = b
for all a,b € X. Then clearly BX = X and each element of X
is a right zero of X. 30 X has exactly n multiplicative

left invariant means.

Example 2.7: Let i be the set of integers > o with right zero

multiplication. Thus ab = b for all a,b € N. Then it 1is
easily checked that ax = x for all a e N and x € BN. Since

€ (see '18]) we have that 2¢ is a possible value of

871 = 2

the cardinality set of all nmultiplicative left invariant means



15

on A semigroup.

We remark that if n > 1 in example 2.5 then that semigroup
X 1s not even right amenable though X is extremcly left -~
amenable. So it is interesting that this cannct happen if the
multiplicative left invariant mean is unique as the following

theorem shows:

Theorem 2.8: Let & Dbe a semigroup. Let © have a Gnique

Q

multiplicative left invariant mean. Then § is also extremely

right amenable,

Proof: Let a € (S be a right zero of 38, Let b, d € S, =~
Then Db(ad} = (ba)d by lemma 2.2. so b(ad) = (ba)d = (ad),

So ad 1is also a right zero of [S. The unigueness  of multi
plicative left invariant mean gives that a = ad. Since d € S
is arbitrary it follows that ‘'a' is also a left zero of BS.

So €, is also a multiplicative right invariant mean on S, Thus
we get the theoren,

The above theorcm dces mot give that if  has a wunique
multiplicative left invcriant mean then it also has a unique
multiplicative right invariant mean. It would be interesting to
know whether a semigrcup is uniquely extremely left amenable if
and only if it is uniquely extremely right ameanable. We can
settle this problem in one particular case in the affirmative.
sut then we have to consider continuous extensicns of the -

semigroup operation ¢f 3 to BS and their relation to extreme

amenability.

Theorem 2.9: Let S be a semigroup. Then there is a binary
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operation on {5 so that the following holds:

(a) 5 1is a semigroup under (g o
(b) S8 d1s a subsemigroup of 2% wunder .. and

‘Y% RS2

agrees with the given operation on 3.

(c) x wig ¥ is continuous in Y on 3 for any fixed
x of (5.
Similarly an extension ), of the semigroup cperation on

53 can be defined in £S5 which is continuous in the left variable

only.

Proof: For x € S 1let r, be themap Y » Yx on § and let

Y

r, be the continuous extension of r, te 25, If a € BS let
v

%, be the map x - rx(a) = ax for all x € 5, Then la is a

continuous map from & into {8 and hence has a unique -

A,
continuous extension £ to (5. Finally if a, b € (38 put

A" A"
a G)gb = ﬁa(b). Then it i1s clear from the definiticn of Ea

that a ) b 1is continuous in b for all a € B8, Let

a,b,c, € BS.

Let ba be a net in S converging to b and cp @ net

v

in § converging to ¢ 1in 3S. How (bg,0) = Rbkﬂ=1t “ﬁr So

~ A 3 B ;

a@, (bege) = 1t ag, (bcg). Now ¢, € 5, and b, =+ b. So
]

be = 1t(b cy). So a (b @ o) = 1tfa 91t c0)l = 1‘t[1t(abace)]

a e a £ a
= 1t[(1t(aba))cﬁ] since ¢, e 5 = 1t{(a @ble,] from definition
B« . e '

of aggb = (agyb) @c. Co BS dis a semigroup under @, It
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operation @, on 05 so that the following holds:
(a) (3 1is a semigroup under (¥ig o
(b) 3 d1s a subsemigroup of 2% under v, and o,

agrees with the given operation on 3.

() x wig ¢ s continuous in Y on 3 for any fixed
x of pS.
Similarly an extension » , of the semigroup coperaticn on

3 can be defined in £S5 which is continuous in the left variable

only.

Proof: For x e S let r, be themap Y » ¥x on S5 and let

4

r, be the continuous extension of T, te 35, If a e 8S let
o

%, be the map x - rx(a) = ax for all x e S. Then Qa is a

continuous map from & into {8 and hence has a unique -

n,
continuous extension &_ to {3, Finally if a2, b € S put

fers

4" A"
a(gg'b = &a(b). Then it is clear from the definiticn of Ra

that a ¢ b 1s continuous in b for all a € £3., Let

O

a,b,c, € BS.

Let ba be a net in S converging to b and cp A net

Y
in 8 converging to ¢ in 35. Now (b ,0) = & (c)=1t be So

k g c

(bc,)s HNow ¢, € S, and b, + b. So
b3

a@ (b@yc) = %} a @, o o

-

be = 1t(bacﬁ)' So  a (b c) = 1t{a -gllt(bacﬁ)j = 1‘t[1t(abaca)]

o £ o g a

= %;[(if(abu))cej g €8 = %;\ﬂa.@&b)cﬁj from definition

of a ggb = (a@yb) @ge. Lo S is a semigroup under @, It
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is clear that a o b = ab for all a, b e 5. S0 we get the

theoren.

The use of <, in theory of numbers is given in [4]. It

is nect true in general that 1f 5 1is a semigroup then the
multiplication in S extends to a semigroup operation in BS
which 1is continuous in each variable scparately. [t is needless
to say that the multiplication need not necessarily extend to a
jointly continuous multiplication in £S. Continuous extensions
of multiplications from S to JS 1is a very fascinating and
hard study and some partial results have been obtained by H.
Mankowitz [15], T. Macri [16|; R. P. hunter and L. . Anderson
[1], Aravamudan [2], and others. The following gives us  an

interesting class of semigroup:

Definition 2.10: A semigroup & 1s called an R-semigroup if

the multiplication in S extends jointly continuously to a
semigroup operation in £S. The semigroup S 1is called a
V-gemigroup if the multiplication in 3 extends to a semigroup
operation in 85 which is continuous in each variable separately.
Now we are ready to improve our theorem 2.9 for the class of

V-semigroups,.

Theorem 2.11: Let 5 bLe a semigroup. Then the following are

equivalent:
(1) S has a unique multiplicative left invariant mean.
(1i) The collection of all left thick subsets of S is
an ultrafilter in S.

(iii) B8S8 has a unique right zero under the operation G}r,
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(iv) Given f e m(38) there exists a unique constant function

in k(f} where x{(f) 15 the weak - closure of the

set {raf boae 3h.

A similar thecremn holds i1f left i1is interchangad with right

throughout,

Proof: The equivalence (1) (ii) follows from theorem 1.12,

Iy

The equivalence of (ii) and (iii) follows from theorem 1.12
and leémmas 1.7 and 1.10. /e now show (iv) = {iii)., To see that

observe that if a € % is a right zero of 35 in 2 and a,

is a net in 98 which converges to a in 35 then r. f
[t

converges in weak topology to the censtant function

e @

{a). Thus

we have that given f g m(2) and a ripht zerc ‘'a' of ¢S  the

Y
constant function fla) belongs to k{(f). (o it is clear that
ivy m{iii). The implication (a1i) =y (iv) F£ollows easily by

using theorem 1.1 of [10]. Thus we have the thuorem.

Theorem 2,12: Let & e o semigroup. If §  is 2 Y-gemigroup
then the operations gy, ond coincide on (5. Conversely
. e . . AL} - . YR [T N < S a - :

if oF coincides with G, o Om £S5 then 5 ds a V-semigroup.

The proof is straightforward and hence iz omitted.

Theorem 2,13: Let & be a V-semigroup. Then the fcllowing are

equivalent:
{(1) & has a unique multiplicative left invariant mean.

(2) 5 has unicue multinlicative right invariant mean.

o

(3) S has a unique two-sided multiplicative invariant mean.
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(4) BS has a unique right under [, as well as ® pe

(5 £S has a unique left zero under oy, as well as ® pe
(6) §5 has a zero under (73, as well as (D pe

(7) The collection of right thick subsets of 3 is  an
ultrafilter,
(8) The collection of left thick subsets of S is an
ultrafilter.
- (9} Given f € m(S) there is a unique constant function
in ke where kg is as in lemma 2.11.

(10) Given f g m{(3) there 1s a unique constant function

1

in Le whera is the weak closure of the set

i
f

{2 f | a e 3}.

The proof is an easy application of theorems 2.11 and 2.12.
Theorems 2,11 and 2.13 shows the relationship between uniqueness
of multiplicative left invariant means and the cnllection of all
left thick subsets forming an ultrafilter. In fact, the ccllection
of all left thick subsets of a semigroup need not even form a
filter as is the case of the semigroup strictly positive integers
under usual addition or the semigroups in example 2.7. A nice
characterization of semigroups for which the collecticon of all
left thick subsets of S 1is a filter is not known. lHowever, we

have a partial result.

Theorem 2.14: Let & Dbe an extremely left amenable semigroup.

Then the collection (i) of all left thick subsets of S 1is a
filter if and only if ~ [} B # ¢ for all left thick subsets

A, B of &.
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Procf: The "only if" part is clear. S0 we have to only show

that if C/) D # ¢ for all ¢, be (L) then ¢ N e (L.
Let D' = 3S/0. tow C = (C v D3 (C M DY and ¢ is left
thick. S0 theorem 1.12 gives that either C /70 0 or (CNH DY) 1is
left thick. iiowever D 1s left thick and anv two left thick
subsets have non-cnpty intersecticn. So C 1 ' cannct be left

thick. <o (DN e (. Lhus the theoren.

[y

We are able to cet that the collection of left thick -
subsets 1s a filter for another class of semigroups than the ones

given in theorem 2.14%. [irst we give a definition.

Definition 2,.15: et © be a semigroup. A left thick subset M

of S 1s called the smallest left thick subset 1f A D2 H -
whenever A i1is a left thick subset of 3. A left thick subset
3 of M 1s called a minimal left thick subset of S if 3

contains no left thick subset of § other than itself.

Theorem 2.,17: Let o be a semigroup and let the collection (g)

of all left thick subsets of S form a filter. Let there be a
finite left thick subset of S, Then there is a minimal left
thick subset K of L go that K 1s a right ideal of 3,

Further, such a right ideal K can be expressaed as a direct -

product ¢ x I where ¢ 1is a finite group and F is a finite

gset with left zero multiplication. (That is xy=x for all

X, ¥ e F)o
. - . TN .
Proof: Let T be a finite subset which belongs to /L) . Let ﬁ)

be the collection of all subsets of 7 which are left thick in S.

Since (g? is finite and (L) is a filter we have that the —



21

. . ' . N . . . N
intersection K of all members in (&) is again in (L} and hence
left thick. C(Clearly & 1is a minimal left thick subset of S.

-,

Tec see that K is a right ideal notice that if a e 3 then xa

is also left thick since « 1s. Jo £ ¥a is left thick because
(i) is a filter. 350 & = KM Ka since K is minimal left
thick. 8o Ka K. lowever |Kaj < il and |[&a] is finite,
so o o= X, Do we get at the same time that K 1s a right ideal
and also that |Kal| = {K| for all a e S. So if <x, § e ¥ and

a e S and xa = ya then x =y. Sc K 1is right cancellative.
Then K cannot have a proper left ideal of itself. 4y a
theorem in [11] we have that K can be expressed as G x F

}

where G 1s a group and T 1s the left zero semigroup.

Theorem 2,18: Let ¢ be a right cancellative semigroup and @;

the collection of all left thick subsets of . Let there be a
smallest left thick subset A of &. Then (i) is a filter and
A can be expressed as a direct product G x & where G 1is a

group and L 1is a semigroup with left zero multiplication,

We omit the proof since it is similar to that of theorem
2.17.
PROBLLMS:

(1) Let S be a semigroup with a unique multiplicative
left invariant mean. Is the right multiplicative
invariant mean on S always unique?.

(2) What are all the cardinal numbers o so that there is
a semigroup & 50 that the set of all multiplicative

invariant means on 5 has cardinality a7,
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wWwhat are all the crdered pairs (a,8) so that there
is a semigroup 3 whose set of all left invariant
means has cardinality a and the set of all right -
invariant means has cardinality £7,

i'ind the algebraic structure of R-semigrouns.

Find the algebraic structure of V-semipgroups.

Find good necessary and sufficient conditioqs on a
semigroup & so that the set of all its left thick

subsets forms a filter.
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