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ABSTRACT

Here we use the techniques and results of the earlier two
papers of this series to obtain answers to two posed problems
on Hoolean algebras. e answer in the first part a question
cf J, de Groot by proving that under generalized continuum
hypothesis, every uncountable cardinal number cccurs as the
cardinality of a rigid BSoolean algebra. In the second part, we

answer a question of Katetov by constructing a o-complete rigid

doolean algebra.




INTRODUCTINI!

O0ne often encounters with problems that are difficult as

3

they are, but become manageable when translatced to a different
category. “thus very often, problems on ZSoolean algebras are
answered by first transferring them to problems on Boolean spaces.
Sce for zxample {7]) It is with this spirit that we approach
in this paper two problems on ULoolean algebras., Thesa problems
are two decades old, and are considered to be outstanding pro—

blems in the field. Ve solve them completely by making use of

the results of (4] and [£].

The nunbering system in this paper is a continuation of
that in ocur two papers [4] and {5]. 7The results in these two
papers will be frequently quoted here, with due reference to
the sections in which thev occur. Loth the major results of

this paper have been anncunced by us in [6! in thc year 1971,

§4,1, Cardinality of rigid toolean algebras.

A Boolean algebra is said to be rigid if it admits no
automorphism Jdifferent from the identity map. G, sirkhoff [1,
prcblem 7%] asks: Does there exist a Boolean algebra without
any proper automorphism? ‘This question has been answered in
the affirmative by ii. Katetov [7] and later by several others.
In this connection, J. DeCroot and R. . McDowell [3] ask the
following: Do there exist rigid Boolean algebras of arbitrarily

large cardinality? ©This again has been answered in the affir-

0

mative, by F. W. Lozier [%] and later we have proved a stronger

theorem (see §3.4.). Coing still ahead, J. DeBroot asks in [2]



the following question: VWhat can we say about the cardinalities

o)

of rigid :oolean algebras? ‘e answer this quegtion in  this

N
s

section.
tlere we consider the following set—-theoretic axiom  GCii:

true that m = 2

(%]

for each infinine cardinal m, it 1

THEOREH 4.1.1. Assume G, Let m be any uncountable cardinal

number. Then there exists a rigid coclean z2lpebra with cardinality

m.

Procf. Case 1: Let there exist a cardinal number n such that

n
m=2".

et X be the space censtructed by c-process (see chapter
1 of [4] for the definition of this and relatcd terms) from a
c-system satisfying the fellowing conditions:
(1) each base spacce is got from the sum of two copies of
a m~nximal non--discrete space of cardinality n, by
identifying the twe limit points,
(ii) no two distinct base spaces are homeonorphic.

(See §3.4 in 5] for the existence of such a system).

Let 23X be the stone~-Cech compactification of ¥, Then
(¥ is a rigid space. (Sece §3.4 in |S5] for a proof of this
assertion).

Let B(X) be tho icolean algebra of all clopen (that is,
both open and closed) subscts of (X, Then it i1s well-known
that the automorphism group of 3(X) 1is isomorphic to the

homeomorphism group of £X. Hence B(X) 1s a rigid Boolean




vle now coempute the cardinality of 3(X)., This 1s easily
done by successively showing that the follewing smaces have at
. i} T s .
least 2 clopen subgets:
(1) any maximal non-discrete space Y of cardinality n.
(11} ony base space ¢f  ¥.

(iii) ths space N,

(iv) the space [V,

If Y 4ds a maximal non-discrete space of cardinélity n,
it has & unique accumulation point Yoo If A is any subset
of Y/{yo}, then one and only one of the two sets A  and -
Y/{yo}/A is clopen in Y. If follows that amonp subsets of
Y/{yQ}, there are as many sets clopen in Y, as there are
sets non-clopen in Y. Yoting that n is infinitce (since m
is infinite) and that Y/{yo} has exactly 2" subsets, we
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get that ¥ hes at 1 clcpen subsets,

Let 7 be the space obtained from the sum of two copies

(%]
e

of Y by identifying the two 1limit points. If we take a clopen

7

subset A of one of the cories of ¥ such that 2 does not

contain the unique accumulation point, then clearly A is clopen

. . - ~T
in £ also. Thus 7 has at lcast 2° clcpen subsets,

Thus each base-space of X  has at least 2" clcpen subsets.

. %

Take a clopen subset A of the first basc-space and lock at A .
. ® . . . .

(This A is the set of all pcocints of X 1lying above some point

of A, See §1.1, in [4]J Then A  is a clopen subset of X.

see 81,4, in {4]) Also, 1f A and B  are distrinct subsets

)

(

ri

)
ki

of the first base space, then A and 3 arc distinct. It -



follows that X has at least 2" clopen subsets.

Since X satisfies some special conditions (Jie 52.4. in
[4]1), 8X dis zero-dimensional. It is well-kncwn That the nap
W + w1 X ds a bijection between the family of 211 cliopen -
subscts ¢f fx  and the family of all clopen subsets of %
Hence X and (X have the same number of clopan subsets.

Thus the cardinality of (%) is at lez2st 2%, 0On the
other hand, since X has cardinality n, it has at most !
(cloﬁen) subsets; therecfore so does (3X. It follows that the

cardinality of B(X) 1s exactly Qn, which is the same as m,

Cagse 2: Let case 1 not hoild., Then CCH implies that m is

a limit cardinal, that is, one without a predecessor,

how we proceed to construct 2 topclogical space., Let n
be an infinite isolated cardinal number {(that iz the one having
a preaccessor, and hence by GCH, of the form °P for some -
cardinal p) less than m. Let D be a discrete space of -

" . - . - N . . . .
cardinality n and let 297 De 1ts Stcne-Cech compacatfication.

s

Observe that in f1/0, the set of limit points of subsets

of smaller (than nJ) cardinality, has a smaller (than |gDL/D!)
cardinality. If we chowuse noints p in D/ thet are not in
I' then the space D J{»p} with the relative topolegy (from D),
is a maximal non-discrete topclogical space, with density -
character n. with this special cheilce of maximal noen-discrete
spacaes, we can employ the method described earlier (in the proof
of case 1) to construct 3 zero dimensional lHausdorff rigid -~

space Xn of cardinality n. Then every point of An will have



tightness n. (The tightness at a point of a topological space

X 1s by definition the smallest cardinality n, such  that -

whenever A & X and x ¢ A there is B <. A such that x ¢ B
and |31 < n /e

Thus for each isolated n < m, choose @ space £, having
the fcollowing properties:

(i) X_ is a2 zero dimensional iHausdorif ripid space.

44

(i1) £, has cardinality n, tightness n, and has 2"

clopen subsets,
Let X be the one-pcint compactificaticn of the disjoint
sum of the Stone-Cech compactifications BXn of these space Xn'

Then
X = [ @& B4 ! n < my; n isolated}l J 4 {=}

where o is the extra point in the one point compactification,
Then » 1s clearly a zero-dimensional compact HHausdorff space.
The following facts are needed for the later claims:

1) The density character of GXn, is n.

2) If W dis any clopen subset of @X_, then the density

character of 4 1is n.

Since 2) can be proved exactly as 1), we sketch a proof of
1) alone. Let € Dbe the set of clopen subsets of BXn. Let

I be a dense subset of X . Let & (D) be the power set of D.

T"hen W = W N D for all '/ € C. Consequently the map W > W 1D
from ¢ 1into éz(D) is one~to-one. Therefore @ has at least

n

2 subsets (since Bhn has at least 20 clopen subsets). It

follows that the cardinality of o 1is at least n.



]
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wOW we claim ¢hat o 1s rigid. Lel N be a

homeomorphism,., Let there exist two peints x, v in X such

that x € X, y € an > Ny # n, and h(x) = y. Then there -

nq 2

are clopen neighbourhoods ﬁi of x and J2 of y such that

W, BX d, Cpx and h(dW,) = W,. i he densi ar:
i B n15 1 (G n, and  h( 1) Wy tiow the density character

is n,, whereas that of P is n,. {2y the fact 2)

of
Z

k] 1
noted above). This contradicts the fact that h is a.homeomor
phism. Thus we have prcved that h cannot take a point of

Ny 'vl Is ) : = . Hext 3 ] -
F“nl to a point of anz unless ny N, ext, we claim
that no point of X/ {«} can be mapped to « by h. If possible

let x € X/ {=»} be such that h(x) = ®, There is « unique n4

such that x € BXn « since X/ BXn is a neighbourhood of .,
1 1

I

one can find clopen neighbourhoods Wy, of x and ", of =

such that N X/ an and h(ﬁ) = W This implies

1 1 2 1 2

that h takes some points of GXn to pecints of an with
1 2

n, £n This has already been proved tc be impossible. Hence

1 2°
our claim is proved. Combining all these, we conclude that

h(BXn) BXn for every n. 3Since h is onto, it then follows
that h(BXn) = an for cach n. 3ince BXn is rigid for each

n, we have that h is identity on each SXn and hence on the
whole of ¥X. Thus X 1is rigid.

Jow we introduce the fellowing notations to compute the
number of clopen subsets of X, Let n be a fixed isolated in-

finite cardinal < m. Then



~J

Aq =z the set of all isolated cardinals < n.
iﬂ = the family of all clopen subsets of er
Y = the disjoint union of 211 ¥ _ ‘s with ©» in A,
n P : n
£n1 the family ot 211 clopen subsets of ¥ contained
in Y .
n
A ; 1"\n . .
(pLYn)) = the set of all functicns from £ to the set
¢f all subscts of Yn.
-F, = the family of all clopen subsets of £ not containing ¢,
_..1 >
I = the family of all clopen subsets of .,
The following are easily ncted for each n  in Am:
i | ¥ = n.
l) 'n'
iiy |yl = sup .
n 1 t) i
psn ;
iii)y {a_] < n.
. { < “n 0 o BN 3 S I .
ivy (e M | < (2 {by the above 3 facts)
A1
= 277,
N
If is any member of lnj we define £y e (p(¥ )) by
the rule fV(p) = VirX for each p  in An. The obviously
the map V f,, is one~to-one. Hence we have
An
‘F < /'D"'."’ )\
v) ,_n’i ‘ B A .
feow every clopen set not containing @ meets only a finite number
of X's and hence is contained in Y for some n in A In

other words:



vi) B U Ly

ned
m
jow |E < ¢ i_I;ni by w1
neA
m
A
< & (pty_)») by V)
— A n
nes
m
. n
= 7 2 by 1iwv)
nea
m .
. .n . ,
< £ m (since 2 <m for each n in A)
nea '
m
< m, m by iii)
= m. Thus we have
vii) [£1§ < m.

Finally, if VvV is any clopen subset of I, either V e El or

its complement € F In cther words

=1°

viii) Ec B, U {V © ¥ | X/VeE ).

Therefore |E| < [E;0 + [L;] <mm  (by vii)
= mﬁ
Thus ix) [I| < m.
On the other hand, for each n in A, T, F
and therefore |F| > sup |F_|
i 22U any
neA
m
: e .
= Sup 2 (by what we have proved in case 1)
nesd
m

Thus %) |F| = m,



fow the proof ¢f the theorem i1s complete, on the cbscrvation that
F 1s a Boolean algebra under usual operations and has the same

automcrphism group as X.

COROLLAY 4.1.2. Assume GCH. Let m be a cardinal number.

ihen there exists a rigid 2oolean algebra with cardinality m

if and only if either m < ? or m 1is uncountablc.

Procf: If m < 2, then any Uoolean algebra of cardinality m
is easily seen to be rigid., If m 1is uncountable, the above
theorem applies. Conversely let m be a cardinal number such
that there is a rigid 2oolean algebra of cardinality m. If m

n .
for some positive integer 2> 2

is finite and > 2, then m = 2
and the Boclean algebra corresponding to it (namely, the -
power set of a set having n elements) 1s easily sceen to be
non rigid. If m 1is countable, and if £ is the rigid Boolean
algebra ccrresponding to it, then its Stone-space ¥ cannot be
finite (since then 3 would be finite), ncr can it be uncountable
(since then 8 would also be so). & ig therefere a countable
compact ilausdorff space. [t therefore has plenty of isolated

points (this is a consequcnce of Baire category thecrem), con—

tradieting the fact that * 1is rigid.

Bu.2, Rigid -complete =oolean /filgebras.,

Wwhile answering eirkhoff's problem 74, Katetov [7] asks
whether there exist g-complete 3oolean algebras without any -
nontrivial autemcrphism. The purpose of the present section 1is

to show that such Boolean algebras exist in plenty.

THEORE:! 4.2.1. Every boolean algebra can be embedded in a rigid

o-complete pBoolean algcebra,
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Pronf: Step 1: L2t us start the proof by lecking at a special

-}

kind of Stone spaces. Consider the spacces constructed by -
c-process in  §2.1 of {4]5 To recall, each of the base spaces

is of the fcrm Pm for some infinite cardinal number. Here %n

denotes the set of all ordinal nucbers not exceeding the initial
ordinal ¢f m with the *topology that Is the join of the following
two topologies:
i) the usual order topology.
1i) the smalles*t topology in which every subset of cardina
lity < m, 1s closed. Further distinct base spaces, by
their chcice, have distincet cardinalities., Let us make

an extra requirement tThat each base space is uncountable.

We heve proved in §2.1 of [%#] that such spaces are zero-

dimensional ilausdorff spaces. Let ¥ Dbe one such space. Look

at p¥, ite Slone-Cech compactification. Jde have already shown

in §2.1 of {4] +that fcr every x din X, x/{x} is not -

¢ -embedded in BX and hence that §¥ 1is also rigid,

3{X) of all clopen sub-

&

ow consider the Locleean aigebr

sets of (¥, Cleariy 5(0, 1is also rigid for automorphisms.

L%

se claim thet B(X) 1s y-compiele. Since clopen subsets of X
are precisely the intersections ol those of {1 with ¥, we may
regard B(X) as the Bcolean algebra of all clopen subsets of X,
To shcow that 3(X) 1s o-complete, we therefore show that if

WY V2, ceo 3 V_5..- 18 a sequence of clopen subsets of X, then

17
there is a lavpges. ~lomen set contained in each of them; in fact,

we prove that Yy v is itselfi clopen.
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Let us call by  (P)  the property that the intersection of

s clopen, Je make the —_

Bo

e

2 countible number of clopen sets

follewing observations:

P
~
.

1) If m is uncountable, Fm has (D

i

For let V4,V2,...,vq,... be a countable scquence of clopen
o . 4

subzets of P and let W be their intersection. If the unique

i oint 1s not 1 W, then W is obviously open. . he
1 t n 3 t ain , th v s cobv 1y or If i

unigue limit point is in W/, then it is in each Vn; therefore

the cardinality of Pﬁ_vi is less than mj; therefore Pﬁ\d has

cardinality < mj; therefore +« 1s open. The closedness of W
foliows from the fact that it is the intersection of closed sets

{‘J~}n

1

2) The property (i} 1is preserved by sums. That is, if

(03]

R

X = v X 1s o disjoint sum of topclorsical spaces and
{)"6‘.7 &)
if each A, has (i'y, then X has (Fj, (Where J -

is any set).

is preserved by cuotients. That is,

N~

3} The property (&
if f: 4 - ¥ is a quotient map and i1f X has ((P),

then Y has (P},

It follows from 2) and 3) and Remark 1.4., that (P 1is
preserved by c-process. Therefore it follows from 1) that the

space X constructed above has (P).

Thus B(¥; d1s a O-complete rigid Joolean algebra.
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Sten 2 Recall that in the choice of cardinal numbers in  the
construction of . discussed above, we have plenty of freedom

but for scme minor ceonditions., In particular, we can choose then

e
i

[47]

large as we please., e fix an uncountable cardinal number m,-

and construct a space Xr » exactly as above, with the following
it
0

single extra conditicon: the first base space ?n chosen has

L

[y

cardinality my; > m_.

Let A be an initial segment of Prr having cardinality
1
m_. For each subset - of A, consider the subset 1 of X_ ,

l) m
; o

namely the set of all points in Xm that lie above some element
o

of 5, Since A 1s discrete, open and closed in Pﬂ s it
N
1

follecws that c¢ach such D is a clopen subset of Xm . Purther,
e

the map & » o from ({+)  (where (A) 1is the power set of

AL)  to s(xw ) can be checked to be a Boclean algebra isomor-

o
phism {(not onto) in the following sense: 1t preserves unions,

intersections and all relative complements.,

m
Thus it is possible to embed the Boolean algebra 2 © in

B(X .
(X )
o

Step 3: Let B be any Hoolean algebra. Then it is well-known
m

(see [1]) that B can be embedded in 2 © for some m e

It follows from Gtep 2 that B can be embedded in the ©rigid
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o-complete Boolean algebra b(Xm ).

a)

by

O

Remark 4,7.2:

In cur notion of embedding of Zoclean algebras, the
bound elements 0 and 1 need not be preserved,

Our methods in fact prove the fcllowing stronger result:
Let m be any infinite cardinal number. Call a Boolean
algebra m-complete 1f any collection of its' elements,
having cardinality < m, has infimum and supremum.

r
(Thus o-completeness is same as %xl-completeness.)
3

Then there are plenty of m-complete rigid Loolean alge

bras, however large this m may be.

To prove this assertion, we have only to require that each

base space has cardinality > mj for the rest, we can imitate -

the proof of the theorem.
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