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FIXED RINGS OF AUTOMORPHISMS OF X[x,V]

INTRODUCCION. In this paper we answer some of the open ques

tions raised by Fraser and Mader in [3]. Let R = K[x,y] be
the polynomial ring in 2-variables x and y, where K is an al
gebraically closed field of characteristic 0., Let M = (x,y)

be a maximal ideal of R and set A = {g in AutK(R); both =xa-x

[y

and yo-y are in Mz}. Given a in A, we define
R* 2 {f in R : fo = f} to be the fixed ring of q. It is
shown in [Theorem 4.4.3] that if R® # K then there exists

f, in R - K such that RY = K[f,]. Then the authors ask -

whether there exists o in A such that R® = K, Furthermore,

which polynomials fa can occur as the generators of the

fixed ring R%.

Every o in Ath(R) induces a polynomial map q : K2 > K2
defined by (a,b) a = (xa(a,b), yala,b)). For a non constant

polynomial f in R, we define V(f) = {(a,b) ﬁ1K2: f(a,b)

0}0

f

It is shown in 5.8 of [2] that for o« in A we have fq
if and only if V(f) a £ V(f). The algebraic curve V(f) is

left pointwise fixes if and only if f divides



(g.c.d. (xa-x, yo-y))" for some n > 1. Now let

R* = K[f] # K. Then, by (5.12) of [3], there exists n > 1
such that a° fixes V(f) pointwise. Does it follow that
o fixes V(f) pointwise?.

In the Notices of the A.M.S, vol. 24 (1877) page A-319,

David Shannon has announced the following,

o)

Theorem 1.1. Let o # 1 be in A. Then R # KX 1f and

only if a is conjugate to vy, where y is of the type

xy = x + f(y), yvy =y or vice-versa.

Using this theorem, in Theorem 2.1, we get a characte—

rization of generators of fixed rings. Then, 1in Theorenm

2.3, we show that R® # K if and only if

g.c.d. (xa - X, yo - y) # 1 and deduce the existence of

an infinite subset S of A such that R%:z K for every o
in S. In theorem 2.5, we show that if R* = K[f] # K then

a fixes V(f) pointwise.

MAIN RESULTS. We start by proving a result of general inte—

rest.

Proposition. Let a, B in A such that R® N R # x.

B

Then R% = rRP = R%® i «x.

Proof. By Theorem 4.4 of [3], R® = X [f,] and



rRE = x [fﬁ] for some non-constant polynomials f, and f,

in R. Let g be a non-constant polynomial in R* N RB.
Then g in R® implies that g = a°+ ay fa oo tay fr;, where

a; are in K, for 0 < i <n. How gB = g gives

2 n
a tay fut3+ a2(fa8) +"'+an(fa8) .
=a +a, £ +a, f2 + +a_ f°
0 1 "a 2 Ta ot n o
Using lemma 4,1 of [3], we get £,8 = £, thus R® c RB. Simi

larly rRP < R* and whence R* = RE,

As an inmmediate application of Theorem 1.1, we get -

Theorem 2.1, Let a # 1 be in A such that R% = K[f,] # K.

Then fa = xB or yB for some B in AutK(R). Conversely, -
given B 1in AutK(R), XB and yB8 occur as generators of
certain fixed rings.

Now we give below the characterisation of the K-automor-—

phisms of K[x,y].

Theorem 2.2. [ Th. 1.5,f]. The group Aut,(R) of the

K-automorphisms R = K [x,y] is generated by primitive -

polynomials of the following type:



1) xo X, Yo = Ccy or vice-versa, where ¢ # 0 is in K

2) xo x + f(y), yo = y or vice-versa, where f(y) is

in X [y].

Using Theorems 1.1 and 2.2 we get the following,

Theorem 2.3, Let o # 1 be in A. Then R%* # K if and

only if g.c.d. (xa - %, ya - y) # 1, .
Proof., Let g.c.d (xo - %X, yo - y) # 1. Then, by 5.11
of [3], R* # K.

Conversely let R* # K, By Theorem 1.1, a is of the

form 8_1 Y B, where xy = x + f(y), yvy =y or vice-versa

and B 1s in AutK(R). By Theorem 2.1, we can write

g e Br, where each Bi is a primitive K-automor—

-1
r

-1

-1
f)r__i... 81 Y }’21 LRI Y 3 B . By

phis of R. Thus a = @ P

r-1

induction on r, we shall show that g.c.d.(xa - x, ya - y) # 1.

First of all note that f(y) can not be a non-zero
constant. For, let f(y) = a # 0 in K, Then

n

XY = x + a, y¥ = y. Let xpl

x + fl(y), y31 = y thus

X(le Y 84) x + a, If xB, = cx, yb; =y then

x(B'l'1 Y 31) From these observations we see that

n
X
+
3

in general =xa = x(B8 ~ vy B) = x + ba with b in K, b # 0.



Since xo - X 1s in Mz, we see that a = 0. Then o is the
identity map.
For r = 0, we have o = Yy and thus

gecodo(xa - X, yo = y) = gec.d.(f(y),0) = £f(y) # 1. Now 1let

r > 1 and assume that the result holds 0 < i <r - 1, Let

-1 . t -
LI 81 Y Bl o o0 Br—l be glVen by Xa - X :'- C,

ya' = y + D. By induction hypothesis,

1]
=
Q
w

gecode(xa' - x, ya' - y) = g.c.d.(C,D) # 1. Now a

Suppose that B, = X, yB, = cy with ¢ # 0 in X, Then

xa = x (B a' p) = x + CBr and
- _ -1

ya = y(B a' B) =y + ¢ DBr' Thus

g.codo(xa - x, yo - y) = g.c.d.(CSr, DSP) # 1. Consider the

case xBP = x + g(y), yBr = vy. Then
-1
X0 = X(Br al Br) = x + g(y) + CBr ~ gy + DBr) and yo =3&D%£

Thus g.c.d.(x0 - X, yo - y) = g.c.d.(CBr, DBP) # 1. The rest

of the cases can similarly be considered.
As a consequence cf this we get the following,

Theorem 2.4, Let o, B be in A given by

xa = x + f(y), ya = y



and x£ = x, yB =y + g(x). If y = af then RY = K.

Proof. iote that xy = xaf = x + f(y + g(x)) and
yy =y (aR) = y + g{x? dimply that

gecodo(xy - Xy, yy = y) = goc.d.(f(y), g(x)) = 1. Thus, by
Theorem 2,3, rRY = x,
We have remarked in the introduction that if o "is in

A such that R% = K[f] # K, then V(f) a < V(f). By a -

deeper result of Algebraic geometry [2, Theorem 8, p. 292],
there exists an integer n > 1 such that & fixes V(Ff)

pointwise. Using our previons results we show that a -

itself fixes V(f) pointwise.

Theorem 2.5, Let R% = X{f] # K with a in A, Then

a fixes V(f) pointwise.
Proof. As f is irreducible, by 5.10 of [3], we see

that V(f) is fixed pointwise by a if and only if f

divides the g.c.d.(xa - X, ya - y). Now there exists an -

n > 1 such that &' fixes V(f) pointwise and thus f

divides g.c.d.(xan - X, yan - y). We shall show below that

g.codoe(xa - x, yo - y) = g.c.d.(xocn - X, yan - y) and whence

the required result will follow.



low RY # K implies that there is £ in AutK(R) such

n=1

that o = 8 Y 8 with v given by xy = x + f(y), yvy =y

or vice-versa. By Theorem 2.2, 0 = By By e Br with ecach
Bi either of type 1 or type 2. We proceed, as in Theorem

2.3, by induction on r. TFor p» = 0, a = ¥ and then

.

xa = x + n £f(y), yun = y and the result is immediate.

Supﬁose that r > 1 and the result is true for 0 < i < r-1,

-1 -1
' =0
Let o .Jr_l s 00 81 Y Bl LI Y Br—i. T})en

-1
r-1

= p coe 651 a 81 cos Br. By induction hypotheses,

g.c.d.(xa' - X, ya' - y) g'ctdo(xa'n - X’ ya'n - Y).

- -1 [ n
Now a = Br Y Br and a

11}
=

Br' Let xa' = x + C,

ya' =y + D and xat™ = x + Cqs ya' =y + Dy. As seen in
the last part of Thcorem 2.3, we get

n n N\ -
g.c.de(xa™” - %, ya - y) = g.c.d.(C1 Br’ Dl 8.)

o

= g.c.d.(CGr, DBP) = g.c.d.(xa - x, yo - y) and hence the

theorem.
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