NOTAS DE MATEMATICA

№ 14

"FIXED RINGS OF AUTOMORPHISMS OF K[x,y]"

POR

R. MARKANDA J. PASCUAL

DEPARTAMENTO DE MATEMATICA FACULTAD DE CIENCIAS UNIVERSIDAD DE LOS ANDES MERIDA - VENEZUELA 1977

FIXED RINGS OF AUTOMORPHISMS OF K[x,y]

1. INTRODUCCION. In this paper we answer some of the open questions raised by Fraser and Mader in [3]. Let R = K[x,y] be the polynomial ring in 2-variables x and y, where K is an algebraically closed field of characteristic 0. Let M = (x,y) be a maximal ideal of R and set A = {α in Aut_K(R); both xα-x and yα-y are in M²}. Given α in A, we define Rα = {f in R : fα = f} to be the fixed ring of α. It is shown in [Theorem 4.4.3] that if Rα ≠ K then there exists fα in R - K such that Rα = K[fα]. Then the authors ask - whether there exists α in A such that Rα = K. Furthermore, which polynomials fα can occur as the generators of the fixed ring Rα.

Every α in Aut_K(R) induces a polynomial map $\overline{\alpha}: K^2 \to K^2$ defined by (a,b) $\overline{\alpha} = (x\alpha(a,b), y\alpha(a,b))$. For a non constant polynomial f in R, we define $V(f) = \{(a,b) \text{ in } K^2 : f(a,b) = 0\}$. It is shown in 5.8 of [2] that for α in A we have $f\alpha = f$ if and only if V(f) $\overline{\alpha} \subset V(f)$. The algebraic curve V(f) is left pointwise fixes if and only if f divides

 $(g.c.d. (x\alpha-x, y\alpha-y))^n$ for some $n \ge 1$. Now let $\mathbb{R}^{\alpha} = \mathbb{K}[f] \neq \mathbb{K}$. Then, by (5.12) of [3], there exists $n \ge 1$ such that $\overline{\alpha}^n$ fixes $\mathbb{V}(f)$ pointwise. Does it follow that $\overline{\alpha}$ fixes $\mathbb{V}(f)$ pointwise?.

In the Notices of the A.M.S, vol. 24 (1977) page A-319, David Shannon has announced the following,

Theorem 1.1. Let $\alpha \neq 1$ be in A. Then $R^{\alpha} \neq K$ if and only if α is conjugate to γ , where γ is of the type $x\gamma = x + f(y)$, $y\gamma = y$ or vice-versa.

Using this theorem, in Theorem 2.1, we get a characterization of generators of fixed rings. Then, in Theorem 2.3, we show that $R^{\alpha} \neq K$ if and only if g.c.d. $(x\alpha - x, y\alpha - y) \neq 1$ and deduce the existence of an infinite subset S of A such that $R^{\alpha} = K$ for every α in S. In theorem 2.5, we show that if $R^{\alpha} = K[f] \neq K$ then $\bar{\alpha}$ fixes V(f) pointwise.

 MAIN RESULTS. We start by proving a result of general interest.

Proposition. Let α , β in A such that $R^{\alpha} \cap R^{\beta} \neq K$.

Then $R^{\alpha} = R^{\beta} = R^{\alpha\beta} \neq K$.

<u>Proof.</u> By Theorem 4.4 of [3], $R^{\alpha} = K[f_{\alpha}]$ and

 $R^{\beta} = K [f_{\beta}]$ for some non-constant polynomials f_{α} and f_{β} in R. Let g be a non-constant polynomial in $R^{\alpha} \cap R^{\beta}$.

Then g in R^{α} implies that $g = a_0 + a_1 f_{\alpha} + \dots + a_n f_{\alpha}^n$, where a_i are in K, for $0 \le i \le n$. Now $g\beta = g$ gives

$$a_0 + a_1 f_{\alpha} \beta + a_2 (f_{\alpha} \beta)^2 + \dots + a_n (f_{\alpha} \beta)^n$$

$$= a_0 + a_1 f_\alpha + a_2 f_\alpha^2 + \dots + a_n f_\alpha^n$$

Using lemma 4.1 of [3], we get $f_{\alpha}\beta = f_{\alpha}$ thus $R^{\alpha} \subseteq R^{\beta}$. Similarly $R^{\beta} \subseteq R^{\alpha}$ and whence $R^{\alpha} = R^{\beta}$.

As an inmmediate application of Theorem 1.1, we get -

Theorem 2.1. Let $\alpha \neq 1$ be in A such that $R^{\alpha} = K[f_{\alpha}] \neq K$. Then $f_{\alpha} = x\beta$ or $y\beta$ for some β in $Aut_{K}(R)$. Conversely, - given β in $Aut_{K}(R)$, $x\beta$ and $y\beta$ occur as generators of certain fixed rings.

Now we give below the characterisation of the K-automorphisms of K[x,y].

Theorem 2.2. [Th. 1.5,1]. The group $\operatorname{Aut}_K(R)$ of the K-automorphisms R = K[x,y] is generated by primitive - polynomials of the following type:

- 1) $x\alpha = x$, $y\alpha = cy$ or vice-versa, where $c \neq 0$ is in K
- 2) $x\alpha = x + f(y)$, $y\alpha = y$ or vice-versa, where f(y) is in K[y].

Using Theorems 1.1 and 2.2 we get the following,

Theorem 2.3. Let $\alpha \neq 1$ be in A. Then $R^{\alpha} \neq K$ if and only if g.c.d. $(x\alpha - x, y\alpha - y) \neq 1$.

Proof. Let g.c.d $(x\alpha - x, y\alpha - y) \neq 1$. Then, by 5.11 of [3], $R^{\alpha} \neq K$.

Conversely let $\mathbb{R}^{\alpha} \neq K$. By Theorem 1.1, α is of the form β^{-1} γ β , where $x\gamma = x + f(y)$, $y\gamma = y$ or vice-versa and β is in $\mathrm{Aut}_{K}(\mathbb{R})$. By Theorem 2.1, we can write $\beta = \beta_{1} \beta_{2} \dots \beta_{r}$, where each β_{i} is a primitive K-automorphis of \mathbb{R} . Thus $\alpha = \beta_{r}^{-1} \beta_{r-1}^{-1} \dots \beta_{1}^{-1} \gamma \beta_{1} \dots \beta_{r-1} \beta_{r}$. By induction on r, we shall show that $g.c.d.(x\alpha - x, y\alpha - y) \neq 1$.

First of all note that f(y) can not be a non-zero constant. For, let $f(y) = a \neq 0$ in K. Then $x\gamma = x + a$, $y\gamma = y$. Let $x\beta_1 = x + f_1(y)$, $y\beta_1 = y$ thus $x(\beta_1^{-1} \gamma \beta_1) = x + a$. If $x\beta_1 = cx$, $y\beta_1 = y$ then $x(\beta_1^{-1} \gamma \beta_1) = x + ca^{-1}$. From these observations we see that in general $x\alpha = x(\beta^{-1} \gamma \beta) = x + ba$ with b in K, b $\neq 0$.

Since $x\alpha - x$ is in M^2 , we see that a = 0. Then α is the identity map.

For r = 0, we have $\alpha = \gamma$ and thus $g.c.d.(x\alpha - x, y\alpha - y) = g.c.d.(f(y),0) = f(y) \neq 1$. Now let $r \geq 1$ and assume that the result holds $0 \leq i \leq r - 1$. Let $\alpha' = \beta_{r-1}^{-1} \cdots \beta_1^{-1} \gamma \beta_1 \cdots \beta_{r-1}$ be given by $x\alpha' = x + C$, $y\alpha' = y + D$. By induction hypothesis,

g.c.d. $(x\alpha' - x, y\alpha' - y) = g.c.d.(C,D) \neq 1$. Now $\alpha = \beta_{\mathbf{r}}^{-1} \alpha' \beta_{\mathbf{r}}$. Suppose that $x\beta_{\mathbf{r}} = x, y\beta_{\mathbf{r}} = cy$ with $c \neq 0$ in K. Then $x\alpha = x (\beta_{\mathbf{r}}^{-1} \alpha' \beta_{\mathbf{r}}) = x + C\beta_{\mathbf{r}} \text{ and }$

 $y\alpha = y(\beta_n^{-1} \alpha' \beta_n) = y + c^{-1}D\beta_n$. Thus

g.c.d. $(x\alpha - x, y\alpha - y) = g.c.d.(C\beta_r, D\beta_r) \neq 1$. Consider the case $x\beta_r = x + g(y)$, $y\beta_r = y$. Then

 $x\alpha = x(\beta_r^{-1} \alpha' \beta_r) = x + g(y) + C\beta_r - g(y + D\beta_r)$ and $y\alpha = y+D\beta_r$.

Thus g.c.d. $(x\alpha - x, y\alpha - y) = g.c.d.(C\beta_r, D\beta_r) \neq 1$. The rest of the cases can similarly be considered.

As a consequence of this we get the following,

Theorem 2.4. Let α , β be in A given by

$$x\alpha = x + f(y), y\alpha = y$$

and $x\beta = x$, $y\beta = y + g(x)$. If $\gamma = \alpha\beta$ then $R^{\gamma} = K$.

Proof. Note that $x\gamma = x\alpha\beta = x + f(y + g(x))$ and $y\gamma = y (\alpha\beta) = y + g(x)$ imply that g.c.d. $(x\gamma - x, y\gamma - y) = g.c.d.(f(y), g(x)) = 1$. Thus, by Theorem 2.3, $R^{\gamma} = K$.

We have remarked in the introduction that if α is in A such that $R^{\alpha} = K[f] \neq K$, then $V(f) \bar{\alpha} \subseteq V(f)$. By a deeper result of Algebraic geometry [2, Theorem 8, p. 292], there exists an integer $n \geq 1$ such that $\bar{\alpha}^n$ fixes V(f) pointwise. Using our previous results we show that $\bar{\alpha}$ - itself fixes V(f) pointwise.

Theorem 2.5. Let $R^{\alpha} = K[f] \neq K$ with α in A. Then $\bar{\alpha}$ fixes V(f) pointwise.

<u>Proof.</u> As f is irreducible, by 5.10 of [3], we see that V(f) is fixed pointwise by $\bar{\alpha}$ if and only if f divides the g.c.d. $(x\alpha - x, y\alpha - y)$. Now there exists an $-n \ge 1$ such that $\bar{\alpha}^n$ fixes V(f) pointwise and thus f divides g.c.d. $(x\alpha^n - x, y\alpha^n - y)$. We shall show below that g.c.d. $(x\alpha - x, y\alpha - y) = g.c.d.(x\alpha^n - x, y\alpha^n - y)$ and whence the required result will follow.

Now $R^{\alpha} \neq K$ implies that there is β in $Aut_{K}(R)$ that $\alpha = \beta^{-1} \gamma \beta$ with γ given by $x\gamma = x + f(y)$, $y\gamma = y$ or vice-versa. By Theorem 2.2, $\beta = \beta_1 \beta_2 \dots \beta_r$ with each β ; either of type 1 or type 2. We proceed, as in Theorem 2.3, by induction on r. For r = 0, $\alpha = \gamma$ and then $x\alpha^{n} = x + n$ f(y), $y\alpha^{n} = y$ and the result is immediate. Suppose that $r \ge 1$ and the result is true for $0 \le i \le r-1$. Let $\alpha' = \beta_{r-1}^{-1} \dots \beta_1^{-1} \gamma \beta_1 \dots \beta_{r-1}$. $x^n = \beta_{r-1}^{-1} \dots \beta_1^{-1} \quad \gamma^n \beta_1 \dots \beta_r$. By induction hypotheses, $g.c.d.(x\alpha' - x, y\alpha' - y) = g.c.d.(x\alpha'^n - x, y\alpha'^n - y).$ Now $\alpha = \beta_r^{-1} \gamma^r \beta_r$ and $\alpha^n = \beta_r^{-1} \alpha^{rn} \beta_r$. Let $x\alpha^r = x + C$, $y\alpha' = y + D$ and $x\alpha'^n = x + C_1$, $y\alpha'^n = y + D_1$. As seen in the last part of Theorem 2.3, we get g.c.d. $(x\alpha^n - x, y\alpha^n - y) = g.c.d.(C_1 \beta_n, D_1 \beta_n) =$ = g.c.d.($C\beta_{r}$, $D\beta_{r}$) = g.c.d.($x\alpha - x$, $y\alpha - y$) and hence the

Acknowledgement. We would like to thank John David for drawing our attention to Theorem 2.2.

theorem.

REFERENCES

- [1.] S. S. Abhyankar, T.T. Moh "Embeddings of the line in the Plane" J. Reine Angew. Math. Vol, 276 (1975) pp. 148-166.
- [2.] T.L. Coolidge "A Treatise on Algebraic plane Curves" Dover, New York, 1959.
- [3.] M. Fraser and A. Maser "The Structure of the Automorphism Group of Polynomial Rings" J. Alg, vol. 25 (1973), pp.25-39.

R. MARKANDA

J. PASCUAL

"FIXED RINGS OF AUTOMORPHISMS OF K[x,y]"