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spaces-Part |

T.V. Panchapagesan

This part consists of Sections 17, 18 and 19. In the sequel T' will denote a locally compact
Hausdorff space, B(T) the o-algebra of the Borel sets in 7" and §(C) the d-ring generated by the
family C of compact sets in T'. The classical Vitali-Carathédory integrability criterion theorem
is generalized in Section 17 to £;(m) (resp. to L£1(c(P),m)), where m : B(T) — X (resp.
m : §(C) = X) is o-additive and Borel regular (resp. and §(C)-regular) and X is a quasicomplete
or a sequentially complete IcHs. Section 18 is devoted to the study of the Baire version of the
classical Dieudonné-Grothendieck theorem and its generalizations to Banach space-valued and
sequentially complete lcHs-valued o-additive regular Borel measures (see Theorems 18.6, 18.21
and 18.23). In Section 19 the concepts of weakly compact and prolongable Radon operators
are introduced and several characterizations of these operators are given.

17. GENERALIZATIONS OF THE VITALI-CARATHEODORY
INTEGRABILITY CRITERION THEOREM

Enumerations of sections will be continued from Part III. We adopt the same notation and
terminilogy in Parts III and III.

The results of the present section are needed in Section 23 of [P13] to describe the duals of
L1(m) and £;(n), where m : B(T') - X (resp. n : 6(C) — X) is o-additive and B(T')-regular
(resp. and §(C)-regular), T is a locally compact Hausdorff space and X is a Banach space.

In the sequel, T denotes a locally compact Hausdorff space and U, C, and Cy are as in Def-
inition 16.4 of [P12]; i.e., U is the family of open sets in T', C that of compact sets in T" and Cy
that of compact G sets in T'. Then B(T') = o(U), the o-algebra of the Borel sets in T; B.(T)=
o(C), the o-ring of the o-Borel sets in T' and By(T') = o(Cp), the o-ring of the Baire sets in 7.
0(C) and 6(Cp) are the d-rings generated by C and Cp.

As in Parts I and III, X denotes a Banach space or an lcHs over K (= Ror €) with I', the
family of all continuous seminorms on X, unless otherwise mentioned and it will be explicitly
specified whether X is a Banach space or an IcHs. Let R = B(T) or §(C) and a o-additive set
function m : R — X is said to be R-regular if it satisfies the conditions in Definition 16.7 of [P12].
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Lemma 17.1.

Let X be a quasicomplete (resp. sequentially complete) lcHs,m : B(T') — X be o-additive
and Borel regular and f : T — [0,00) (resp. and be B(T')-measurable). Then f € £1(m) (resp.
f € Li(B(T),m)) if and only if, given € > 0 and ¢ € T, there exist functions u(? and v(@
on T such that u(@ < f < 0@ mg-a.e. in T, u(? is upper semicontinuous in T with compact
support and with u(9(T) C [0,00), v(@ is lower semicontinuous and mg-integrable in 7', and
(my) (0@ —ul® T) < e

Proof. In the light of Theorem 15.13(i) of [P12] which states that
L1(m) = ,er L1(mg) (vesp. L1(B(T),m) = (), £1(B(T), my)), it suffices to prove the

result for Banach spaces. So we shall assume X to be a Banach space. Suppose the conditions
are satisfied for each e > 0. If f is not B(T')-measurable, we first show that it is m-measurable.
By hypothesis, for each n, there exist such functions w,, and v, with 0 < u, < f < v, m-a.e. in
T and with m$ (v, — up,T) < % Since vy, is m-integrable in T, by the domination principle (see
Theorem 3.5(vii) and Remark 4.3 of [P10]) w,, is also m-integrable in T'. Let g, = maxj<j<n u;
and h, = minj<;<p v;. Then by Theorems 3.3 and 3.5, §3, Ch. III of [MB], g, is upper semi-
continuous and h,, is lower semicontinuous for each n. Moreover, g, " and h, \, and by
hypothesis and by Theorem 3.5(vii) and Remark 4.3 of [P10], g, and h,, are m-integrable in T'
for each n. Let g = sup,, g, and h = inf, h,. Then 0 < g < f < h m-a.e. in T and ¢g and
h are B(T)-measurable. Moreover, 0 < h, — g, < v; € L1(m) and h, — g, — h — g point-
wise in T. Hence by LDCT (see Theorem 3.7 and Remark 4.3 of [P10]), h — g € £L1(m) and
m}((h —g) — (hn, — gn),T) — 0. Moreover, as 0 < hy, — gn, < v, — Up, by Theorem 5.11(i) of
[P11], m$(hy, — g5, T) < m}(vy — up, T) < 2 for n € N Consequently, by Theorem 5.13(ii) of
[P11], m$(h — g,T) < m$((h — g) — (hn — gn),T) + m$(hy, — gn,T) — 0 as n — oco. Hence by
Theorem 5.18(ii) of [P11], h = g m-a.e. in T. Then f = g = h m-a.e. in T and hence f is
m-measurable. Moreover, as m} (v, — f,T) < m$(v, — un, T) < 2 and as £1(m) is complete by
Theorem 6.8 of [P11]|, we conclude that f is m-integrable in T'. If f is B(T')-measurable, then
by the above argument lim, m$(v, — f,7") = 0 and hence by the second part of Theorem 6.8 of
[P11], f € L1(B(T'), m).

To prove the converse, let us assume that f is not identically zero, f > 0 and f € £4(m)
(resp. f € L1(B(T),m)). By Definition 3.1 of [P10|, there exists a B(T')-measurable function
f:T— [0,00) such that f = fm-ae inTor f=Ffif fis B(T')-measurable. Arguing as in the
first paragraph on p.51 of [Rul], we have

o0
f&y=> cixm(t), teT
i=1
where ¢; > 0 and E; € B(T) for all 3. Let
n
fo=) cixp, n€N
i=1

Then 0 < f, * f and hence by LDCT (see Theorem 3.7 and Remark 4.3 of [P10]) lim, m$(f —
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fn,T) = 0. Thus, given € > 0, there exists ng such that mI(f — Jno, T) < 5. That is,

o0
. €
no+1

o0

By the Borel regularity of m there exist compact sets (K;)7° and open sets (V;){° such that
K; C E; C V; and such that

cil[ml|(Vi\K;) < (17.1.2)

i+l

fori e N Let v =7 cixv, and u = > ¢;x ;- Then by Theorems 3.3, 3.4 and 3.5 and ex.2 of
§3, Ch. IIT of [MB], v is lower semicontinuous and w is upper semicontinuous in 7', u(7T") C [0, c0),
suppu is compact and u < f < v in T. If v, = Yo cixv;, then (v,)5° C Li(m) as v, are
B(T)-simple functions. For A C T', by Theorem 5.3 of [P11] we have

mj(xa,T) = sup /XAdv(w*m) = sup v(z'm)(A) = ||m]||(4). (17.1.3)
lo*[<1JT o[ <1
Now, by (17.1.1), (17.1.2) and (17.1.3) and by Theorem 5.13(ii) of [P11] we have m$(v —v,,T) <
mI(Zl cixe, T) +mI(Zl cixv\E»T) <5+ 21 cil lml[|(Vi\E;) <€
n—+ n4+ n+

for n > ng. As L1(m) is complete (resp. as v is B(T)-measurable and as £4(B(T), m) is
complete) by Theorem 6.8 of [P11], v is m-integrable in T

Finally, by Theorems 5.11 and 5.13(ii) of [P11] and by (17.1.3) we have

ng 0o
m(v—u,T) < m{> cxvak,T)+mi() cxv,T)
1

no+1
no 0o e
< 3 cllml|(VVEy +mi(Y e T) +mi(S e, T)
1 no+1 no+1
(o] o
< Y allml|(V\K) +mi() eixm,T) < e
1 no+1

Hence the lemma holds.

Theorem 17.2 (Generalization of the Vitali-Carathéodory integrability criterion
theorem for Borel regular m). Let X be a quasicomplete (resp. sequentially complete) IcHs,
m : B(T) — X be o-additive and Borel regular and f : T'— R(resp. and be B(T')-measurable).
Then f € L1(m) (resp. f € L£1(B(T),m)) if and only if, given € > 0 and ¢ € T', there exist
functions u? and v(@ on T such that u(@ < < v(@ mg-a.e. in T, u? is upper semiconti-
nuous, bounded above and mg-integrable in T, v(@ is lower semicontinuous, bounded below and
m-integrable in T and (m,)$(v(@ —u(@ T) < e.
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Proof. In the light of Theorem 15.13(i) of [P12], it suffices to prove the result for a Banach
space X and hence let X be a Banach space. Suppose the conditions hold for each € > 0. If f is
not B(T')-measurable, we first show that f is m-measurable. For each n, there exist such func-
tions u, and v, with u, < f < v, m-a.e. in T and m} (v, — u,,T) < % Let gn = maxi<i<p U
and h,, = minj<;<,v;, g = sup,, g, and h = inf,, h,. Then by Theorems 3.3 and 3.5, §3, Ch.
IIT of [MB], (gn){° are upper semicontinuous and (hy)$° are lower semicontinuous. Moreover,
gn " g and hy, \ h. Hence g and h are B(T)-measurable and g < f < h m-a.e. in T. Now,
0 < hp—gn < vy—u, and by hypothesis, h,, — g, and v, —u, are well defined on T". By hypothesis,
vy, and u, are m-integrable in 7" and hence by Theorem 5.12(ii) of [P11], v, and w,, are finite
m-a.e. in T'. Hence v,, — u,, is m-integrable in T'. Consequently, by Theorem 3.5(vii) and Remark
4.3 of [P10], h;,, — gn, is m-integrable in T for n € Nand as 0 < h,, — g, < v —uy, hpy—gn = h—g
in 7" and v; — uy is m-integrable in 7', by LDCT (see Theorem 3.7 and Remark 4.3 of [P10]),
lim, m$((hn, — gn) — (h — g),T) = 0. Moreover, m$(hy, — gn,T) < m$(vy, — up, T) < £ — 0
as n — oo. Hence m{(h — ¢,7") = 0 so that by Theorem 5.18(ii) of [P11|, h = g m-a.e. in T.
Consequently, f = h = g m-a.e. in T and hence f is m-measurable.

Asm}(vy, — f,T) <m$(vy, —up,T) < % — 0 as n — 0o, by Theorem 6.8 of [P11] the function
f € L1(m) (resp. € L1(B(T),m)).

Conversely, let f € £1(m) (resp. f € £1(B(T),m)). By Theorem 3.5(vii) and Remark 4.3 of
[P10], f,f~ € L1(m) (vesp. fT,f~ € L1(B(T),m)). Using Lemma 17.1 above and Theorem
3.5(vii) and Remark 4.3 of [P10] and arguing as in the general case in the proof of Theorem 2.24
of [Rul], one can prove the converse. Details are left to the reader.

Theorem 17.3 (Generalization of the Vitali-Carathéodory integrability criterion
theorem for §(C)-regular n). Let X be a quasicomplete (resp. sequentially complete) lcHs,
n: 6(C) - X be o-additive and §(C)-regular and f : " — R(resp. and be B.(T')-measurable).
Then f € Li(n) (resp. f € L1(B.(T),n)) if and only if, given ¢ € I' and € > 0, there exist
functions u(@ and v@ on T such that u(9 < f< v(@) ng-a.e. in 7T, v(@ is lower semicontinu-
ous, bounded below and ng4-integrable in T, w9 is upper semicontinuous, bounded above and
n,-integrable in T and (ng)}(v(@ — @ T) < e.

Proof. First we observe that a Borel measurable function h with

N(h) ={t € T : h(t) # 0} o-bounded (i.e. contained in a countable union of compact sets)
is necessarily B.(T')-measurable and hence ng-integrable upper semicontinuous and lower semi-
continuous functions are B.(7')-measurable. Using this observation and arguing quite similar to
the proof of the sufficiency part of Theorem 17.2 in which B(T) is replaced by B.(T') and m by
n, one can show that the conditions are sufficient.

As seen in the proof of Lemma 17.1, we prove the result assuming X to be a Banach space and
f € Li(m)(resp. f € L1(B:(T),n)), f > 0and f not identically zero. Then there exists an n-null

A~

set N € B.(T) such that f = fxp\n is Be(T)-measurable and N = () when f is B.(T')-measurable.
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Let s =0 and ' ' R '
S <ft) < o, i=1,2,...,2"

n if f(t) >n.
Then s, 2 f in T and f(t) = 325, (s — $n_1)(t). As N(f) € Be(T), there exists (4,)° C §(C)

n=1

A

with A, ' N(f). Then

et (50(8)X A0 (8) = sn—1()x 4,1 (1)) = si(8) x4, (t) and hence

F(t) = limy, s (¢) = limy, sk(t)xa, (t). Moreover, it is easy to check that

> (SnxA, — Sn—1XA,_,) is of the form > 7" ¢xxE, with ¢; > 0 for each k and (Ey)3® C 6(C)
since AN B € §(C) for A€ 6(C) and B € B.(T). Thus

o

ft) = ZCkXEkv ¢k > 0 for each kand (Ey)7° C 6(C).
k=1

As n is §(C)-regular, given € > 0, there exist an open set V;, € §(C) and a compact K, such that
K, C E, C V, and such that ||n[|(V,\K}) < 557 for n € N Then arguing as in the proof of the
converse part of Lemma 17.1, one can show the existence of u and v as in the said lemma with u
and v B.(T)-measurable. Then arguing as in the proof of the necessity part of Theorem 17.2 the
theorem is proved for real valued f.

Remark 17.4. Arguing as in the proof of Lemma 17.1 and Theorem 17.2, a result generalizing
Corollary of Theorem 3, no.4, §4, Ch. IV of |[B] can be obtained for f € £1(m) where m is as
in Theorem 17.2. Similarly, an analogous result is true for f € £q(n) where n : §(C) — X is
o-additive and 6(C)-regular.

18. THE BAIRE VERSION OF THE DIEUDONNE-GROTHENDIECK
THEOREM AND ITS VECTOR-VALUED GENERALIZATIONS

We show that the boundedness hypothesis in Corollary 1 of [P4] is redundant and thereby we
obtain the Baire version of the Dieudonné-Grothendieck theorem in Theorem 18.6 below. Then
using the ideas in the proofs of Proposition 2.11 and Theorem 2.12 of [T], we generalize Theorem
18.6 to o-additive Borel regular vector measures. (See Theorems 18.21 and 18.23.)

Notation 18.1. C.(T) = {f : T — K f continuous with compact support }; Co(T) = {f :
T — K f continuous and vanishes at infinity in 7'}, both the spaces being provided with norm
|| - [|7. M(T) denotes the dual of (Co(T),|| - ||7) and each member of M(T') is considered as a
o-additive Borel regular scalar measure on B(T). We write |u|(-) = v(u, B(T))(-) for p € M(T).
Then ||p|| = |p|(T), for p € M(T). V is the family of relatively compact open sets in T. C.(T)
endowed with the inductive limit locally convex toplogy as in §1, Ch. III of [B| is denoted by IC(T).

Lemma 18.2. §(C) = {4 € B(T) : A € C} and §(Co) = {A € By(T) : A € C} where A
denotes the closure of A.
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Proof. Let F be the family of all closed sets in T'. Since §(C) C B.(T') and §(Cy) C Bo(T),
and since each member of §(C) U d(Cp) is relatively compact, it suffices to show that {A € B(T) :
AeCyCo(C)and {A € By(T): AecC}yCd(Co). Let A€ B(T) (resp. A € By(T)) with A € C.
Then by Theorem 50.D of [H] there exists Cy € Cp such that A C Cy and hence by Theorem 5.E
of [H| we have A = ANCy € o(F)NCy =a(FNCy) =a(CnNCy) =3§CNCh) C ) (resp.
A=ANCy e O’(C()) NCy= O'(C() N Co) = (S(Cg N C()) C 5(00)) Hence the lemma holds.

Lemma 18.3. A o-compact open set in T is a Baire set. Conversely, every open Baire set
in T is o-compact.

Proof. Let U be open in T and let U = J7° K, (K,)5° C C. Then by Theorem 50.D of
[H], for each K, there exists C,, € Cy such that K,, C C,, C U and hence U = |J7° C,, € Bo(T).
Conversely, if U € By(T') is open in T', then U is o-bounded so that there exists (K,)3° C C such
that U C U7° Ky, Then by Theorem 50.D of [H| and by the previous part there exist relatively
compact open Baire sets (V},)$° such that K,, C V,, for each n. Then U = J7°(U N'V,,) and by
Lemma 18.2, each U NV, € §(Cyp). Then U is o-compact by Proposition 15, §14 of [Din].

Lemma 18.4. Let (u,,)7° C M(T) (resp. my,, : B(T) — X, n € KN be o-additive and Borel
regular, where X is an IcHs). Then:

(i) For each open set U in T, there exists an open Baire set V7 in T' such that Viy C U and
|tn|(U\Viy) = 0 for all n and consequently,
tn(U) = pn (Vi) for all n (resp. given g € I', there exists an open Baire set Véq) in T such

that Véq) C U and ||mn||q(U\V(§Q)) = 0 for all n and hence |m,(U) — mn(VéQ)) q =0 for
all n).

(i) If, for each open Baire set V in T', sup,, |pn (V)| < 0o, then

sup |11, (U)] < 50

for each open set U in T and consequently, sup,, ||n|] < oo.

Proof.
Claim 1. Given an openset U in T', (resp. and g € I'), for each n € K there exists an open Baire set
Vi in T such that V,, C U and |p,|[(U\V;,) = 0 so that pn,(U) = pn(Vy,) (resp. there exists an open

Baire set V,\”) in T such that V. ¢ U and ||my||q(U\Vi?) = 0 so that [m,,(U)—my,(V,?)|, = 0).

In fact, let v, = || or ||my||q as the case may be. Then, given € = 7, k € N by the Borel
regularity of u, and of m,,, there exists K ,gn) €eC, K ]gn) C U such that v,(U\K ,(c")) < 4. Then
by Theorem 50.D of [H| and by Lemma 18.3 there exists an open Baire set Vk(n) in 7" such that
K} C Vk(n) C U. Then l/n(U\Vk(n)) < +. Let V,, = U2, Vk(n). Then V,, is an open Baire set in
T, V, CU, and v,(U\V,) = 0.
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(i) Let Viy = U7 Vi (resp. V(EQ) =2, Véq)) where V,, (resp. VéQ)) are chosen as in Claim 1
with respect to U (resp. with respect to U and q). Clearly, Vi; (resp. V[Sq)) is an open Baire set
inT, Viy C U and |p,|(U\Viy) = 0 (resp. Véq) C U and ||mn||q(U\V(§q)) = 0) for all n. Hence (i)
holds.

(ii) By hypothesis and by (i), sup,, | (U)| = sup,, |un(Vir)| < oo for each open set U in T.
Then by Theorem Ty in Appendix I of [T], sup,, ||pun|| < o0.

The following result is an improvement of the remark under Theorem Ty in Appendix I of
[T].

Corollary 18.5. Let (ta)acr € M(T'). Suppose every sequence from (pq)qer is bounded in
each open Baire set in T. Then sup,¢; ||tal| < 0.

Proof. Otherwise, for each n € K there would exist a,, € I such that ||uq, | > n. On the
other hand, the hypothesis and Lemma 18.4(ii) would imply that sup,, ||¢ta,|| < 00, a contradic-
tion.

Theorem 18.6 (The Baire version of the Dieudonné-Grothendieck theorem). A
sequence () in M(T) is weakly convergent if and only if, for each open Baire set U in T,
lim,, 4y, (U) exists in Kor equivalently, there exists p € M(T') such that

li}ln/de,u,n:/de# (18.6.1)

for each bounded Borel measurable scalar function f on T if and only if lim,, p,(U) exists in K
for each open Baire set U in T'. In that case, p is unique.

Proof. If (uy,) converges weakly to € M(T'), then (18.6.1) holds and particularly, lim,, u,(U) =
w(U) € K holds for each open Baire set U in T'.

Conversely, if lim,, u,,(U) € K for each open Baire set U in T, then
sup,, |un(U)| < oo for each open Baire set U in T" and hence by Lemma 18.4(ii), sup,, ||un|| < oo.
Consequently, by Corollary 1 of [P4], (i) converges weakly to some p € M(T') so that (18.6.1)
holds. Since the weak toplogy of M (T') is Hausdorff, the weak limit p is unique.

Remark 18.7. In the light of Lemma 18.4(ii), the boundedness hypothesis in Corollary 1 of
[P4] is redundant. This has already been noted in Remark 9.18 of [P7].

The following theorem generalizes Lemma 18.4(ii) to lcHs-valued o-additive regular Borel
measures on 1.

Theorem 18.8. Let X be an IcHs and let m,, : B(T)) — X be o-additive and Borel regular
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for n € N If (m,(V))$° is bounded for each open Baire set V' in T', then sup,, |[m,||,(T) < co
for each ¢ € T'.

Proof. Let ¢ € " and let V' be an open Baire set in 7. Then by hypothesis, sup,, ¢(m,(V)) <
oo. If Uy = {& € X : ¢g(x) < 1}, then by hypothesis, by Proposition 10.14(i) of [P12| and
by Proposition 2.2 of [P10], sup,, SUD,+ o |z* o m,|(V) < co. Consequently, by Corollary 18.5,
SUP;, SUP,+ 1o |z* o my,|(T") < oo and hence by Proposition 10.14(ii)(c) of [P12] we have

sup ||my|[¢(T) =sup sup |z* om,|(T) < oco.
n n z*elg

Hence the theorem holds.

The rest of the section is devoted to generalize Theorem 18.6 to Banach space and sequentially
complete lcHs valued o-additive regular Borel measures.

We start recalling the following definition from [T].

Definition 18.9. Let X be an IcHs with topology 7. A locally convex Hausdorff topology 7/
on X is said to possess the Orlicz property when all the formal series » z,, of elements in X which
are subseries convergent in the topology 7/ are unconditionally convergent in 7. A subset H of
X* is said to possess the Orlicz property when the topology o (X, H) possesses the Orlicz property.

Notation and Terminology 18.10. Let X be an lcHs with topology 7. X™** is the bidual
of X when X* is endowed with the strong topology [(X*,X) generated by the seminorms
{¢p : Bbounded in X}, where gp(z*) = sup,cp|z*(z)| for * € X*. The topology 7. on
X** of uniform convergence in equicontinuous subsets of X* is generated by the seminorms
{gg : E € £} (see Notation 10.10 of [P12]) where gg(z**) = sup,«cp |z**(z*)| for 2™ € X**. If
u: Co(T) — X is a continuous linear map, then the adjoint v* : (X*, 3(X*, X)) — M(T') and
biadjoint u** : (Co(T))** — (X**,7,) are continuous and linear and u**|¢, 1y = u, where (X, 7)
is identified as a subspace of (X**,7.). For details see [Ho|. By Theorem 1 of [P5], for each
continuous linear mapping u : Co(T') — X there exists a unique X**-valued vector measure (i.e.
additive set function) m on B(T') such that z* om = u*z* € M(T) for z* € X*, the mapping
z* — z* om of X* into M(T) is weak*-weak* continuous and z*u(p) = [, ¢d(z* o m) for each
¢ € Co(T) and z* € X*. Then m(A) = u™*(x4) for A € B(T) and {m(A4) : A € B(T)} is
Te-bounded in X**. Such m is called the representing measure of u (see Definition 4 of [P5]).

Proposition 18.11. Let X be an LcHs and let w : Co(T) — X be a continuous linear
mapping with the representing measure m. Then each ¢ € Cy(T') is m-integrable in the sense of
Definition 1 of [P3] and u(¢) = [ pdm (considering X as a subspace of X**).

Proof. By Theorem 1 of [P5], the range of m is bounded in (X**, 7). Since each ¢ € Co(T)
is a bounded Borel measurable function, there exists a sequence (s,) of B(T)-simple functions
converging to ¢ uniformly in 7. Hence ¢ is m-integrable in the sense of Definition 1 of [P3]
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with [ pdm € (X/""::;e), the completion of (X**,7.). Then, for * € X*, by Theorem 1 of [P5]
and by Lemma 6 of [P3] we have, z*u(¢) = [, pd(z* om) = z*([; pdm). As u(p) € X and
J7 pdm € (X**,7,), it follows that gr(u(@)— [ dm) = 0 for each E € €. Hence u(p) = [, ¢dm
so that [, odm € X.

Remark 18.12. In the light of the above proposition, the hypothesis of quasicompleteness in
(vi) of Proposition 5 in [P6] is redundant.

The following lemma is needed in the proof of Theorem 18.14 which is an improvement of
Theorem 3(vii) of [P5] and is motivated by Theorem 2.7 of [T| whose proof is adapted here.

Lemma 18.13. Let X be a normed space and let H be a norm determining set in X*. Then
HcC{z*e X*:|2z*| <1}

Proof. Let * € H. Then, for |x| < 1, we have

[z*(2)| < sup [y*(z)] = |z[ <1
y*eH

and hence [z*| = supjy <1 [2*(z)] < 1.

Theorem 18.14. Let X be a Banach space and let u : Co(T) — X be a continuous linear
mapping with the representing measure m on B(T). Let H be a norm determining set in X*
with the Orlicz property. Then w is weakly compact if and only if for each open Baire set U in
T there exists a vector xyy € X such that

(z* om)(U) = z*(zp) (18.14.1)

for x* € H.

Proof. If u is weakly compact, then by Theorem 2(ii) of [P5], m has range in X and hence
the condition is necessary.

Conversely, let (18.14.1) hold. Let (U,) be a disjoint sequence of open Baire sets in T'. For a
subsequence P of N by (18.14.1) we have

vy, ,u,) =@ om)(|JUn) =D (@ om)(U,) =D a*(ap,) (18.14.2)

neP nepP nepP

for each z* € H and hence for each * €< H >, where < H > is the linear span of H.
Since H is a norm determining set, o(X, H) is Hausdorff. Then by Theorem V.3.9 of [DS],
(X,0(X,H))* =< H > and hence (18.14.2) implies that ) 2, zy, is subseries convergent in
o(X,H). Then, as H has the Orlicz property by hypothesis, > {° 2y, is unconditionally conver-
gent in the norm topology of X. Therefore, lim,, |zy,| = 0 so that limy, sup ¢z |2*(zy, )| = 0.
Consequently, by (18.14.1), lim, sup«cp |(z* o m)(U,)| = 0. Then by Lemma 18.13 and by
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Theorem 1 of [P4], mpy = {z* om : 2* € H} is relatively weakly compact in M (T).
Claim 1. That mp is relatively weakly compact in M (T") implies that u is weakly compact.

In fact, by the said theorem of [P4|, given an open Baire set U in T (resp. for T') and € > 0,
there exists K € Cy such that K C U and

sup |z*¥ om|(U\K) < € (18.14.3)
z*eH

(resp.
sup |z* om|(T\K) < e. (18.14.3"))
z*eH

Since u*z* = z* om by 18.10, by (18.14.3) and (18.14.3’) we have
sup |u*z*[(U\K) < € (18.14.4)
z*eH

where U is the given open Baire set or U = T.

For such U, xin\ k is lower semicontinuous and hence we have

sup lu(p)| = sup sup |z u(yp)|
eel(T) lel<xt\x PEK(T), || <xvr\ x ©*€H

— s swp (W)l (18.145)
z*€H pek(T),|e|<xv\x

On the other hand,
sup [(w*z™) ()| = sup u*z" ()]
PeER(T),|lpl<xu\x [YI<Ilel, 9,0 e(T), |0l <xv\K

= sup ™| (l¢l)
(T, lel<xv\K

= [u'z"["(xv\x)
= |uz*[*(U\K) (18.14.6)

by (12) on p.55 of [B] and by Definitions 1 and 2, §1, Ch. IV of [B|. By Corollary 3 of Theorem 2,
§5, no.5 of Ch. IV of [B], the Borel sets in T" are |u*z*|-measurable and by an abuse of notation
let us denote [u*z*|*|g(ry also by |u*z*|. Then by (18.14.5) and (18.14.6) we have

sup lu(e)| = sup |(u*z*)|(U\K). (18.14.7)
eeK(T) |l el<xt\ K z*cH

Asu*z* = 2*om € M(T), by Theorem 4.11 of [P1], by the last part of Theorem 3.3 of [P2]
and by Notation 18.1 above, we have

M|u*x*| = Uar(,uu*m*,B(T)) = ’Mu*z*‘ (18148)
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where fi,++ is the complex Radon measure induced by u*z* in the sense of Definition 4.3 of [P1].
Note that fi,«,+ is the same as z* om as u*z* € M(T') (see 18.10). Then by (18.14.3), (18.14.3’),
(18.14.7) and (18.14.8) we have
sup lu(@)l = sup |(u'z")[(U\K)
ee(T)lel<xuv\x z*eH
= Sup Ujure (U\K)
z*eH
= sup |pusa+|(U\K)
x*eH
= sup [z¥om|(U\K) < e (18.14.9)
z*eH

where U is the given open Baire set or U =T

On the other hand, by (18.14.4), (18.14.6) and (18.14.9) and by (12) on p.55 of [B] we have

€> sup lu(p)| = sup sup [(z"u)(p)|
PEK(T),lel<xv\x PeK(T),|el<xv\x |z*|<1

= sup sup |(w"z")(p)]
%<1 0K (T) el Sxo i

= sup |[u'z*|["(U\K)

|lz* <1

= sup |u"z?|(U\K)
lz* <1

= sup v(z"*om)(U\K) (18.14.10)
lz* <1

since U\K is |u*z*|-measurable by Corollary 3 of Theorem 2, §5, no.5 of Ch. IV of [B].

Since m : B(T) — X** is additive and |2**| = sup|,|<q [2*(2")| for ** € X**, by an
argument similar to the proof of Proposition 10.12(iii) of [P12| and by (18.14.10) we have

||m||(U\K) = ‘s*nglv(x* om)(U\K) < e

where U is the given open Baire set or U = T'. Therefore, m is Baire inner regular in each open
Baire set U in T and in the set T" in the norm topology of X**  which is the same as 7, for X™**.
Hence by Theorem 8(xxix) of [P5], u is weakly compact.

Corollary 18.15. Let X be a Banach space, H be a norm determining subset of X* and
u : Co(T) — X be a continuous linear mapping. Let K(T); = (Ce(T), || - ||7)*- the set of all
bounded linear functionals on IC(T) (see pp.65 and 69 of [P2|). If n : I(T); — M(T) is the
isometric isomorphism given in Theorem 5.3 of [P2] (n = (I)l;(lT) in the notation of Theorem 5.3
of [P2]), then n(8) = u|B(T') for 6 € K(T');, and hence n(z*u) = z* o m for z* € X* where m
is the representing measure of u. Moreover, if n{z*u : * € H} is relatively weakly compact in
M(T), then u is weakly compact.
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Proof. Clearly, *u is a bounded linear functional on Cy(T") and hence z*u € K(T');. More-
over, (z*u)(p) = (u*z*)(p) = (z* om)(p) for ¢ € Co(T') (see 18.10). Then

(z"u)(p) = /T pd(z* om), € Col(T).

Consequently, by Theorem 5.3 of [P2|, p(z*u) = z* o m, * € X*. Then by hypothesis,
{z*om : z* € H} is relatively weakly compact in M(T) and hence by Claim 1 in the proof
of Theorem 15.14, u is weakly compact.

The following theorem is motivated by Theorem 2.7 bis in [T] and its proof in [T] is adapted
here.

Theorem 18.16. Let X be a quasicomplete IcHs with topology 7 and let H be a subset of
X* having the Orlicz property such that the topology 7 is identical with the topology of uniform
convergence in equicontinuous subsets of H. Let u : Cy(T') — X be a continuous linear mapping
with the representing measure m. Then w is weakly compact if and only if for each open Baire
set U in T there exists a vector xzyy € X such that

(z* o m)(U) = 2" (zv/) (18.16.1)

for z* € H.
Proof. If u is weakly compact, then by Theorem 2(ii) of [P5] the condition is necessary.

Conversely, let (18.16.1) hold. Let He = {E C H : E is equicontinuous}. If z*(z) = 0
for each z* € H, then for E € Hg, qp(x) = sup,«cp|z*(z)] = 0. Since 7 is the same as the

locally convex topology generated by {qr : E € Hg}, it follows that z = 0 and hence (X, H) is
Hausdortt.

Let (Up,) be a disjoint sequence of open Baire sets in 7. Arguing as in the proof of Theorem
18.14, for a subsequence P of N by (18.16.1) we have ) _pz*(zy,) is subseries convergent for
x* €< H >, the linear span of H. Since (X,0(X,H))* =< H > by Theorem V.3.9 of [DS],
-7z, is subseries convergent in o (X, H). By hypothesis, H has the Orlicz property and hence
> xy, is unconditionally convergent in 7. Let E € Hg. Then lim, ¢g(zy,) = 0 and hence by
(18.16.1) we have

lim sup |[(z* om)(U,)| = 0. (18.16.2)
" g*eE
Since the range of m is bounded in 7. by Theorem 1 of [P5], sup sc(1) ¢e(m(A)) < oo and hence
{z*om : z* € E} is bounded in M(T). Then by (18.16.2) and by Theorem 1 of [P4]

(%) {z* om : z* € E} is relatively weakly compact in M (T).

Let X be the completion of X. Let gy : X - )?qE C X, for E € Hg, where X,, is
the completion of the normed space X, . If ¥ « is as in Proposition 10.12(i) of [P12|, then by
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Proposition 10.12(ii) {W,+ : z* € E} is a norm determining set for )quE, E € Hg. Then by
Proposition 10.12(i) and by (18.10) we have (U= o Iy, o u)(p) = (z*u)(¢) = [;¢d(z* o m) for
¢ € Co(T) and clearly, ¥y oIl ou € KC(T);. Therefore, n(¥, oI, o u) = * o m where 1 is
as in Corollary 18.15. Then by (*) and by the latter corollary, II,, ou is weakly compact for each
E € Hg. Consequently, by Lemma 2.21 of |T|, which holds for complex IcHs too, we conclude

that u is weakly compact.

Theorem 18.17. Let X be a quasicomplete lcHs with topology 7, H be a subset of X*
having the Orlicz property such that 7 is the same as the topology of uniform convergence in
equicontinuous subsets of H and u : Co(T) — X be a continuous linear mapping with the
representing measure m. Suppose uy is the same as u on Cy(T') with X provided with the
topology (X, H). Then u is weakly compact if and only if for each open Baire set U in T' there
exists a vector zy € X such that

(z*up) (xv) = =" (zv) (18.17.1)

for z* € H. Moreover, condition (18.17.1) is the same as (z* om)(U)) = z*(zy) for open Baire
sets U in T" and for z* € H.

Proof. As observed in the proof of Theorem 18.16, the hypothesis on 7 implies that the
topology o (X, H) is Hausdorff and hence (X,o0(X, H)) is an IcHs. As o(X, H) is weaker than
7, u: Co(T) — (X,0(X, H)) is continuous and hence uy is a continuous linear map. Therefore,

z*uyy(xa) = (ujx*)(xa) for z* € (X,0(X,H))* and for A € B(T). Since (X,0(X,H))* =<

H >, the linear subspace spanned by H by Theorem V.3.9 of [DS]|, particularly we have

ko ksk

w ugr (xa) = (uprz®)(xa) (18.17.2)

for z* € H. Since
(upa™)(p) = 2" (ump) = 2" (up) = uz"(p)
for ¢ € Cy(T) and for z* € H, we have
ugrt =u'x” (18.17.3)

for z* € H. Consequently, by (18.17.2) and (18.17.3) we have

ko ksk

z*usr(xa) = (ufz*)(xa) = (u*z*)(xa) = 2*u™*(xa) = (z* om)(4) (18.17.4)

for z* € H and for A € B(T), since m is the representing measure of u. Hence the hypothesis
(18.17.1) is equivalent to saying that

(z* om)(U) = 2 ur (xv) = 2" (2v)

for z* € H and for open Baire sets U in T. Consequently, by Theorem 18.16, u is weakly compact.

Conversely, if u is weakly compact, then by Theorem 2(ii) of [P5] m has range in X and hence
by (18.17.4), (18.17.1) holds.
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Lemma 18.18. Let X be a sequentially complete IcHs and let m,, : B(T') — X be o-additive
and Borel regular for n € N Then lim, m, (U) € X for each open Baire set U in T if and only if
lim,, m,(U) € X for each open set U in T.

Proof. Clearly the condition is sufficient. Conversely, let lim, m, (V) € X for each open
Baire set V in T. Let U be an open set in 7' and ¢ € I". Then by Lemma 18.4(i) there exists
an open Baire set Véq) C U such that m,(U) — mn(V(Sq))\q = 0 for all n. By hypothesis,
lim,, mn(Vlgq)) = x4 (say) exists in X, for each ¢ € I'. Then

m, (U) = 24]g < [0, (U) — mu (V) g + [m, (V) = 2] — 0

as n — oo and hence |m,(U) —my(U)|; — 0 as n,k — oo. Since ¢ is arbitrary in I', this implies
that (m,(U)) is Cauchy in X. As X is sequentially complete, there exists zyy € X such that
lim,, m, (U) = zy. Hence the lemma holds.

Lemma 18.19. Let X be a quasicomplete lcHs and m : B(T') — X be o-additive. Then
each ¢ € Cp(T) is m-integrable in the sense of Definition 1 of [P3] as well as m-integrable in
the sense of Definition 12.1 of [P12] and both the integrals of ¢ coincide. If u : Co(T) — X
is given by u(¢) = [ @dm for ¢ € Co(T'), then u is a weakly compact operator. If m is fur-
ther Borel regular, then m is the representing measure of u (see Notation and Terminology 18.10).

Proof. Since m is o-additive on the o-algebra B(T), ||m||4(T) < oo for each ¢ € I'. Since
¢ € Cy(T') is bounded and Borel measurable, there exists a sequence (sy,) of B(T')-simple functions
such that s, — ¢ uniformly in 7" with |s,| / |¢|. Then, given ¢ € T,

q(/T Spdm — /Tskdm) < |[sn = skllr|Im|[4(T) — 0

as n,k — 0 and hence ([, s,dm)$° is Cauchy in X for each A € B(T). Since X is sequentially
complete, ¢ is m-integrable in the sense of Definition 1 of [P3] and [ 4 pdm = lim, 1) 4 Sndm for
A € B(T). On the other hand, by Definition 12.1’ in Remark 12.11 and by Remark 12.13 of
[P12], the B(T)-measurable function ¢ is m-integrable in the sense of Definition 12.1 of [P12]
with (BDS) [, ¢dm = [, ¢dm for A € B(T).

Clearly, u is linear. Moreover, by Theorem 11.9(ii)(b) of [P12] we have

g(up) = g /T pdm) < |||z - |[m]lo(T)

for each ¢ € I and hence w is continuous. (See Remark 12.5 of [P12].)

Let 3(B(T)) be the Banach space of all bounded complex functions which are uniform limits
of sequences of B(T)-simple functions with norm the supremum norm || - ||7. Then Co(T) is a
subspace of X(B(T')). If ® : X(B(T)) — X is given by ®(¢) = [ pdm with the integral defined
in the sense of Definition 1 of [P3], then by Lemma 6 of [P3], ® is a continuous linear map and
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m is the representing measure of ® in the sense of Definition 2 of [P3]. Since B(T') is a o-algebra
and m is o-additive on B(T'), m is strongly additive on B(T) and hence by Theorem 1 of [P3|, ®
is weakly compact. Consequently, u = ‘I)|CO(T) is weakly compact.

Now suppose m is further Borel regular. Then by Theorem 2(ii) of [P5|, the representing
measure m (in the sense of Definition 4 of [P5|) of the weakly compact operator u has range
in X and by Theorem 1 of [P5], 2* oxh € M(T) for z* € X* and z*u(p) = [, @d(z* o 1) for
¢ € Co(T). On the other hand, u(p) = [;pdm and hence by Lemma 6(iii) of [P3] we have
J7 ed(z* om) = z*u(p) for ¢ € Co(T'). Thus we have

z*u(p) = /Tcpd(x* om) = /Tgod(x* om), ¢ € Co(T).

Since z* om € M (T') by hypothesis, by the uniqueness part of the Riesz representation theorem,
z¥om = x* om for x* € X* and consequently, by the Hahn-Banach theorem we have m = m
and hence m is the representing measure of u (in the sense of (18.10)).

The proof of (i) in the following lemma is motivated by the proof of Theorem 2.12 of |T].

Lemma 18.20. Let X be a sequentially complete IcHs and let m,, : B(T)) — X be o-additive
and Borel regular for n € N Suppose lim,, m, (U) exists in X for each open Baire set U in T.
Let up, : Co(T) — X be given by un(¢) = [, @dm,, for ¢ € Co(T). Then:

(i) lim, u, () = u(yp) (say) exists in X for each ¢ € Cy(T).
(i) w is an X-valued continuous linear mapping on Co(T').
Proof. By hypothesis and by Lemma 18.18,
liTrln m,(U) = m(U) (say) (18.20.1)
exists in X for each open set U in T and moreover, by Theorem 18.8,

sup ||my,||4(T) = My (say) < oo (18.20.2)

for each g € T".

(i) Let ¢ € Co(T), ¢ > 0. Then there exists a sequence (s,) of B(T)-simple functions such
that s, — ¢ uniformly in T" and

n-2™ .

=3 X

where n > ||¢||r and E; , = ¢ (52, 55)) = ¢ (=1, 52)\¢ 1 ((—n, 52)) for i = 2,3, ...,n-2".
Then E;, is the difference of two open sets and hence s, is a real linear combination of the
characteristic functions of open sets. Consequently, each ¢ € Cy(T) is the uniform limit of a
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sequence (s,) of B(T)-simple functions with |s),| ' |¢| and with each s/, being a complex linear
combination of the characteristic functions of open sets. Thus, given ¢ € Co(T), ¢ € ' and € > 0,
there exists s of the form s = Zle aixu;, Uiopen inT, ||s||7 < ||¢||r and

€

: 18.20.
T (18.20.3)

l[s — ¢llT <

Then by (18.20.1) we have

k

k
lim/ sdm,, = limZaimn(Ui) = Z a;m(U;) = z (say).

1

Then there exists ng such that
\/ sdm, — x|y < = (18.20.4)
T 4

for n > mngy. Then by (18.20.3) and (18.20.4) and by Theorem 11.9(i)(b) and Remark 12.5 of [P12]
we have

[un (@) — ur(@)]q < un(p) — / sdmy |, + \/ sdmy, — / sdm,|,
T T T
4| [ sdm = (o)l
T
< Ml = slrllmully() + | | s, = ol + | | sdm, =l +11s = ¢lizlim, |(7)
€
< llp—sllr- (20 +25 <
for n,r > ng. Since ¢ is arbitrary in I', this implies that (u,(¢)) is Cauchy in X and as X is

sequentially complete, there exists a vector u(y) (say) in X such that lim, u,(p) = u(yp) for
¢ € Co(T). Hence (i) holds.

(ii) Clearly, u : Co(T) — X is linear and u is continuous by(i) and by Theorem 2.8 of [Ru2|.

The proof of the following theorem is a vector measure adaptation of the proof of Proposition
2.11 of [T].

Theorem 18.21 (Generalization of Theorem 18.6 to Banach space valued o-additive
regular Borel measures). Let X be a Banach space and let m,, : B(T) — X be o-additive
and Borel regular for n € N Then lim, m, (U) € X for each open Baire set U in T if and only if
there exists an X-valued o-additive measure m on B(T') such that

lim/fdmn:/fdm(e X) (18.21.1)
nJr T
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for each bounded B(T')-measurable scalar function f on 7. In that case, m is unique and is Borel
regular.

Proof. Suppose lim,, m,(U) € X for each open Baire set U in T. Let cx = {(z,)7° C X :
lim, z, € X} be provided with norm |[(2,)?°|| = sup,, |zn|. Let un(p) = [, @dmy,, ¢ € Co(T).
Then by hypothesis and by Lemma 18.19, u,, n € N are X-valued weakly compact operators on
Co(T') with the representing measure m,. Let ® : Cy(T') — cx be defined by ®(p) = (un(¢))5°
for ¢ € Cyp(T"). By Lemma 18.20(i), @ is well defined and clearly, linear. By hypothesis and by
Theorem 18.8,

sup ||m,||(T) = M (say) < oc. (18.21.2)
n

Then by Theorem 11.9(i)(b) and Remark 12.5 of [P12],

12(p)[| = sup [un(p)| = Sup\/Tsodmn < |lllz - sup [[my ||(T) = M|e||r
n n n

and hence ® is continuous.
Claim 1. ® is weakly compact.

In fact, let H = {Ip, o« : 2* € X*,|2*| < 1,n € N}, where < I, o=, (x1)° >= x*(xy,). Clearly,
H C (cx)* is a norm determining set for cx. The proof of Corollary II.5 in Appendix II of [T
holds for complex spaces too and hence by the complex version of the said corollary, H has the
Orlicz property for (cx,|| - |]). Let ® : Co(T) — (ex,0(cx,H)) be designated as ®p so that
D1(p) = (un(9))$°, ¢ € Co(T). Clearly, ®p is continuous as o(cx, H) is weaker than the norm
topology of cx. Moreover,
< O Ly gey 0 >=< Iy oo, B(p) >=< Iy o=, (up(p))° >= zun(p) =< uix*, ¢ > for ¢ € Co(T)
and hence

L (18.21.3)

for I, ,» € H.

On the other hand, by Theorem V.3.9 of [DS], (¢x,0(cx, H))* =< H >C (c¢x)* where < H >
is the linear span of H, and hence we have < ®*I, p+, ¢ >=< I, 2+, ®(¢) >=< Ip o+, Pr(p) >=<
O3 1y, 2+, > for ¢ € Cp(T') and hence ®* I, 4+ = P, I, 5+ for each I, ;~ € H. Then by (18.21.3)
we have

L (18.21.4)
for I, ,~ € H. By hypothesis, given an open Baire set U in T there exists a vector zy =
(m,,(U))$° € cx. Then, as u, is a weakly compact operator with the representing measure m,,
by Lemma 18.19, for the open Baire set U in T' with 2y as above , we have < ®37(xv), Ing+ >=<
XUs PipIn o >=< xv,upz* >=<u) (xv), " >=<m,(U),z* >=<zy, I,z >. Thus,

I o+ ®H (xvu) = Ing-(zy)  (18.21.5)

for I, ;~ € H. Then by (18.21.5) and by Theorem 18.17, ® is weakly compact and hence the
claim holds.
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Let m be the representing measure of ®. Then by Theorem 2(ii) of [P5], m has range in cx
so that m(A) = ®**(xa) € cx for A € B(T') and let m(A) = (2,)7° € ¢x. Then by (18.21.3) we
have z*(zy,) = Iy p+M(A) = I 2+ P (xa) =< P*1p 1=, x4 >=< ujx*, xa >=< z*,u}*(xa) >=<
z*,my(A) > for I, ;» € H and hence z*(z,) = (z* omy,)(A)) for * € X* and for A € B(T).
Then by the Hahn-Banach theorem, x,, = m,(A) for all n and hence (m,;(A4))7° = m(A) € cx.
This implies that lim, m,(A) = m(A) (say) exists in X for each A € B(T"). Then by VHSN (see
Proposition 2.4 of [P10]), m: B(T) — X is o-additive and hence ||m||(T) < oco.

Let My = max(M, ||m||(T")) where M is as in (18.21.2). Let f be a bounded B(T')-measurable
scalar function. Then there exists a sequence (s;,) of Borel simple functions such that |s,| 7 |f]
and ||s, — f|lr — 0 as n — oco. Thus, given € > 0, there exists ng such that

€
Sno — fllT < 555 18.21.6
|[sno — fl| My ( )

Let s = sp, = >.1 @iXxa,, (A4i)] € B(T). Then by (18.21.6) and by Theorem 11.9(i)(b) and
Remark 12.5 of [P12] we have

|/demn—/Tsdmn\ < If = sl - ||mn|[(T) < (18.21.7)

Wl m

for all n and

|/dem—/Tsdm\ <I||f = sllr - |m|]|(T) < =. (18.21.8)

Wl m

As lim, m,(4;) = m(4;) for i = 1,2, ..., 7, there exists n; such that

€
Jevif[my (A7) — m(4)] < o (18.21.9)

for n > ny and for i = 1,2,...,r. Then by (18.21.7), (18.21.8) and (18.21.9) we have

]/demn—/dem]<e

for n > ny. Hence lim,, fT fdm,, = fT fdm.

The converse is evident. The uniqueness of m is immediate from (18.21.1) if we take f = x4

with A € B(T).

Claim 2. m is Borel regular.

In fact, by Tehorem 6 of [P5], m is Borel regular and hence, given A € B(T') and € > 0, there
exist an open set U and a compact K in T such that K C A C U and ||m||(U\K) < e.
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Since H is norm determining, arguing as in the proof of Proposition 10.12(iii) of [P12| we
have

e> |[m||(U\K) = sup V(Inzm)(U\K)
neNz*eX*,|z*|<1

= sup 'U(In,m* (mn(U\K»(fo)
neNz*eX* |z*|<1

= sup v(z*my,)(U\K)
neNz*eX*,|o*|<1

= sup ||lmy,[|(U\K)
ney

and hence A is uniformly m,-regular (Borel regular) for n € . Moreover,
m(U\K) = li7rln m, (U\K)
and
Im|[(U\K) = sup v(z" om)(U\K)

|lz*|<1

= sup v(z* olimm,)(U\K)
|z*|<1 "

= sup v(lim(z* om,)(U\K)
ze|<1

< sup|[m,[|(U\K)
and hence the claim holds.

This completes the proof of the theorem.

Remark 18.22. Unlike Theorem 18.6 the above result has nothing to do with the weak con-
vergence of (m,)$° since m,, ¢ M(T) for n € N We also give in [P14] an improved version of
Theorem 2.12 of [T.

Theorem 18.23 (Generalization of Theorem 18.6 to sequentially complete lcHs-
valued o-additive regular Borel measures). Let X be a sequentially complete IcHs and let
m,, : B(T) — X, n € N be o-additive and Borel regular. Then lim, m, (U) € X for each open
Baire set U in T if and only if there exists an X-valued o-additive measure m on B(T') such that

lim/fdmn:/fdeX
nJr T

for each bounded B(T')-measurable scalar function f on 7. In that case, m is Borel regular and
unique.

Proof. For each ¢ € T, let (m,)y = II; o m,. Then (m,), : B(T) = X, C )f(vq is o-additive
and Borel regular for each n € N Suppose there exists xy € X such that lim, m,(U) = xy
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for each open Baire set U in T. Then lim,(m,),(U) = I (zy) € X, C )A(; for each ¢ € T
Then by Theorem 18.21 applied to (my,)s, n € N there exists a Borel regular o-additive measure

vy : B(T) — X, such that

hTan/de(mn)q = /de'yq(e X,) (18.23.1)

for each bounded B(T)-measurable scalar function f on T. Then |( [, fdm, — [ fdmy)|, — 0 for
each ¢ € T and hence ( fT fdm,)$° is Cauchy in X. Consequently, as X is sequentially complete,
lim,, m,(A) = m(A) (say) exists in X, for each A € B(T'). Clearly, m : B(T) — X is additive.
Moreover, lim, (m,),(A4) = (Il;om)(A) for A € B(T) and for ¢ € I'. But lim,(my),(A4) = v,(4)
by (18.23.1) for ¢ € I". Hence

(Il om)(A) = v,(A4) (18.23.2)
for A € B(T).

Claim 1. m: B(T) — X is o-additive.

In fact, let (A4;)5° C B(T') be a disjoint sequence. Given ¢ € I" and € > 0, there exists ny(q)
such that |y, (U7” Ai) — 27 v4(Ai)lg < € for n > ng(q), since v, is o-additive on B(T). Then
by (18.23.2) ‘we have, [m(US 4i) — Y0 m(A;)l, = |(T o m)(US® A7) — ST, 0 m)(4g)l, =
[y (U™ Ai) — 2T 4(Ai)lg < € for n > ng(q). Then, as ¢ € T is arbitrary, it follows that
m (U7 (4i) = > 7" m(A4;) and hence the claim holds.

Then by Theorem 11.9" in Remark 12.11 of [P12], each bounded Borel function f is m-
integrable in T. Now, for ¢ € I, by (18.23.1) and (18.23.2), by Claim 1 and by Remark 12.5’
(see Remark 12.11 of [P12]) and Theorem 11.8(v) of [P12|, we have | [, fdm, — [ fdm|, =
Mg ([ fdmp — [ fdm)|q = | [ fd(Ilgomy) — [ fd(Ilgom)|g = | [ fd(mn)g— [7 fd(v,)lg — 0
as n — co. Hence limy, [, fdm, = [, fdm and therefore, the condition is necessary.

Evidently, the condition is also sufficient. The uniqueness of m is immediate from the equality

lign/demn:/dem

by taking f = x4 with A € B(T'). m is Borel regular as I, om = ~, for ¢ € I' by (18.23.2) and
as 7y, is Borel regular for each ¢ € I'. Hence the theorem holds.

Remark 18.24. Only the Banach space version of Theorem 18.17 which is deduced from The-
orem 18.16 is used in the proof of Theorem 18.21. However, Theorem 18.16 in its generality
is needed in the proof of Theorem 22.8 of [P13| which improves Theorem 12.2 of [P12| when
P =6(C), m is §(C)-regular and o-additive and X is a complete lcHs. Theorem 18.14 is used in
the proof of Theorem 22.4 of |[P13| which strengthens Theorem 4.2 of [P10] when P and m are
as above and m is Banach space-valued.
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19. WEAKLY COMPACT AND PROLONGABLE RADON OPERATORS

Notation 19.1. C.(T) always denoted the normed space (C.(T),|| - ||7). For C € C, let
C(T,C) = {f € C(T) : suppf C C} and let I : C(T,C) — C.(T) be the canonical in-
jection. Let & be the inductive limit locally convex topology on C.(T') induced by the family
{C.(T,C), Ic}, where Co(T,C) are provided with the topology 7, of uniform convergence. Then
we denote (C.(T),&) by K(T'). It is well known that /C(T') is an lcHs and K(T)* denotes the
topological dual of IC(T). See §1, Ch. III of [B|.

For the convenience of the reader, let us recall the following notation given in the end of
Notation 18.1.

Notation 19.2. V denotes the family of all relatively compact open sets in 7.

In this section, following Thomas [T], we introduce the notions of weakly compact and pro-
longable Radon operators on K(T') with values in a quasicomplete lcHs and using the results of
[P5] and those of Section 18 above, we give several characterizations of weakly compact Radon
operators which are not included in [P5].

Definition 19.3. Let X be an IcHs and let u : (7)) — X be a continuous linear map-
ping. This means, for each C € C and ¢ € I', there exists a finite constant Mc, such that
lu(p)|q < Mcgllel|r for all ¢ € Ce(T,C). Such a mapping u is called an X-valued Radon oper-
ator on K(T'). (Thomas calls it an X-valued Radon measure in [T].)

Theorem 19.4 (Integral representation of Radon operators). Let X be a quasicom-
plete lIcHs and let u : K(T') — X be a Radon operator. Then there exists a vector measure
m : 0(C) — X** such that (i) z* om : §(C) — Kis o-additive and 6(C)-regular for each z* € X*,
(ii) {m(A) : A € B(V)} is 7e-bounded in X** (see Notation and Terminology 18.10) for each
V €V and (iii) for each ¢ € C(T), u(p) = [, ¢dm (in the sense of Definition 1 of [P3]), where
X is identified as a subspace of (X**, 7). Finally, (i)-(iii) determine m uniquely.

Proof. Let V' € V and let uy = u|c, vy Let ¢ € I'. For ¢ € Cc(V), suppp C V € C and
hence |uy (¢)|q = [u(p)lg < My |l¢llr so that uy is continuous. As X is sequentially complete,
uy has a unique continuous linear extension uy to the whole of Cy(V') with values in X. Then
by Theorem 1 of [P5], uy has the representing measure my (as an additive set function) on B(V)
with values in X** and my (A4) = uy ™ (xa) = u}(xa) for A € B(V); z*omy : B(V) - K
is o-additive and B(V)-regular for z* € X* the mapping z* — 2* o my of X* into M (V) is
weak®-weak™* continuous,

xruy (@) = /Tapd(:c* omy) (19.4.1)

for ¢ € Cp(V) and for 2* € X* and {my(A): A € B(V)} is 7e-bounded in X**.
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Let A € 6(C). Then there exists V € V such that A C V. Let U be the family of open sets
in T and Uy be that of all open sets in V. Then by Lemma 18.2, A € B(T) and by Theorem
5.Eof [H|, Ac oU)NV =c(UNV) =0c(Uy) = B(V) and hence A € B(V). Let m(A) = my(A).

Claim 1. m : 6(C) — X™** is a well defined, vector measure (i.e., an additive set function).

In fact, let A € §(C) and let Vi,V € V such that A € Vi NV, Then A € B(V;) and
the continuous linear mapping wuy, has the representing measure my; for i = 1,2. Clearly,
A € B(VinVW,) and for ¢ € C.(Vi N V2), z*uy, (@) = z*uy, (@) = z*u(p) = z*uy,ny (@) for
x* € X* and hence by (19.4.1) we have

/ ed(z* omy,) = / pd(z* omy,) = / ed(z* o my, ) (19.4.2)
T T T

for x* € X*. As z*omy;ny,, (¥ omy,)|pwinw,) and (z* omy, )|y, vy) belong to M (ViNVz), by
(19.4.2) and by the uniqueness part of the Riesz representation theorem we have (z*omy,)(A) =
(z* omy,)(A) = (z* omy;ny, ) (A) for z* € X*. As my, (A), my,(A) and my;y,(A) belong to
X**, we conclude that my, (A) = my, (A) = my;y,(A). Hence m is well defined. Moreover, let
A1, Ay € §(C) with Aj N Ay =0. Let V € V such that Ay U Ay C V. Then, as my is additive on
B(V), we have m(A; U Ay) = my (41 U Ag) = my(A;) + my(4s) = m(A;) + m(Az) and hence
m is additive. Therefore, Claim 1 holds.

Claim 2. x* om is o-additive on §(C) for each z* € X*.

In fact, let (4;)3° € 6(C), AinA; = 0fori # j and A = |J"A; € 6(C). Then there
exists V' € V such that A C V so that A, (A4;)° C B(V). Then z* om(A) = z* omy(A) =
Yt omy(4;) = > 72" om(4;) for z* € X*. Hence Claim 2 holds.

Claim 3. x* om is 0(C)-regular for z* € X*.

In fact, let A € 6(C) and € > 0. Choose V € V such that A C V. Then by the B(V)-
regularity of x* o my there exist K € C and a set U open in V such that K C A C U and
such that v(z* o my,B(V))(U\K) < e. Then U is also open in 7. As m|gn) = my, and as
v(z* om,d(C))(U\K) =v(z*om,B(V))(U\K) = v(z* omy,B(V))(U\K) < ¢, Claim 3 holds.

By the above claims, m verifies (i) of the theorem. Since {m(A) : A € B(V)} = {my(A4) :
A € B(V)}, (ii) of the theorem also holds.

Let ¢ € C.(T) and let supp ¢ = K. Then choose V' € V such that K C V. As ¢ is a bounded
B(V)-measurable function and as my is an X**-valued 7.-bounded vector measure on B(V'), by
the proof of Proposition 18.11 above, ¢ is not only my -integrable in the sense of Definition 1 of
[P3], but also u(p) = uy(¢) = [ edmy, considering X as a subspace of (X**,7.). Moreover,
as my = m|gyy and as ¢ € Cc(V), we conclude that u(e) = [, @dm, for ¢ € Co(T). Thus m
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verifies (iii) of the theorem.

To prove the uniqueness of m, if possible let n be another X**-valued vector measure on §(C)
such that (i)-(iii) hold for n. Then as z* € X* is continuous on (X**,7.), by Lemma 6 of [P3]
and by (iii) we have

xu(p) = /Tcpd(x* om) = /Tcpd(fk on) (19.4.3)

for ¢ € C.(T) and for z* € X*. Let V € V. As (19.4.3) holds for all ¢ € C.(V), by the uniqueness
part of the Riesz representation theorem we have (z*on)|gy) = (z*om)|g(y for z* € X*. Hence
n(A) =m(A) for A € B(V). Since 6(C) = Uy B(V), it follows that n = m. Hence m is unique.

The following definition is suggested by Theorem 19.4.

Definition 19.5. Let X be a quasicomplete IcHs and let u : £(T') — X be a Radon operator.
The unique X**-valued vector measure m on §(C) satisfying (i)-(iii) of Theorem 19.4 is called the
representing measure of w.

Following Thomas [T] we give the following definition.

Definition 19.6. Let X be a quasicomplete lcHs. A linear mapping v : K(T) — X is called
a weakly compact Radon operator if u is continuous on C.(7T) for the topology of uniform con-
vergence (i.e. for the topology induced by || -||7) and if its continuous extension to (Co(T), ||-||7)
is weakly compact.

In the light of the above definition, weakly compact Radon operators on IC(7') can be consid-
ered as weakly compact operators on (Co(T'), || - ||7), and [P5] gives 35 characterizations of these
operators. An alternative proof based on the Borel extension theorem is given in [P9] to obtain
the said characterizations. The reader may also refer to [P8| for a simple proof of many of these
characterizations where 3 new characterizations are also given. The following theorem gives some
more characterizations of these operators when the IcHs X satisfies some additional hypothesis
and these are suggested by [T]. See also Theorems 19.14 and 19.15 for further characterizations
of these operators.

Theorem 19.7. Let X be a quasicomplete lcHs with topology 7 and let u : Co(T') — X be
a continuous linear mapping. Then:

(i) u is weakly compact if and only if , for each uniformly bounded sequence (¢,)3° C Co(T)
with ¢, (t) = 0 for t € T, u(p,) — 0in X.

(ii) Let H C X* have the Orlicz property and let 7 be identical with the topology of uniform
convergence in equicontinuous subsets of H. Let m be the representing measure of u in the
sense of Definition 4 of [P5|. Then the following statements are equivalent.
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(a) u is weakly compact.

(b) For each open set U in T there exists a vector xy € X such that (z*om)(U) = z*(zyp)
for each z* € H.

Similar to (b) with U o-Borel open sets in T

(b)
Similar to (b) with U open Baire sets in T'.
(b)

Similar to (b) with U open and Fy, in T.

For each closed set F' in T there exists a vector zr € X such that (z*om)(F) = z*(xF)
for each z* € H.

(h) Similar to (g) with F' closed Ggs in T'.

)
)
(e) Similar to (b) with U o-compact open sets in 7.
)
)

Proof. (i) Let m be the representing measure of u. Then by Theorem 1 of [P5], u*z* = z* om for
z* € X* and z*u(p) = [, pd(z* om) for ¢ € Co(T). Let (pn)7° C Co(T') be uniformly bounded
and let ¢y (t) — 0 for t € T. Then u(yp,) — 0 if and only if gg(u(pn)) = sup,«cg [T*u(pn)| =
SUP e | [ pnd(z* om)| = sup ey g | [1 wndpu| — 0 as n — oo for each equicontinuous set E in
X* since the topology 7 of X is the same as that of uniform convergence in the equicontinuous
subsets of X*. As u*FE is bounded by Lemma 2 of [P5], by Theorem 2 of [G] the above condition
holds if and only if u* E is relatively weakly compact in M (7T") and hence by Proposition 4 of |P5]
or by Corollary 9.3.7 of |E|, if and only if u is weakly compact. Hence (i) holds.

(ii) By Theorem 2 of [P5], (a)=(b)=-(c)=(d) and by Theorem 18.16, (d) implies (a). By
Lemma 18.3, (d)<(e). Clearly, (f)=-(e) and (b)=(f). Hence (a)-(f) are equivalent.

(b)=(g) In fact, let F' be a closed set in T. Let U = T\F. Then by (b) there exist vectors
zy,xp € X such that 2*(zy) = (2" o m)(U) and z*(zp) = (z* o m)(T) for z* € H. Then
(z* om)(F) = a*(zp — zy) for 2* € H and hence (g) holds. Similarly, (g) implies (b) as T' is
closed and as F' = T\U is closed for an open set U in T

By taking complements, we see that (h) and (f) are equivalent.
Hence the theorem holds.

Following Thomas [T| we give the following definition and its equivalence with Definition 3.1
of |T] will be proved in [P14].

Definition 19.8. Let X be a quasicomplete lcHs and let w : (T') — X be a Radon operator.
Then w is said to be prolongable if, for each V' € V, the continuous linear extension uy to Cy(V')
of the continuous linear map uy = u|¢,(v) is weakly compact.

The weakly compact Radon operators in Definition 19.6 and prolongable Radon operators in
Definition 19.8 are called respectively weakly compact bounded Radon measures and prolongable
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Radon measures in |T.
We can strengthen Theorem 19.4 as below when the Radon operator is prolongable.

Theorem 19.9 (Integral representation of prolongable Radon operators). Let X be
a quasicomplete lcHs and let u : I(T') — X be a prolongable Radon operator. Then the repre-
senting measure m of u as in Definition 19.5 is X-valued, o-additive and 6(C)-regular (considering
X as a subspace of (X** 7)) and

u(yp) = /Tgodm, v e K(T) (19.9.1)

where the integral is a (BDS)-integral.

Conversely, if m is an X-valued o-additive 0(C)-regular measure on §(C), then the mapping
u: K(T) — X given by u(p) = [ edm, ¢ € K(T) (the integral being a (BDS)-integral), is a
prolongable Radon operator. Moreover, the representing measure of u is m.

Proof. Let u be prolongable. Then by Theorem 19.4 there exists a unique X**-valued vec-
tor measure m on 6(C) such that z* o m is o-additive and §(C)-regular for each z* € X*;
u(¢) = [ppdm for ¢ € K(T) in the sense of Definition 1 of [P3] and {m(A4) : A € B(V)}
is Te-bounded for each V' € V. Let V € V and let my = m|g). Then, from the proof of
Theorem 19.4 we note that my is the representing measure of the continuous linear map uy on
(Co(V), |l ll) (in the sense of Definition 4 of [P5|) and by hypothesis, uy : Co(V) — X is weakly
compact. Then by Theorem 2 of [P5], my is o-additive on B(V) and has range in X and by
Theorem 6 of [P5], my is B(V)-regular. Since V' is arbitrary in V and since §(C) = Uy ¢y B(V),
we conclude that m is o-additive on 6(C), is 6(C)-regular and has range in X. Let ¢ € K(T") with
suppp C K € C. Let V € V such that K C V. Then ¢ € C.(V) C Co(V) and my = m|g(y is
o-additive and X-valued. Then by Lemma 18.19, [, ¢dm = [, odmy is a (BDS)-integral.

Conversely, let m : §(C) — X be o-additive and §(C)-regular. Let 7 be the topology of X.
If V €V, then my = m|ggy is o-additive, B(V)-regular and X-valued. Let u : K(T) — X be
given by u(¢) = [, @dm for ¢ € K(T) where the integral is a (BDS)-integral. Then by Theo-
rem 11.9(1)(b) and Remark 12.5 of [P12], u is a continuous linear map. Let U € V. Then by
Theorem 50.D of [H], there exists W € V such that U C W and hence Co(U) C C.(W). Then
myy = m|gy) is X-valued and o-additive in 7 and hence by Lemma 18.19, uy : Co(W) — X
given by uw (@) = [;, edmyy is weakly compact and hence uy = uw |y (v 18 weakly compact.
Hence u is prolongable. Clearly, m satisfies (i) of Theorem 19.4. Since m|g(y) is o-additive, (ii)
of Theorem 19.4 also holds since 7 = 7.|x. By Lemma 18.19, the (BDS)-integral [.dm for
¢ € K(T) is the same as the integral in the sense of Definition 1 of [P3|, noting that 7 = 7.|x
when X is considered as a subspace of (X**,7.). Hence m is the representing measure of w.

Corollary 19.10. A linear functional 6 belongs to K(T')* (resp. K(T); (see [P2])) if and
only if 0 : K(T) — Kis a prolongable (resp. weakly compact) Radon operator. In that case, its
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representing measure my is the same as the complex Radon measure pg induced by € in the sense
of Definition 4.3 of [P1].

Thus prolongable (resp. weakly compact) Radon operators on K(T") with values in a quasi-
complete IcHs generalize complex measures (resp. bounded complex measures) in the sense of [B].

Theorem 19.11. Let X and Y be quasicomplete IcHs over K. Let u : K(T) — X be a
prolongable (resp. weakly compact) Radon operator and let v : X — Y be a continuous linear
mapping. Then:

(i) vou: K(T) — Y is a prolongable (resp. weakly compact ) Radon operator.

(i) myoy(A4) = v(m,(A)) for A € §(C) (resp. for A € B(T)), where m,, and m,., are the
representing measures of u and v o u, respectively.

(iii) If f € £1(my), then f € L1(Myoy) and [, fdmye, = v( [, fdmy,) for A € B.(T) (resp. for
A e B(T)).

Proof. (i) If w is a weakly compact operator with range in X, then it is well known that vow
is weakly compact. This result is used to prove (i).

(ii) Let u be prolongable and let V' € V. Then uy : Co(V) — X is weakly compact and
its representing measure (m,)y on B(V) has range in X and is given by (my)y = uy™|gr) =
uy gy Let A € 6(C) and choose V' € V such that A C V. Then (m,)y(A) = uj’(xa) and
(0.0 )™ (x4) = (Mg (A). Hence myon(A4) = (Myou v (A) = (070 u)*(xa) = v ui? (x4) =
v (my,)v(A) = v*my(A) = vom,(A) as my(A) € X and v**|x = v. Similar argument holds

when u is a weakly compact Radon operator.

(iii) Let f € £1(m,). Then by Theorem 11.8(v) and Remark 12.5 of [P12], f € £1(v om,,)
and [, fd(vom,) =v([, fdm,) for A € Bc(T) (resp. for A € B(T)) if u is a prolongable (resp.
weakly compact) Radon operator. As m,., = v om, by (ii), (iii) holds.

The following theorem gives 24 characterizations for a Radon operator to be prolongable and
[P5] plays a key role in the proof of the theorem. For the different concepts of regularity used in
the following theorem see Definition 5 of [P5].

Theorem 19.12. Let X be a quasicomplete IcHs and let u : I(T') — X be a Radon operator.
Let m : §(C) — X** be the representing measure of u and let mg = m/|s(c,). Let us consider X
as a subspace of (X** 7.). Then the following statements are equivalent:

(1) w is prolongable.
(2) m has range in X.

(3) m is o-additive in the topology 7. of X**.
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(22)

(23)

(24)

m(V) € X for each V€ V.

V)
m(V) € X for each V € VN By(T).
m(K) € X for each K € C.
m(K) € X for each K € Cp.

For each U € V and for each increasing sequence (f,)7° C Co(U) with 0 < f,, <1in U for
all n, (ufy,) converges weakly in X.

Similar to (8) with U € V N By(T).
my is o-additive in 7.

my has range in X.

m is 0(C)-regular (in 7).

m is 0(C)-inner regular (in 7).

m is §(C)-inner regular (in 7) in V.

m is §(C)-outer regular (in 7) in each K € C.

my is §(Cp)-regular (in 7).

my is 6(Cp)-inner regular (in 7).

my is 6(Cp)-inner regular (in 7.) in each open set U € §(Cyp).
my is §(Cp)-outer regular (in 7.) in each K € Cy.

All bounded Borel measurable functions f on 7' with compact support (equivalently, all
bounded o-Borel measurable functions f on 7" with compact support) are m-integrable in
T (in the sense of Definition 3 of [P5]) and [ fdm € X.

All bounded Baire measurable functions f on 7" with compact support are mg-integrable
in T (in the sense of Definition 3 of [P5]) and [ fdmg € X.

All bounded functions f on T belonging to the first Baire class with compact support are
m-integrable in T' (in the sense of Definition 3 of [P5]) and [, fdm € X.

uy’ f € X for all bounded functions f on 1" belonging to the first Baire class with compact
support, the support being contained in V € V.

For every uniformly bounded sequence (¢,) of continuous functions vanishing in T\ K for
some K € C (equivalently, by Urysohn’s lemma for every sequence (¢p) of continuous
functions dominated by a member of K(T")) with lim,, ¢, (¢t) = 0 for each t € T', lim,, u(py) =
0.
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Proof. For V € V, let uy = u|(C’c(V),H~|IT)- As wy is continuous, it has a unique continuous linear
extension uy to Co(V). If my is the representing measure of uy on B(V) as in Definition 4 of
[P5], then from the proof of Theorem 19.4 it is clear that my = m|pzy).

(1)<(2)(resp. (1)<(3)) By Theorem 2 of [P5], the range of my is contained in X (resp. my
is o-additive on B(V) in 7¢) if and only if uy is weakly compact. Since 6(C) = Uy B(V), it
follows that m has range in X (resp. m is o-additive in 7.) if and only if my (B(V)) C X (resp.
my is o-additive on B(V) in 7) for each V € V and hence if and only if uy is weakly compact
for each V € V. Hence the result holds.

Clearly, (2)=(4)=(5).
(5)=(1)
Claim 1. By(T) is the o-ring generated by all relatively compact open Baire sets in T

In fact, given C € Cp, by Theorem 50.D of [H| and by Lemma 18.3, there exists a relatively
compact open Baire set U in T such that C C U. Then C' = U\(U\C) and hence the claim holds.

Let V € V. Then by Lemma 18.3 and Claim 1 above, By(V) is the o-ring generated by
Uy = {U : Uopen nV,U € By(V)} = {U : Uopen inV, U = U7° F,,, F,, compact in V'}. Since
Visopen in T, U € Uy if and only if U C V and U is open and o-compact in T" and hence
by Lemma 183, U € Uy if and only if U C V and U is an open Baire set in 7. Hence
Uy = {U e VN By(T) : U C V}. Then by hypothesis (5), my(U) € X for all open sets
U € By(V) and hence by Theorem 3(vii) of [P5], uy is weakly compact. Therefore, (1) holds.

(4)=(6) Given K € C, by Theorem 50.D of [H| there exists an open set V € V such that
K C V. Then, as K = V\(V\K), by hypothesis we have m(K) = m(V) —m(V\K) € X.

(6)=-(7) Obvious.

(7)=(5) Let V.€ VN By(T). Then as V is a relatively compact open Baire set in T', by
Theorem 50.D of [H| there exists K € Cp such that V' C K. Then again by Theorem 50.D of [H]
and by Lemma 18.3, there exists a relatively compact open Baire set U in T such that K C U.
Then V = K\(K\V) and K\V € Cy by Theorem 51.D of [H|. Then by hypothesis, m(V') € X.

(1)=(8) Let U € V. Then by (1), uy : Co(U) — X is weakly compact, and by hypothesis,
fon /N 0< f, <1in U and (f,);° C Co(U). Then by Theorem 3(xi) of [P5], (ufn) = (uv fn)
converges weakly in X and hence (8) holds.

(8)=-(9) Obvious.
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(9)=(1) Let V€ VNBy(T'). Let (f) be an increasing sequence in Cp(V') such that 0 < f, <1
in V for n € N Then by (9), (wv fn) = u(fn) converges weakly in X. Then by Theorem 3(xi) of
[P5], wy is weakly compact. Now let U € V. Then by Theorem 50.D of [H| and by Lemma 18.3
there exists V€ VN By(T) such that U C V and hence uy = @y |,y is weakly compact. Hence
(1) holds.

(3)=(10) Obvious.

(10)=(1) Let Uy be the family of all open Baire sets in T. Let V € By(T) NV. As seen
in the proof of ‘(5)=-(1)’, By(V) is the o-ring generated by {U € Uy : U C V} and hence
Bo(V)=0cUoNV)=0Uo)NV = Bo(T)NV C §(Cp) by Theorem 5.E of [H] and by Lemma 18.2
above. Then by hypothesis, mo|g, 1 is o-additive on By(V) in 7. and hence by Theorem 4(xiii)
of [P5], uy is weakly compact. Now if W € V, then by Theorem 50.D of [H| and by Lemma 18.3
above, there exists V € By(T) NV such that W C V and consequently, C.(W) C Co(V). Then
uw = uv|cy(w) is weakly compact and hence (1) holds.

(2)=-(11) Obvious.

(11)=-(1) Arguing as in the proof of ‘(10)—(1)’and using Theorem 4(xv) of [P5| instead of
Theorem 4(xiii) of [P5|, we observe that uy is weakly compact for each V€ V N By(T). Then

arguing as in the last part of the proof of ‘(10)=(1)’, we can show that uy is weakly compact
for each W € V and hence (1) holds.

(1)=(12) Let A € §(C). Then there exists V € V such that A C V. By (1), uy : Co(V) = X
is weakly compact and hence by Theorem 6(xix) of [P5], my is B(V)-regular. As A € B(V), given
e > 0 and ¢ € T', by the regularity of my and by Proposition 2.2 of [P10] there exist K € C and a
set U open in V such that K C A C V and such that |jmy||4(V\K) < €. Hence ||m||,(V\K) < €
since my = m|g(yy. As V is open in T and as V € §(C) by Lemma 18.2, (12) holds.

(12)=(13)=-(14) Obvious.

(14)=(1) Let V € V. Then by (14), my is B(V)-inner regular in each open set in V' and
hence by Theorem 6(xxi) of [P5], uy is weakly compact. Hence (1) holds.

(1)=(15) Let K € C. Then by Theorem 50.D of [H] there exists V € V such that K C V
and (1) implies that wy is weakly compact. Consequently, given ¢ € I" and € > 0, by Theorem
6(xxii) of [P5] and by Proposition 2.2 of [P10| there exists a set U open in V such that K C U
and such that ||my||,(U\K) < e. Hence ||m||,(U\K) < € with U open in T and U € 6(C) by
Lemma 18.2. Hence (15) holds.

(15)=(19) Let K € Cp. Given ¢ € I' and € > 0, by (15) there exists U open in T with
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U € §(C) such that K C U and ||m||4(U\K) < €. Then by Theorem 50.D of |[H| and by Lemma
18.3 above, there exists an open Baire set V in T such that K C V C U. Clearly, by Lemma 18.2
above, V € §(Cp) and ||m||,(V\K) < e. Hence (19) holds.

(19)=(7) Let K € Cy. Then by Theorem 50.D of [H| and by Lemma 18.3 above there exists
V € Bo(T)NV such that K C V. Let ¢ € T'. Then by (19), for each n € N there exists Vi ¢ 0(Co)
such that K ¢ V9 ¢ vV, V{? open in V and HmVHq(VTEQ)\K) < 1. By Urysohn’s lemma there
exists goﬁﬁ) S Cc(Vn(q)) such that goglq)h( =land0< gp%q) <1lin Vn(q), n € N Since gole) € C.(V),
by Theorem 19.4 we have u((p%q)) = uv(go,(zq)) = /r @%q)dmv. Then by Lemma 6(ii) of [P3] we have

(i) = my (B)llg = | (et = xu)dmvylly = [| [y, ot dmv]l, < |lmyll(ViP\K) < 4

for each n. Thus, II;(m(K)) = II;(my (K)) = lim, Hq(u(gm(lq))) € )?;. ie., [pxkxdm, € )f{q for
each ¢ € T'. Then by Definition 12.1 of [P12], xx is m-integrable in 7" and

m(K) = (BDS) / XKrdm = lim/ XKxdm,.
T —Jr

Then, as X is quasicomplete, by Theorem 12.3 of [P12|, m(K) € X and hence (7) holds.

(1)=(16) Let A € §(Cy), ¢ € T and € > 0. Then as in the proof of ‘(19)=-(7)’there exists
V € VN By(T) such that A C V. As uy is weakly compact, by Theorem 8(xxvii) of [P5] and
by Proposition 2.2 of [P10] there exist K € Cyp and an open set U in T belonging to By(V)
such that K ¢ A C U and |my||4(U\K) < e. From the proof of ‘(5)=(1)’, we note that
UeBy(T)NY C §(Co) (by Lemma 18.2) and hence myg is 6(Cp)-regular.

(16)=-(17)=-(18) Obvious.

(18)=-(1) Let V be a relatively compact open Baire set in 7. Then V' € By(V) since it is
shown in the proof of ‘(5)=-(1)’ that the open Baire sets in By(V') are precisely the open Baire
sets in T which are contained in V. Then the hypothesis implies that myg is By(V')-inner regular
in each open Baire set in V' and hence particularly in V. Therefore, by Theorem 8(xxix) of [P5],
uy is weakly compact. Then, given U € V, arguing as in the last part of the proof of ‘(10)=-(1)’,
we can show that ugy is weakly compact. Hence (1) holds.

(1)=(20) Let f be a bounded Borel measurable function on 7" with support K € C. Then by
Lemma 18.2, N(f) € §(C) and N(f) N f~Y(U) € §(C) C B.(T) for open sets U in K Hence f is
B.(T')-measurable. Clearly, B.(T)-measurable functions are Borel measurable. Let V' € V such
that K C V. Let U be the family of open sets in T'. YNV is the family of open sets in V' and hence
by Theorem 5.E of [H], B(V) =cUNV)=0U)NV =B(T)NV. Since f is B.(T)-measurable,
Y U)NN(f) € B(T) c B(T) for U open in K and clearly, f~1(U) N N(f) € V. Hence
FHUOYNN(f)NV = f~HU)NN(f) and hence f is B(V)-measurable. By (1), uy is weakly com-
pact. Then by Theorem 9(xxxi) of [P5], f is my-integrable in T and [, fdm = [ fdmy € X.
(See Definition 3 of [P5] and note that {my(A) : A€ B(V)} = {m(A) : A € B(V)} is 7e-bounded
in X**.) Hence (20) holds.
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(20)=(21)=-(22) Obvious.

(22)=(5) Let U € VN By(T). Then by Lemma 18.3 there exists (K,)7° C C such that
K, /' U. Then by an argument based on Urysohn’s lemma there exists (f,){® C C.(U) such
that f, / xu in T. Hence xy belongs to the first Baire class, and clearly has compact support.
Then by hypothesis, m(U) € X and hence (5) holds.

(22)=(23) Each bounded function f belonging to the first Baire class is Baire measurable.
Moerover, let f have compact support K and choose V' € V such that K C V. Then by
Definition 19.3, uy : C.(V) — X is continuous and hence has continuous extension wy on
Co(V). Then mg(A) = my(A) = uj(xa) for A € By(V). Then z* o uy € K(V); and
< Jpfdmg)y,z* >= [, fd(z* o (mg)y) = [, fd(ujz*) =< fujz* >=< u{f,z* > for
x* € X*. Hence uif f = [ fd(mg)y = [, fdm € X. Thus (23) holds.

(23)=-(5) As seen in the proof of ‘(22)=-(5)’, xv belongs to the first Baire class for each
V € VN By(T) and has compact support. Then by (23), m(V) = my (V) = u{*(xv) € X and
hence (5) holds.

(1)=(24) Let (¢p)3° satisty the hypothesis so that sup,, ||¢n||lr = M (say ) < oo, there exists
K € C such that ¢, (t) = 0 for t € T\K and for all n and lim, ¢,(t) =0 fort € T. Let V € V
with K C V. Then (¢,)° C Co(V) and by (1), uy is weakly compact. Then by Theorem 19.7(i),
u(on) = uy(pn) — 0in X.

(24)=(1) Let V € V. Let (¢n)° C Co(V) with lim, ¢,(t) = 0 for each t € V and
sup,, ||¢nllr = M < oo. By Theorem 50.D of [H| there exists U € V such that U C U. As
(0n)$° C Co(V), pn,n € N, vanish on T\V and hence by (24), lim,, u(¢,) = 0. Then by Theo-
rem 19.7(1), uy is weakly compact and hence (1) holds.

This completes the proof of the theorem.

Theorem 19.13. Let X be a quasicomplete lcHs with topology 7 and let u : K(T) — X
be a Radon operator with the representing measure m. Let H be a set in X* having the Orlicz
property such that 7 is identical with the topology of uniform convergence in equicontinuous
subsets of H. Let pg+, be the complex Radon measure induced by z*u as in Definition 4.3 of
[P1]. Then the following statements are equivalent:

(i) w is prolongable.

(ii) For each V €V, there exists zy € X such that z*(zy) = (z* om)(V) for each z* € H.
(iii) Similar to (ii) with V' € Bo(T) N V.

)

(iv) For each K € C, there exists xxg € X such that 2*(zx) = (z* om)(K) for each z* € H.
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(v) Similar to (iv) with K € Cy.

(vi) For each V €V, there exists zy € X such that z*(zy) = [, xvd(pa=y) for 2* € H.
(vii) Similar to (vi) with V' € By(T) N V.
(viii) Similar to (vi) with V replaced by K € C.

(ix) Similar to (viii) with K € Cp.

Proof. (i)=(ii)—(iii) by (2) of Theorem 19.12.

(ii))=(i) Let V' € Bo(T) N V. Then as observed in the proof of ‘(5)=-(1)" in the proof of
Theorem 19.12, By (V) is the o-ring generated by the family Uy of all open Baire sets in T" which
are contained in V. If U € By(V) and if U is open in T, then U € Uy C V N By(T) by the proof
of ‘(5)=-(1)’ in the proof of Theorem 19.12.

Hence, for each open set U € By(V'), by hypothesis there exists zyy € X such that z*(zy) =
(z* om)(U) for * € H and hence by Theorem 18.16, uy is weakly compact. If W € V, then by
Theorem 50.D of [H| and by Lemma 18.3, there exists V € By(T) NV such that W ¢ W C V.
Then by the above argument uy is weakly compact and hence uy = EﬂCO(W) is weakly compact
and hence (i) holds.

By (2) of Theorem 19.12, (i)=-(iv)=-(v).

(v)=(iii) Let V € Bo(T)NV. Then V € C and by Theorem 50.D of [H] there exists K € Co
such that V' C K. Then by hypothesis, there exists 2 € X such that z*(zx) = (z* om)(K) for
z* € H. As K\V € Cp by Theorem 51.D of [H], by hypothesis there exists xx\y € X such that
" (zg\v) = (z*om)(K\V) for z* € H. Then, as V = K\(K\V), (z*om)(V) = 2*(zx — zx\v')
for #* € H and hence (iii) holds.

First we prove the following result.
Claim 1. (z*u) € K(T)* and piz+y, = * om on §(C) for z* € X*.

In fact, as u is continuous on K(T), z*u € K(T)*. By Theorem 19.4, u(y) = [, pdm for
¢ € KK(T') and consequently, by Lemma 6(ii) of [P3],

/ ed(x* om) = z*u(p) = / od(pg*y) (19.13.1)
T T

for ¢ € KK(T'). Choose V' € V such that supp¢ C V. Since z* om and g+, are regular on §(C) by
Theorem 19.4 above and by Theorem 4.4(i) of [P2], respectively, both of them are B(V')-regular
on B(V'). Moreover, both of them are o-additive on B(V'). Since (19.13.1) holds for all ¢ € C.(V),
by the uniqueness part of the Riesz representation theorem we have (z* o m)|gwv) = (faru)|B(v)-
Since §(C) = Uy ey B(V), we have (z* o m)(A) = piz+u(A) for A € §(C). Hence the claim holds.
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Let u be prolongable. Let V € V, U € VNBy(T'), K € C and Ky € Cp. Then by (ii) (resp. (iii),
(iv), (v)) there exists xy € X (resp. zy € X,zx € X, xk, € X) such that (z*om)(V) = 2*(zy
(resp. (z* om)(U) = z*(zp), (z* om)(K) = z*(zk), (z* o m)(Ky) = z*(2g,)) for z* € H.
Consequently, by Claim 1, (vi) (resp. (vii), (viii), (ix)) holds.

Finally, by Claim 1, (vi) (resp. (vii), (viii), (ix)) implies (ii) (resp. (iii), (iv), (v)) and hence
each one implies that u is prolongable.

Theorem 19.14. Let X, u, H, pz+, for £* € H and m be as in Theorem 19.13. Then:
(a) The following statements are equivalent:

For each open set U in T there exists xy € X such that x* fT Xud(piz=y) for z* € H.
Similar to (ii) with U o-Borel open sets in T.

Similar to (ii) with U open Baire sets in 7.

Similar to (ii) with U Fj,- open sets in 7.

ii) with U o-compact open sets in 7.
)

(
(
Similar to (
Similar to (ii) with U replaced by closed sets F in T
(

Similar to (vii) with F' closed Gs-sets in T'.

(b) If w is a weakly compact Radon operator, then u is prolongable and the function xr is my,-
integrable in 7.

Proof. (a) is proved using Claim 1 in the proof of Theorem 19.13 and Theorem 19.7(ii).
The first part of (b) is immediate from Definition 19.8. As m,, is X-valued and o-additive on
B(T) by Theorem 2 of |[P5],xr is m,-integrable in 7" by Theorem 11.9(i) and Remark 12.5 of [P12].

Theorem 19.15. Let X be a quasicomplete IcHs and let u : (Co(T),|| - ||r) — X be a
continuous linear mapping. Let @ be the continuous linear extension of u to Cy(T") and let m
be the representing measure of % in the sense of Definition 4 of [P5]. Let m. = m|g (1) and
my = m)| Bo(T) -Then the following statements are equivalent:

(i) u is a weakly compact Radon operator.
(ii) w is prolongable and given € > 0 and ¢ € I', there exists K € C such that |jm||,(T\K) < e.

(iii) w is prolongable and given € > 0 and ¢ € I, there exists K € C such that ||m.||,(T\K) < €
where |[m.[|(T\K) = SUPAeB.(T),ACT\K |[me[lg(A).

(iv) wis prolongable and given € > 0 and ¢ € T, there exists Ky € Cp such that ||mg||,(T\Ko) < €
where |[mol[(T\Ko) = supaep, (1), acT\ 1o |[m0l[4(A)-




34 T.V. Panchapagesan

Proof. (i)=(ii) Let V' € V. Then uy = i|¢,(y) is weakly compact and hence u is prolongable.
By Theorem 6(xxi) of [P5] and by Proposition 2.2 of [P10] the other part of (ii) holds.

Clearly, (ii)=-(iii)=(iv) since for K € C, by Theorem 50.D of [H] there exists Ky € Cp such
that K C Kj.

(iv)=(i) Let Ky € Cp. Choose V € V such that Ky C V. By hypothesis, uy is weakly
compact and hence by Theorem 8(xxx) of [P5] and by Proposition 2.2 of [P10], given € > 0 and
q €T, there exists U € By(V), U open in V such that Ko C U and ||my||;(U\Kp) < €. As V is
open in T, U is open in T and by Lemma 18.3, U € By(T'). This proves that mg is Baire outer
regular in each Ky € Cyp. The other hypothesis in (iv) implies that mg is Baire inner regular in T’
and hence by Theorem 8(xxx) of |P5|, @ is weakly compact. Hence (i) holds.
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