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Fixed Point’s Theorems for ω − ϕ− Contractions

Jose R. Morales

Using the notion of ω−distance on the metric space, (M,d), we get some generalizations of
results of Browder [3], Boyd-wong [2], Mukherjea [18] and Matkowski [14].

Introduction

In 1996, O. Kada- T. Suzuki- W. Takahashi [13] introduced the concept of ω−distance on a
metric space and using this notion they improved the Caristi fixed point theorem [4], Ekeland’s
ε−Variational Principle [10] and proved a fixed point theorem in a complete metric space which
generalize the fixed point theorems of Subramanyan [24], Kannan [12] and Ciric [5].

T. Suzuki- W. Takahashi [25] using the notion of ω−distance on a metric space proved a fixed
point theorem for set-valued mapping a complete metric space which are related which Nadler’s
fixed point theorem [19] and Edelstein’s theorem [9].

T. Suzuki [26] using the ω−distance gave another fixed point theorems which are generaliza-
tions of the Banach Contraction Principle and Kanan’s fixed point theorem.

Y. J. Cho - N. J. Huang - L. Xiang [6] introduced new classes of generalized contractive
type set-valued mappings and weakly dissipative mappings and they proved some coincidence
theorems for these mappings by using the concept of ω−distance.

M. Hiromichi [11] in his thesis used the notion of ω−distance and the concept of fixed point to
characterize the mathematical structure of space metric completeness and finite dimensionality
of Banach spaces.

The author in [16] and [17] gave other results referent to fixed point theorems.

Recently S. Park [20], using the ω−distance concept, improved the equivalent formulation of
Ekeland’s Principle in various aspects and moreover, as a simple application, he gave an extended
form of a fixed point theorem of Downing-Kirk [8].

Finally in this article our end is to generalize some fixed point theorems for
ϕ−contractions using the concept of ω−distance on a metric space.



1 Preliminares

Throughout this paper, we denote by N the set of positive integers, by R the set of real number
and R+ = [0,+∞).

Definition 1.1 Let (M,d) be a metric space. Then a function p :M ×M −→ [0,+∞) is called
a ω−distance on M if the following conditions are satisfied:

ω 1.- p(x, z) ≤ p(x, y) + p(y, z) for any x, y, z ∈M .

ω 2.- For any x ∈M, p(x, ∙) :M −→ [0,+∞) is a lower semicontinuous function.

ω 3.- For any ε > 0 exists δ = δ(ε) > 0 such that p(z, x) ≤ δ and p(z, y) ≤ δ imply that
d(x, y) ≤ ε.

The metric d is a ω−distance on M . Some other examples of ω−distances are given in [13],
[25] and [26].

Notation 1.1 By W (M), we denote the set of all ω−distances p on M and it is clear that
W (M) 6= ∅.

In [13] we found an example which show that p is not symetric, p(x, y) 6= p(y, x) for all
x, y ∈ M , so we denote by W0(M), the set of all ω−distances p on M that are symetric. It is
clear that W0(M) 6= ∅.

The following results are crucial in the proof of our theorems. The next result was proved in
[13].

Lemma 1.1 Let (M,d) be a metric space and let p be a ω−distance on M . Let (αn) and (βn) be
sequences in [0,+∞) converging to 0, and let x, y, z ∈M . Then the following hold:

a.- If p(xn, y) ≤ αn and p(xn, z) ≤ βn for any n ∈ N then y = z. In particular, if p(x, y) = 0
and p(x, z) = 0 then y = z.

b.- If p(xn, yn) ≤ αn and p(xn, z) ≤ βn for any n ∈ N, then (yn) converge to z.

c.- If p(xn, xm) ≤ αn for any n,m ∈ N with m > n, then (xn) is a Cauchy sequence in (M,d).

d.- If p(y, xn) ≤ αn for any n ∈ N then (xn) is a Cauchy sequence in (M,d).

The following result can be found in [26].

Lemma 1.2 Let (M,d) be a metric space, let p be a ω−distance on M and let (xn) be a sequence
in M .

Suppose that
lim
n→∞

sup
m>n
{p(xn, xm), p(xm, xn)} = 0.

Then (xn) is a Cauchy sequence in M . In particular the following hold:



a.- If lim
n→∞

sup
m>n
p(xn, xm) = 0 then (xn) is a Cauchy sequence in M .

b.- If lim
n→∞

sup
m>n
p(xm, xn) = 0 then (xn) is a Cauchy sequence in M .

The following definition is due to T. Suzuki - W. Takahashi [25].

Definition 1.2 Let (M,d) be a metric space and let T be a mapping from M into itself. We say
that T is a ω − B−contraction if there exists a ω−distance p on M and k ∈ R, 0 ≤ k ≤ 1 such
that

p(Tx, Ty) ≤ kp(x, y) (1.1)

for all x, y ∈M .

It is clear that if p = d we get that T is a Banach contraction, (in short, B−contraction). In
[25] we found the following result.

Theorem 1.1

Let (M,d) be a complete metric space. If a mapping T from M into itself is a ω−B−contraction
then T has a unique fixed point x0 ∈ M . Moreover the x0 satisfies
p(x0, x0) = 0.

It is clear that theorem 1.1 generalize the well known Banach contraction principle and for
another similar results see [16].

In [17] the author introduced the following,

Definition 1.3 Let (M,d) be a metric space and let T be a mapping from M into itself. We say
that T is a ω−BR−contraction if there exists a ω−distance p on M and a monotone decreasing
function α : R+ −→ [0, 1) tal que

p(Tx, Ty) ≤ α(p(x, y))p(x, y) (1.2)

for all x, y ∈M .

Remark 1.1 1.- If α(t) = k for all t ∈ R where 0 ≤ k ≤ 1 we get (1.1).

2.- If p = d then we get
d(Tx, Ty) ≤ α(d(x, y))d(x, y) (1.3)

for all x, y ∈M , which is the Rakotch’s condition, [21].

The author in [17] proved the following,



Theorem 1.2

Let (M,d) be a complete metric space and let T :M −→M be a ω−BR−contraction then there
exists a unique z ∈M such that z = Tz and p(z, z) = 0.

2 ω − ϕ−contractions

Various concepts of comparison functions have been defined and intensevely studied in connection
with the contraction mappings, see Rus, A. I. [22], Berinde, V. [1]. We are going to use the notions
of ϕ−comparison function to define the concept of ω − ϕ−contractions.

Definition 2.1 (Boyd-Wong - [23 )] A function ϕ : R+ −→ R+ is called ϕA−comparison
function if:

A1.- ϕ is upper semicontinuous function.

A2.- For each t > 0, ϕ(t) < t.

Definition 2.2 (Mukherjea - [18 )] A mapping ϕ : R+ −→ R+ is called ϕB−comparison
function if:

B1.- ϕ is a right continuous function.

B2.- For each t > 0, ϕ(t) < t.

It is well known that if ϕ : R+ −→ R+ is monotone increasing function then ϕ right upper
semicontinuous iff ϕ is right continuous.

Therefore if ϕ : R+ −→ R+ is monotone increasing function then the definition 2.1 is equiva-
lent to definition 2.2.

Definition 2.3 (Browder) [3] A mapping ϕ : R+ −→ R+ is called a ϕC−comparison if:

C1.- ϕ is right continuous.

C2.- For each t > 0, ϕ(t) < t.

C3.- ϕ is monotone increasing.

Thus definitions 2.1, 2.2 and 2.3 are equivalent if ϕ : R+ −→ R+ is a monotone increasing
function.

Lemma 2.1 If ϕ : R+ −→ R+ is a ϕC−comparison function then lim
n→∞

ϕn(t) = 0 for all n ∈ N

and for each t > 0.

Proof

See [22].



Definition 2.4 (Matkowski - [15 )] A mapping ϕ : R+ −→ R+ is called a ϕD−comparison
function if:

D1.- ϕ is monotone increasing.

D2.- lim
n→∞

ϕn(t) = 0 for each t > 0, n ∈ N.

From lemma 2.1 it is clear that if ϕ : R+ −→ R+ is a ϕC−comparison function then ϕ is
ϕD−comparison function.

Lemma 2.2 Let ϕ : R+ −→ R+ be a ϕD−comparison function then

a.- ϕ(t) < t for all t > 0.

b.- ϕ(0) = 0.

Proof

See [22].

Example 2.1 1.- Let ϕ : R+ −→ R+ be a mapping defined by ϕ(t) = at, 0 ≤ a ≤ 1, t ∈ R+.

It is clear that ϕ is a ϕA − (ϕB, ϕC , ϕD)−comparison function.

2.- Let ϕ : R+ −→ R+ be a function defined by ϕ(t) =
t

1 + t
, t ∈ R+. Also ϕ is ϕA −

(ϕB, ϕC , ϕD)−comparison function.

Now we introduce the notions of ω−ϕ−contractions which generalize the well known ϕ−contractions.

Definition 2.5 Let (M,d) be a metric space. A mapping T : M −→ M is called a ω −
ϕA−contraction, (respectively ω−ϕB−contraction, ω−ϕC−contraction, ω−ϕD−contraction), if
there exists a ϕA−comparison, (respectively ϕB−comparison, ϕC−comparison, ϕD−comparison)
function such that

p(Tx, Ty) ≤ ϕ(p(x, y)) (2.1)

for all x, y ∈M .

The author in [16] introduced the following,

Definition 2.6 Let (M,d) be a metric space with a ω−distance p on M and let T : M −→ M
be a mapping. Then

a.- An element x ∈M is ω−asymptotic regular for T if

lim
n→∞

p(Tnx, Tn+1x) = 0. (2.2)



b.- T is ω−asymptotic regular if all element x ∈M are ω−asymptotic regular for T .

c.- Two elements x and y of M are ω−asymptotic equivalent under T if

lim
n→∞

p(Tnx, Tny) = 0 (2.3)

Now we have the following result,

Proposition 2.1 Let (M,d) be a metric space and let T :M −→M be a ω − ϕD−contraction.
Then

a.- T is ω−asymptotic regular.

b.- Each two elements x, y ∈M are ω−asymptotic equivalent under T .

Proof

Since T is a ω − ϕD−contraction there exists a ω−distance p on M and ϕD−comparison
function such that

p(Tx, Ty) ≤ ϕ(p(x, y))

for all x, y ∈M .

a.- Let x ∈ M be an element of M . Let xn = Tnx, n ∈ N. Then we have p(xn, xn+1) ≤
ϕn[p(x, Tx)]. If follows that

lim
n→∞

p(Tnx, Tn+1x) = 0

for all x ∈M . Therefore T is a ω−asymptotic regular.

b.- Let x, y ∈M be. We have that

p(Tnx, Tny) ≤ ϕn[p(x, y)]

for n ∈ N, so
lim
n→∞

p(Tnx, T ny) = 0, n ∈ N

Therefore x and y are ω−asymptotic equivalent under T .

3 Main Results

In this section using the ω−distance p on (M,d) we give some generalizations of some well known
fixed point theorems.

The following result generalize the Boyd-Wong’s Theorem, [2].



Theorem 3.1

Let (M,d) be a complete metric space and let T : M −→ M be a ω − ϕA−contraction. Then T
has a unique fixed point.

Proof

Since T is a ω − ϕA−contraction there exists a ω−distance p ∈W0(M) and
ϕA−comparison function such that

p(Tx, Ty) ≤ ϕ(p(x, y)) (3.1)

for all x, y ∈M .

For an x ∈M we put xn = Tnx, n ∈ N and an = p(xn, xn+1). Then for n > 1,

an = p (Txn−1, Txn) ≤ ϕ(p(xn−1, xn)) = ϕ(an−1) < an−1 (3.2)

So that the sequence (an) is decreasing. Let a = lim
n→∞

an. Then a = 0, since that (3.2) implies

that a ≤ ϕ(a) which is a contradiction and consequently

lim
n→∞

p(xn, xn+1) = 0.

Thus, for ε > 0 there exists an n0 ∈ N such that ∀ n > n0

p(xn, xn+1) ≤ ε− ϕ(ε).

Put K(xn, ε) = {x ∈ M | p(x, xn) ≤ ε}. It is clear that K(xn, ε) ⊂ X is a closed set and for
any z ∈ K(xn, ε) we have

p(Tz, xn) ≤ p(Tz, Txn) + P (Txn, xn) ≤ ϕ(p(z, xn)) + p(xn+1, xn)

≤ ϕ(ε) + (ε− ϕ(ε)) = ε,

so K(xn, ε) is invariant under T , which implies that for m > n > n0, p(xn, xm) ≤ 2ε.

Consequently by lemma 1.2, (xn) is a Cauchy sequence in (M,d), hence there exists z ∈ M
such that xn → z.

Since p(xn, ∙) is a lower semicontinuous function

p(xn, z) ≤ lim inf
m→∞

p(xn, xm)

and it follows,
lim
n→∞

p(xn, z) = 0.

On the other hand,

p(xn, T z) = p(txn−1, T z) ≤ ϕ(p(xn−1, z)) < p(xn−1, z)



hence
lim
n→∞

p(xn, T z) = 0,

so by lemma 1.1, Tz = z.

Now p(z, z) = p(Tz, Tz) ≤ ϕ(p(z, z)) < p(z, z) and p(z, z) = 0.

Finally, if y = Ty then

p(z, y) = p(Tz, Ty) ≤ ϕ(p(z, y)) < p(z, y)

and p(z, y) = 0 so z = y, from lemma 1.1

In similar way we can show the following generalization of a Mukherjen’s theorem [18].

Theorem 3.2

Let (M,d) be a complete metric space and let T : M −→ M be a ω − ϕB−contraction mapping.
Then T has a unique fixed point.

Now we give a generalization of a Matkowski’s result [14].

Theorem 3.3

Let (M,d) be a complete metric space and let T : M −→ M be a ω − ϕD−contraction. Then T
has a unique fixed point.

Proof

Since T is ω − ϕD−contraction there exists p ∈ W (M) and a ϕD−comparison function such
that

p(Tx, Ty) ≤ ϕ(p(x, y)) (3.3)

for all x, y ∈M .

and define xn = Tnx, n ∈ N then by (3.3) we have

p(xn, xn+1) ≤ ϕ
n(p(x, Tx))

and hence limn→∞ p(xn, xn+1) = 0.

For m > n
lim
n→∞

sup
m>n
p(xn, xm) = 0

so by lemma 1.2 (xn) is a Cauchy sequence in (M,d).

In view of completeness of M there exists z ∈ M such that xn → z. The rest of the proof
follows since in the theorem 3.1.

The following result generalize



Corollary 3.1 Let (M,d) be a complete metric space. If a mapping T from M into itself is
a ω − B−contraction then T has a unique fixed point z ∈ M . Furthermore the point z satisfies
p(z, z) = 0.

Proof

Taking ϕ(t) = kt, 0 ≤ k ≤ 1, t ∈ R+ and since T is a ω − B−contraction there exists
p ∈W (M) such that

p(Tx, Ty) ≤ kp(x, y) (3.4)

for all x, y ∈M .

The conclusion follows from theorem 3.3.

Theorem 3.4

Let (M,d) be a complete metric space and T : M −→ M is a mapping such that for some
m ∈ N Tm is a ω − ϕD−contraction. Then T has a unique fixed point in M .

Proof

Since for some any m ∈ N, Tm is a ω − ϕD−contraction there exists p ∈ W (M) and a
ϕD−comparison mapping such that

p(Tmx, Tmy) ≤ ϕ(p(x, y)) (3.5)

for all x, y ∈M .

Thus by theorem 3.1 there exists a unique z ∈ M such that z = Tmz and it follows that
z = Tz.

The following result generalize the theorem, of Chu-Diaz, [7].

Corollary 3.2 Let (M,d) be a complete metric space and T :M −→M is a mapping such that
for some m ∈ N, Tm is a ω −B−contraction. Then T has a unique fixed point in M .

Proof

It is clear.

The following result is a generalization of Browder’s fixed point theorem [3].

Theorem 3.5

Let (M,d) be a complete metric space and let T : M −→ M be a ω − ϕC−contraction. Then T
has a unique fixed point.

Proof

Since T is a ω−ϕC−contraction there exists p ∈W (M) and a ϕC−comparison function such
that

p(Tx, Ty) ≤ ϕ(p(x, y)) (3.6)



for all x, y ∈M .

By lemma 2.1 we have that

lim
n→∞

ϕn(t) = 0 for n ∈ N and t ∈ R+.

Now we apply theorem 3.3 to get the conclusion.

Now we consider the following

Example 3.1 Let M = [0, 1] ⊆ R be a complete metric space with the usual metric. We define a
ω−distance p on M by

p(x, y) =






0 if x = 0
y − x if 0 < x ≤ y
3x− 3y if x > y

for all x, y ∈M .

Let ϕ : R+ −→ R+ be a function defined by

ϕ(t) =






0 if t = 0

1

n+ 1
if

1

n+ 1
< t ≤

1

n
, n = 1, . . .

It is clear that,

a.- ϕ is increasing function in R+.

b.- For all t > 0, ϕ(t) < t.

c.- lim
n→∞

ϕn(t) = 0 for t > 0.

d.- ϕ is not upper semicontinuous from the right.

e.- ϕ is not continuous from the right.

Thus we have that, ϕ is a ϕD−comparison function but is not ϕA−comparison function neither
ϕB−comparison function.

Suppose that T :M −→M is a mapping which satisfies (3.3) and we see that all assumptions
of theorem 3.3 are full filled and this theorem generalize the theorem 3.1 since ϕ is not upper
semicontinuous.
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