Fixed Point's Theorems for $\omega-\varphi$ - Contractions

Jose R. Morales

Notas de Matemática
Serie: Pre-Print
No. 230

Mérida - Venezuela
2004

Fixed Point's Theorems for $\omega-\varphi$ - Contractions

Jose R. Morales

Using the notion of ω-distance on the metric space, (M, d), we get some generalizations of results of Browder [3], Boyd-wong [2], Mukherjea [18] and Matkowski [14].

Introduction

In 1996, O. Kada- T. Suzuki- W. Takahashi [13] introduced the concept of ω-distance on a metric space and using this notion they improved the Caristi fixed point theorem [4], Ekeland's ε-Variational Principle [10] and proved a fixed point theorem in a complete metric space which generalize the fixed point theorems of Subramanyan [24], Kannan [12] and Ciric [5].
T. Suzuki- W. Takahashi [25] using the notion of ω-distance on a metric space proved a fixed point theorem for set-valued mapping a complete metric space which are related which Nadler's fixed point theorem [19] and Edelstein's theorem [9].
T. Suzuki [26] using the ω-distance gave another fixed point theorems which are generalizations of the Banach Contraction Principle and Kanan's fixed point theorem.
Y. J. Cho - N. J. Huang - L. Xiang [6] introduced new classes of generalized contractive type set-valued mappings and weakly dissipative mappings and they proved some coincidence theorems for these mappings by using the concept of ω-distance.
M. Hiromichi [11] in his thesis used the notion of ω-distance and the concept of fixed point to characterize the mathematical structure of space metric completeness and finite dimensionality of Banach spaces.

The author in [16] and [17] gave other results referent to fixed point theorems.
Recently S. Park [20], using the ω-distance concept, improved the equivalent formulation of Ekeland's Principle in various aspects and moreover, as a simple application, he gave an extended form of a fixed point theorem of Downing-Kirk [8].

Finally in this article our end is to generalize some fixed point theorems for φ-contractions using the concept of ω-distance on a metric space.

1 Preliminares

Throughout this paper, we denote by \mathbb{N} the set of positive integers, by \mathbb{R} the set of real number and $R_{+}=[0,+\infty)$.

Definition 1.1 Let (M, d) be a metric space. Then a function $p: M \times M \longrightarrow[0,+\infty)$ is called a ω-distance on M if the following conditions are satisfied:
ω 1.- $p(x, z) \leq p(x, y)+p(y, z)$ for any $x, y, z \in M$.
ω 2.- For any $x \in M, p(x, \cdot): M \longrightarrow[0,+\infty)$ is a lower semicontinuous function.
ω 3.- For any $\varepsilon>0$ exists $\delta=\delta(\varepsilon)>0$ such that $p(z, x) \leq \delta$ and $p(z, y) \leq \delta$ imply that $d(x, y) \leq \varepsilon$.

The metric d is a ω-distance on M. Some other examples of ω-distances are given in [13], [25] and [26].

Notation 1.1 By $W(M)$, we denote the set of all ω-distances p on M and it is clear that $W(M) \neq \emptyset$.

In [13] we found an example which show that p is not symetric, $p(x, y) \neq p(y, x)$ for all $x, y \in M$, so we denote by $W_{0}(M)$, the set of all ω-distances p on M that are symetric. It is clear that $W_{0}(M) \neq \emptyset$.

The following results are crucial in the proof of our theorems. The next result was proved in [13].

Lemma 1.1 Let (M, d) be a metric space and let p be a ω-distance on M. Let $\left(\alpha_{n}\right)$ and $\left(\beta_{n}\right)$ be sequences in $[0,+\infty)$ converging to 0 , and let $x, y, z \in M$. Then the following hold:
a.- If $p\left(x_{n}, y\right) \leq \alpha_{n}$ and $p\left(x_{n}, z\right) \leq \beta_{n}$ for any $n \in \mathbb{N}$ then $y=z$. In particular, if $p(x, y)=0$ and $p(x, z)=0$ then $y=z$.
b.- If $p\left(x_{n}, y_{n}\right) \leq \alpha_{n}$ and $p\left(x_{n}, z\right) \leq \beta_{n}$ for any $n \in \mathbb{N}$, then (y_{n}) converge to z.
c.- If $p\left(x_{n}, x_{m}\right) \leq \alpha_{n}$ for any $n, m \in \mathbb{N}$ with $m>n$, then $\left(x_{n}\right)$ is a Cauchy sequence in (M, d).
d.- If $p\left(y, x_{n}\right) \leq \alpha_{n}$ for any $n \in \mathbb{N}$ then $\left(x_{n}\right)$ is a Cauchy sequence in (M, d).

The following result can be found in [26].
Lemma 1.2 Let (M, d) be a metric space, let p be a ω-distance on M and let $\left(x_{n}\right)$ be a sequence in M.

Suppose that

$$
\lim _{n \rightarrow \infty} \sup _{m>n}\left\{p\left(x_{n}, x_{m}\right), p\left(x_{m}, x_{n}\right)\right\}=0 .
$$

Then $\left(x_{n}\right)$ is a Cauchy sequence in M. In particular the following hold:
a.- If $\lim _{n \rightarrow \infty} \sup _{m>n} p\left(x_{n}, x_{m}\right)=0$ then $\left(x_{n}\right)$ is a Cauchy sequence in M.
b.- If $\lim _{n \rightarrow \infty} \sup _{m>n} p\left(x_{m}, x_{n}\right)=0$ then $\left(x_{n}\right)$ is a Cauchy sequence in M.

The following definition is due to T. Suzuki - W. Takahashi [25].
Definition 1.2 Let (M, d) be a metric space and let T be a mapping from M into itself. We say that T is a ω - B-contraction if there exists $a \omega$-distance p on M and $k \in \mathbb{R}, 0 \leq k \leq 1$ such that

$$
\begin{equation*}
p(T x, T y) \leq k p(x, y) \tag{1.1}
\end{equation*}
$$

for all $x, y \in M$.

It is clear that if $p=d$ we get that T is a Banach contraction, (in short, B-contraction). In [25] we found the following result.

Theorem 1.1

Let (M, d) be a complete metric space. If a mapping T from M into itself is a ω - B-contraction then T has a unique fixed point $x_{0} \in M$. Moreover the x_{0} satisfies $p\left(x_{0}, x_{0}\right)=0$.

It is clear that theorem 1.1 generalize the well known Banach contraction principle and for another similar results see [16].

In [17] the author introduced the following,
Definition 1.3 Let (M, d) be a metric space and let T be a mapping from M into itself. We say that T is $a \omega-B R$-contraction if there exists a ω-distance p on M and a monotone decreasing function $\alpha: \mathbb{R}_{+} \longrightarrow[0,1)$ tal que

$$
\begin{equation*}
p(T x, T y) \leq \alpha(p(x, y)) p(x, y) \tag{1.2}
\end{equation*}
$$

for all $x, y \in M$.

Remark 1.1 1.- If $\alpha(t)=k$ for all $t \in \mathbb{R}$ where $0 \leq k \leq 1$ we get (1.1).
2.- If $p=d$ then we get

$$
\begin{equation*}
d(T x, T y) \leq \alpha(d(x, y)) d(x, y) \tag{1.3}
\end{equation*}
$$

for all $x, y \in M$, which is the Rakotch's condition, [21].
The author in [17] proved the following,

Theorem 1.2

Let (M, d) be a complete metric space and let $T: M \longrightarrow M$ be a $\omega-B R$-contraction then there exists a unique $z \in M$ such that $z=T z$ and $p(z, z)=0$.

$2 \omega-\varphi$-contractions

Various concepts of comparison functions have been defined and intensevely studied in connection with the contraction mappings, see Rus, A. I. [22], Berinde, V. [1]. We are going to use the notions of φ-comparison function to define the concept of $\omega-\varphi$-contractions.

Definition 2.1 (Boyd-Wong - [23)] A function $\varphi: \mathbb{R}_{+} \longrightarrow \mathbb{R}_{+}$is called φ_{A}-comparison function if:

A1.- φ is upper semicontinuous function.
A2.- For each $t>0, \varphi(t)<t$.
Definition 2.2 (Mukherjea - [18)] A mapping $\varphi: \mathbb{R}_{+} \longrightarrow \mathbb{R}_{+}$is called φ_{B}-comparison function if:

B1.- φ is a right continuous function.
B2.- For each $t>0, \varphi(t)<t$.

It is well known that if $\varphi: \mathbb{R}_{+} \longrightarrow \mathbb{R}_{+}$is monotone increasing function then φ right upper semicontinuous iff φ is right continuous.

Therefore if $\varphi: \mathbb{R}_{+} \longrightarrow \mathbb{R}_{+}$is monotone increasing function then the definition 2.1 is equivalent to definition 2.2.

Definition 2.3 (Browder) [3] A mapping $\varphi: \mathbb{R}_{+} \longrightarrow \mathbb{R}_{+}$is called a φ_{C}-comparison if:
C1.- φ is right continuous.
C2.- For each $t>0, \varphi(t)<t$.
C3.- φ is monotone increasing.
Thus definitions 2.1, 2.2 and 2.3 are equivalent if $\varphi: \mathbb{R}_{+} \longrightarrow \mathbb{R}_{+}$is a monotone increasing function.

Lemma 2.1 If $\varphi: \mathbb{R}_{+} \longrightarrow \mathbb{R}_{+}$is a φ_{C}-comparison function then $\lim _{n \rightarrow \infty} \varphi^{n}(t)=0$ for all $n \in \mathbb{N}$ and for each $t>0$.

Proof
See [22].

Definition 2.4 (Matkowski - [15)] A mapping $\varphi: \mathbb{R}_{+} \longrightarrow \mathbb{R}_{+}$is called a φ_{D}-comparison function if:

D1.- φ is monotone increasing.
D2.- $\lim _{n \rightarrow \infty} \varphi^{n}(t)=0$ for each $t>0, n \in \mathbb{N}$.

From lemma 2.1 it is clear that if $\varphi: \mathbb{R}_{+} \longrightarrow \mathbb{R}_{+}$is a φ_{C}-comparison function then φ is φ_{D}-comparison function.

Lemma 2.2 Let $\varphi: \mathbb{R}_{+} \longrightarrow \mathbb{R}_{+}$be a φ_{D}-comparison function then
a.- $\varphi(t)<t$ for all $t>0$.
b.- $\varphi(0)=0$.

Proof
See [22].

Example 2.1 1.- Let $\varphi: \mathbb{R}_{+} \longrightarrow \mathbb{R}_{+}$be a mapping defined by $\varphi(t)=a t, 0 \leq a \leq 1, t \in \mathbb{R}_{+}$. It is clear that φ is a $\varphi_{A}-\left(\varphi_{B}, \varphi_{C}, \varphi_{D}\right)$-comparison function.
2.- Let $\varphi: \mathbb{R}_{+} \longrightarrow \mathbb{R}_{+}$be a function defined by $\varphi(t)=\frac{t}{1+t}$, $t \in \mathbb{R}_{+}$. Also φ is $\varphi_{A}-$ $\left(\varphi_{B}, \varphi_{C}, \varphi_{D}\right)$-comparison function.

Now we introduce the notions of $\omega-\varphi$-contractions which generalize the well known φ-contraction: Definition 2.5 Let (M, d) be a metric space. A mapping $T: M \longrightarrow M$ is called a $\omega-$ $\varphi_{A}-$ contraction, (respectively $\omega-\varphi_{B}-$ contraction, $\omega-\varphi_{C}-$ contraction, $\omega-\varphi_{D}-$ contraction), if there exists a φ_{A}-comparison, (respectively φ_{B}-comparison, φ_{C}-comparison, φ_{D}-comparison) function such that

$$
\begin{equation*}
p(T x, T y) \leq \varphi(p(x, y)) \tag{2.1}
\end{equation*}
$$

for all $x, y \in M$.

The author in [16] introduced the following,
Definition 2.6 Let (M, d) be a metric space with a ω-distance p on M and let $T: M \longrightarrow M$ be a mapping. Then
a.- An element $x \in M$ is ω-asymptotic regular for T if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} p\left(T^{n} x, T^{n+1} x\right)=0 \tag{2.2}
\end{equation*}
$$

b.- T is ω-asymptotic regular if all element $x \in M$ are ω-asymptotic regular for T.
c.- Two elements x and y of M are ω-asymptotic equivalent under T if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} p\left(T^{n} x, T^{n} y\right)=0 \tag{2.3}
\end{equation*}
$$

Now we have the following result,
Proposition 2.1 Let (M, d) be a metric space and let $T: M \longrightarrow M$ be $a \omega-\varphi_{D}$-contraction. Then
a.- T is ω-asymptotic regular.
b.- Each two elements $x, y \in M$ are ω-asymptotic equivalent under T.

Proof
Since T is a $\omega-\varphi_{D}$-contraction there exists a ω-distance p on M and φ_{D}-comparison function such that

$$
p(T x, T y) \leq \varphi(p(x, y))
$$

for all $x, y \in M$.
a.- Let $x \in M$ be an element of M. Let $x_{n}=T^{n} x, n \in \mathbb{N}$. Then we have $p\left(x_{n}, x_{n+1}\right) \leq$ $\varphi^{n}[p(x, T x)]$. If follows that

$$
\lim _{n \rightarrow \infty} p\left(T^{n} x, T^{n+1} x\right)=0
$$

for all $x \in M$. Therefore T is a ω-asymptotic regular.
b.- Let $x, y \in M$ be. We have that

$$
p\left(T^{n} x, T^{n} y\right) \leq \varphi^{n}[p(x, y)]
$$

for $n \in \mathbb{N}$, so

$$
\lim _{n \rightarrow \infty} p\left(T^{n} x, T^{n} y\right)=0, \quad n \in \mathbb{N}
$$

Therefore x and y are ω-asymptotic equivalent under T.

3 Main Results

In this section using the ω-distance p on (M, d) we give some generalizations of some well known fixed point theorems.

The following result generalize the Boyd-Wong's Theorem, [2].

Theorem 3.1

Let (M, d) be a complete metric space and let $T: M \longrightarrow M$ be a $\omega-\varphi_{A}$-contraction. Then T has a unique fixed point.

Proof
Since T is a $\omega-\varphi_{A}$-contraction there exists a ω-distance $p \in W_{0}(M)$ and φ_{A}-comparison function such that

$$
\begin{equation*}
p(T x, T y) \leq \varphi(p(x, y)) \tag{3.1}
\end{equation*}
$$

for all $x, y \in M$.
For an $x \in M$ we put $x_{n}=T^{n} x, n \in \mathbb{N}$ and $a_{n}=p\left(x_{n}, x_{n+1}\right)$. Then for $n>1$,

$$
\begin{equation*}
a_{n}=p\left(T x_{n-1}, T x_{n}\right) \leq \varphi\left(p\left(x_{n-1}, x_{n}\right)\right)=\varphi\left(a_{n-1}\right)<a_{n-1} \tag{3.2}
\end{equation*}
$$

So that the sequence $\left(a_{n}\right)$ is decreasing. Let $a=\lim _{n \rightarrow \infty} a_{n}$. Then $a=0$, since that (3.2) implies that $a \leq \varphi(a)$ which is a contradiction and consequently

$$
\lim _{n \rightarrow \infty} p\left(x_{n}, x_{n+1}\right)=0 .
$$

Thus, for $\varepsilon>0$ there exists an $n_{0} \in \mathbb{N}$ such that $\forall n>n_{0}$

$$
p\left(x_{n}, x_{n+1}\right) \leq \varepsilon-\varphi(\varepsilon) .
$$

Put $K\left(x_{n}, \varepsilon\right)=\left\{x \in M \mid p\left(x, x_{n}\right) \leq \varepsilon\right\}$. It is clear that $K\left(x_{n}, \varepsilon\right) \subset X$ is a closed set and for any $z \in K\left(x_{n}, \varepsilon\right)$ we have

$$
\begin{aligned}
p\left(T z, x_{n}\right) & \leq p\left(T z, T x_{n}\right)+P\left(T x_{n}, x_{n}\right) \leq \varphi\left(p\left(z, x_{n}\right)\right)+p\left(x_{n+1}, x_{n}\right) \\
& \leq \varphi(\varepsilon)+(\varepsilon-\varphi(\varepsilon))=\varepsilon,
\end{aligned}
$$

so $K\left(x_{n}, \varepsilon\right)$ is invariant under T, which implies that for $m>n>n_{0}, p\left(x_{n}, x_{m}\right) \leq 2 \varepsilon$.
Consequently by lemma $1.2,\left(x_{n}\right)$ is a Cauchy sequence in (M, d), hence there exists $z \in M$ such that $x_{n} \rightarrow z$.

Since $p\left(x_{n}, \cdot\right)$ is a lower semicontinuous function

$$
p\left(x_{n}, z\right) \leq \liminf _{m \rightarrow \infty} p\left(x_{n}, x_{m}\right)
$$

and it follows,

$$
\lim _{n \rightarrow \infty} p\left(x_{n}, z\right)=0
$$

On the other hand,

$$
p\left(x_{n}, T z\right)=p\left(t x_{n-1}, T z\right) \leq \varphi\left(p\left(x_{n-1}, z\right)\right)<p\left(x_{n-1}, z\right)
$$

hence

$$
\lim _{n \rightarrow \infty} p\left(x_{n}, T z\right)=0
$$

so by lemma 1.1, $T z=z$.
Now $p(z, z)=p(T z, T z) \leq \varphi(p(z, z))<p(z, z)$ and $p(z, z)=0$.
Finally, if $y=T y$ then

$$
p(z, y)=p(T z, T y) \leq \varphi(p(z, y))<p(z, y)
$$

and $p(z, y)=0$ so $z=y$, from lemma 1.1

In similar way we can show the following generalization of a Mukherjen's theorem [18].

Theorem 3.2

Let (M, d) be a complete metric space and let $T: M \longrightarrow M$ be a $\omega-\varphi_{B}$-contraction mapping. Then T has a unique fixed point.

Now we give a generalization of a Matkowski's result [14].

Theorem 3.3

Let (M, d) be a complete metric space and let $T: M \longrightarrow M$ be a $\omega-\varphi_{D}$-contraction. Then T has a unique fixed point.

Proof
Since T is $\omega-\varphi_{D}$-contraction there exists $p \in W(M)$ and a φ_{D}-comparison function such that

$$
\begin{equation*}
p(T x, T y) \leq \varphi(p(x, y)) \tag{3.3}
\end{equation*}
$$

for all $x, y \in M$.
and define $x_{n}=T^{n} x, n \in \mathbb{N}$ then by (3.3) we have

$$
p\left(x_{n}, x_{n+1}\right) \leq \varphi^{n}(p(x, T x))
$$

and hence $\lim _{n \rightarrow \infty} p\left(x_{n}, x_{n+1}\right)=0$.
For $m>n$

$$
\lim _{n \rightarrow \infty} \sup _{m>n} p\left(x_{n}, x_{m}\right)=0
$$

so by lemma $1.2\left(x_{n}\right)$ is a Cauchy sequence in (M, d).
In view of completeness of M there exists $z \in M$ such that $x_{n} \rightarrow z$. The rest of the proof follows since in the theorem 3.1.

The following result generalize

Corollary 3.1 Let (M, d) be a complete metric space. If a mapping T from M into itself is $a \omega-B$-contraction then T has a unique fixed point $z \in M$. Furthermore the point z satisfies $p(z, z)=0$.

Proof
Taking $\varphi(t)=k t, 0 \leq k \leq 1, t \in \mathbb{R}_{+}$and since T is a $\omega-B$-contraction there exists $p \in W(M)$ such that

$$
\begin{equation*}
p(T x, T y) \leq k p(x, y) \tag{3.4}
\end{equation*}
$$

for all $x, y \in M$.
The conclusion follows from theorem 3.3.

Theorem 3.4

Let (M, d) be a complete metric space and $T: M \longrightarrow M$ is a mapping such that for some $m \in \mathbb{N} T^{m}$ is a $\omega-\varphi_{D}$-contraction. Then T has a unique fixed point in M.

Proof
Since for some any $m \in \mathbb{N}, \quad T^{m}$ is a $\omega-\varphi_{D}$-contraction there exists $p \in W(M)$ and a φ_{D}-comparison mapping such that

$$
\begin{equation*}
p\left(T^{m} x, T^{m} y\right) \leq \varphi(p(x, y)) \tag{3.5}
\end{equation*}
$$

for all $x, y \in M$.
Thus by theorem 3.1 there exists a unique $z \in M$ such that $z=T^{m} z$ and it follows that $z=T z$.

The following result generalize the theorem, of Chu-Diaz, [7].
Corollary 3.2 Let (M, d) be a complete metric space and $T: M \longrightarrow M$ is a mapping such that for some $m \in \mathbb{N}, T^{m}$ is a $\omega-B$-contraction. Then T has a unique fixed point in M.

Proof
It is clear.

The following result is a generalization of Browder's fixed point theorem [3].

Theorem 3.5

Let (M, d) be a complete metric space and let $T: M \longrightarrow M$ be a $\omega-\varphi_{C}-$ contraction. Then T has a unique fixed point.

Proof
Since T is a $\omega-\varphi_{C}$-contraction there exists $p \in W(M)$ and a φ_{C}-comparison function such that

$$
\begin{equation*}
p(T x, T y) \leq \varphi(p(x, y)) \tag{3.6}
\end{equation*}
$$

for all $x, y \in M$.
By lemma 2.1 we have that

$$
\lim _{n \rightarrow \infty} \varphi^{n}(t)=0 \quad \text { for } n \in \mathbb{N} \text { and } t \in \mathbb{R}_{+}
$$

Now we apply theorem 3.3 to get the conclusion.

Now we consider the following
Example 3.1 Let $M=[0,1] \subseteq \mathbb{R}$ be a complete metric space with the usual metric. We define a ω-distance p on M by

$$
p(x, y)=\left\{\begin{array}{cll}
0 & \text { if } & x=0 \\
y-x & \text { if } & 0<x \leq y \\
3 x-3 y & \text { if } & x>y
\end{array}\right.
$$

for all $x, y \in M$.
Let $\varphi: \mathbb{R}_{+} \longrightarrow \mathbb{R}_{+}$be a function defined by

$$
\varphi(t)=\left\{\begin{array}{cl}
0 & \text { if } t=0 \\
\frac{1}{n+1} & \text { if } \frac{1}{n+1}<t \leq \frac{1}{n}, n=1, \ldots
\end{array}\right.
$$

It is clear that,
a.- φ is increasing function in \mathbb{R}_{+}.
b.- For all $t>0, \varphi(t)<t$.
c.- $\lim _{n \rightarrow \infty} \varphi^{n}(t)=0$ for $t>0$.
d.- φ is not upper semicontinuous from the right.
e.- φ is not continuous from the right.

Thus we have that, φ is a φ_{D}-comparison function but is not φ_{A}-comparison function neither φ_{B}-comparison function.

Suppose that $T: M \longrightarrow M$ is a mapping which satisfies (3.3) and we see that all assumptions of theorem 3.3 are full filled and this theorem generalize the theorem 3.1 since φ is not upper semicontinuous.

References

[1] Berinde, V., ϕ-monotone and ϕ-contractive operators in Hilbert space, Studia Univ. BaberBolyai, Mathematica, XXXVIII, 4, 1993.
[2] Boyd, D. W. - Wong, J. S., On linear contractions. Proc. A.M.S. 20, (1969), 458-464.
[3] Browder, F. E., On the convergence of successive approximations for nonlinear functional equations, Ind. Math. 30, (1974), 267-273.
[4] Caristi, J., Fixed point theorems for mappings satisfying in wards conditions, Trans. A.M.S., 215, (1976), 241-251.
[5] Ciric, L. J., A generalization of Banach's contraction principle, Proc. A.M.S. 45, (1974), 267-273.
[6] Cho, Y. J. - Huang, N. J. - Xiang, L. Coincidence theorems in complete metric spaces, Tamkany Journ. of Math., 30, 1, (1999), 1-7.
[7] Chu, S. C. - Diaz, J. B., Remarks on a generalization of Banach's principle of contraction mappings, J. Math. Anal. Appl. 11, (1965), 440-446.
[8] Downing, D. - Kirk, W. A., A generalization of Caristi's theorem with applications to nonlinear mapping theory, Pacif. Jour. Math., 69, (1977), 339-346.
[9] Edelstein, M., An extension of Banach's contraction principle, Proc. A.M.S., 18, (1969), 7-10.
[10] Ekeland, I., Nonconvex minimization problems, Bull. A.M.S. 1, (1979), 443-474.
[11] Hiromiche, M., Fixed point theorems and characterizations of spaces, Thesis, Department of information Science, Tokyo Institute of Technology, 1997.
[12] Kannan, R., Some results on fixed points-II, American Math. Monthly, 76, (1969), 405-408.
[13] Kada, O. - Suzuki, T. - Takahashi, W., Nonconvex minimization theorems and fixed point theorems in complete metric spaces, Math. Japonica, 44, 2, (1996), 381-391.
[14] Matkowski, J., Integrable solutions of functional equations, Dissertationes Mathematicae, 127, Warszawa, 1975.
[15] Matkowski, J. - Misu, J., Examples and remarks to a fixed point theorem, Facta. Universitatis, (NIS), Ser. Math. Inf. 1, (1986), 53-56.
[16] Morales, J. R., Generalizations of some fixed point theorems, Preprint Notas de Matemáticas.
[17] Morales, J. R., Generalizations of Rakotch's fixed point theorem, (to appear).
[18] Mukherjea, A., Contractions and completely continuous mappings, nonlinear an theory, Math. and Appl. 1,3, (1977), 235-247.
[19] Nadler, S. B., Multi-valued contraction mappings, Pacif. Journ. Math., 30, (1969), 475-488.
[20] Park, S., On generalizations of the Ekeland-type variational principles, Nonlinear analysis, 39, (2000), 881-889.
[21] Rakotch, E., A note on contractive mappings, Proc. A.M.S. 13, (1962), 459-465.
[22] Rus, I. A., Seminar on fixed point theory, Preprint 3, (1983), 1-130, Baber-Bolyai University, Faculty of Mathematics.
[23] Shiogi, N. - Suzuki, T. - Takahashi, W., Contractive mappings, Kannan mappings, and metric completeness, Proc. A.M.S., 126, 10, (1998), 3117-3124.
[24] Subrahmanyan, P. V., Remarks on some fixed point theorems related to Banach's contraction principle, J. Math. Phys. Sci. 8, (1974), 445-457.
[25] Suzuki, T. - Takahashi, W., Fixed point theorems and characterizations of metric completeness, Top. Meth. in nonlinear Anal., 8, (1996), 371-382.
[26] Suzuki, T., Several fixed point theorems in complete metric spaces, Yukohama Math. Journ. 44, (1997), 61-72.

José R. Morales M.
Universidad de los Andes
Facultad de Ciencias
Departamento de Matemáticas
Grupo de Análisis Funcional
Mérida - Edo. Mérida - Venezuela.

