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Abstract

The notion of a simple spectral measure is introduced and several characterizations of a
simple spectral measure are given. A classical result of von Neumann on the double commu-
tant of the range of the resolution of the identity of a self-adjoint operator on a separable
Hilbert space is generalized to spactral measures with the CGS-property. For such spectral
measures some further characterizations of simplicity are obtained, which include one derived
from the said generalization of von Neumann’s result.

1. Introduction

For self-adjoint operators in separable Hilbert spaces the notion of simple spectrum was giv-
en by Stone [16] in terms of the multiplicity functions m, and m. associated with the operator,
while it was given differently by Akhiezer and Glazman [1] in terms of the total multiplicity of
the operator. On the other hand, for such operators T in arbitrary Hilbert spaces H, Wecken
[17] and Plesner and Rohlin [13] defined the concept using the measures p(z) = ||E(-)z]|? and
closed subspaces [E(6)z : § € B(o(T))],z € H, where E(-) is the resolution of the identity of
T. Later, in [15], Segal gave the concept for a bounded self-adjoint operator T in an arbitrary
Hilbert space in terms of the W*-algebra generated by T'. Though the concept of simple spec-
trum is defined differently, all these definitions are equivalent (see 3.1(b) and 5.1).

In [16] Stone studied the problem of unitary invariance of self-adjoint operators in separable
Hilbert spaces, while Dunford and Schwartz [4] studied it for self-adjoint and bounded normal
operators in such spaces. In our recent work [11] we extended their results to spectral measures
with the CGS-property and in particular, to unbounded normal operators in separable Hilbert
spaces. Using some rudiments of type I von Neumann algebras along with the spectral multi-
plicity theory of Halmos [5], we have also given in [8-12] a unified approach to the study of the
above problem for arbitrary spectral measures and for spectral measures with the CGS-property.

Making use of the results from these papers, we give here the notions of simple spectral measures

1Supported by the C.D.C.H.T. project C-586 of the Universidad de los Andes, Mérida, Venezuela and the
international cooperation project between CNR-Italy and CONICIT-Venezuela.
1991 AMS subject classification : 47B15
Key words : simple spectral measures, normal operator with simple spectrum, total multiplicity, total H-
multiplicity, UH-multiplicity, maximal abelian von Neumann algebras.



and normal operators with simple spectra and obtain several characterizations of simplicity of a
spectral measure E(-) (resp. of the spectrum of a normal operator in a Hilbert space H) when
E(-) is arbitrary and when E(-) has the CGS-property (resp. when H is arbitrary and when
H is separable). In this context, we generalize the theorem of von Neumann given in §129 of
Riesz and Nagy [14] to spectral measures with the CGS-property (see Theorem 4.1) and deduce
Lemma 1.2 of Segal [15] as a corollary of Theorem 5.1.

2. Preliminaries

In this section we fix notation and terminology. For convenience we recall some definitions

and results from the literature, especially from [8-12].

S denotes a o-algebra of subsets of a set X (# @). H is a Hilbert space of arbitrary dimension
(> 0) unless otherwise stated and E(-) is a spectral measure on § with values in projections of
H.If X C H, then [X] denotes the closed subspace spanned by X. For z € H and X C H, let
Zg(z) =[E(o)z : 0 € S] and Zg(X) = [E(o)w: w € X, o € §]. The orthogonal direct sum of
closed subspaces of H and that of a family of Hilbert spaces are denoted by &.

An isomorphism between two Hilbert spaces is an inner-product preserving onto linear map.
An operator T on H is a linear transformation with domain and range in H and is not neces-

sarily bounded.

L denotes the set of all finite (positive) measures on §. For z € H, p(z) denotes the measure

JE(-)z||?. For u,v € T, we write u << v (or v >> p) if u(E) = 0 whenever v(E) = 0.

DEFINITION 2.1 ([11]). E(-) is said to have the CGS-property in H if there is an utmost
countable subset X of H such that Zg(X) = H.

DEFINITION 2.2 ([11]). Suppose (z;)Y is a finite or an infinite sequence of non-zero vectors
N N

in H such that (i) H = & Zg(z;), and (ii) p(z1) >> p(z3) >> .... Then H = & Zg(z;) is

called an OSD of H relative to E(-).

PROPOSITION 2.1 ([11]). E(-) has the CGS-property in H if and only if H admits an OSD
N

relative to E(-) . If H = © Zg(z;) is an OSD of H relative to E(-) , then N is unique and N

is called the OSD-multiplicity of E(-). When N = oo, the OSD-multiplicity of E(-) is said to be

countably infinite.



DEFINITION 2.4 ([10]). An OSD H = .E:é Zg(z;) is called a uniform OSD if p(z1) =
p(z2) =..., where, for p,v € L, we write p=v if p << v and v << p.

PROPOSITION 2.2 ([10]).If H admits a uniform OSD relative to E(-) , then every OSD of
H relative to E(-) is a uniform OSD. In that case, the OSD-multiplicity of E(-) is referred to
as the UOSD-multiplicity of E(-). .

DEFINITION 2.5 ([11]). Suppose (u; N is a finite or an infinite sequence of non-null ele-
ments in ¥ such that py >> p, >> .... If there is an isomophism U : H - K = ',é:BI La(u;) such
that

UECUMf) = (x, /), () € K,
then U is called an OSR of H relative to E(-) and N is called the OSR-multiplicity of E(:) -
since it i3 the same for all OSRs of H relative to E(-).

PROPOSITION 2.3 ([11]). H has an OSR relative to E(-) if and only if E(-) has the CGS-
property in H.

DEFINITION 2.8 ([11]). Suppose E(-) has the CGS-property in H. If there ezists a finite
dimensional generating subspace Y in H (that is, dim Y < 0o and Zg(Y') = H ), then the min-
imum of the dimensions of all generating subspaces of H is called the total multiplicity of E(-).
If E(-) does not have any finite dimensional generating subspace, then the total multiplicity of
E(.) is said to be countably infinite.

PROPOSITION 2.4 ([11]). Suppose E(-) has the CGS-property in H. Then its OSD-
multiplicity, OSR-multiplicity and total multiplicity coincide.

DEFINITION 2.7([11]). Suppose X is a Hausdorff space and S = B(X), the o-algebra of
all Borel subsets of X. Suppose E(-) has the CGS-property in H. We define pp = {t € X :
E({t}) # 0} and cg = X\pg. Let M(E) = E(pg)H and N(E) = E(cg)H = H © M(E). Let
N(E)= 8 Zg(y;) be an OSD of N(E) relative to E(-)E(cg).

The multiplicity function m, on X relative to E(-) is defined by m,(t) = 0 if t € pg and
my(t) = dim E({t})H if t € pg. The multiplicity function m. on X relative to E(-) is defined

as follows:



(i) mc(t) = 0 sf N(E) = {0}, or if N(E) # {0} and there exists an open set U > t such that
E(U)n =0;

(i) mc(t) = n € IN if yi do ezist for k = 1,2,...,n and for every open set U > t, E(U)yx # 0
for k = 1,2,....n while N = n or yp41 does ezist and E(U)yny1 = 0 for some open set
U>st;

(111) m(t) = 0o if N = 0o and for every open set U 3 t, E(U)yx # 0 for each k € IN.

PROPOSITION 2.5 ([5]). Let E(-) have the CGS-property in H and let S = B(X'), where X
is a Hausdorff space. Then the total multiplicity of E(.) is equal to supicx(my(t), m(t)).

We now proceed to give some definitions and results from [5,8,9 and 12], along with some

rudiments of von Neumann algebras from [3,7].

Let W be the von Neumann algebra generated by the range of E(-). The commutant of W
is denoted by W'. If W' = £, & W’'Q,, is the type I, direct sum decomposition of W’ (Dixmier
[3] uses the notation II and the terminology product), then the central projections Q,(# 0) are
unique and W’Q,, is of type I; in the sequel, @, will denote these non-zero central projec-
tions of W’. If P’ is a projection in W', then the central support of P’ is denoted by Cp:. As

is customary in the theory of von Neumann algebras, a projection is also identified with its range.

Recall that a projection P’ € W’ is said to be an abelian projection if P'W’P’ is abelian.
As observed in [9], the projection P’ € W' is abelian if and only if P’ is a row projection in the
sense of Halmos [5] and the column C(P’) generated by P’ in the sense of [5] is the same as the
central support Cps of P'.

The abelian von Neumann algebra W is said to be maximal abelian if W/ = W. The algebra
W is said to have a generating vector z € H if [Wz] = [Tz : T € W] = H and a separating
vector y € H if Ty = 0 for some T' € W implies T = 0. A projection P’ in W’ said to be
cyclic (in W’) if there exists a vector z € H such that [Wz] = P'. A projection P in a von
Neumann algebra R is said to be countably decomposable (in R) if every orthogonal family of
non-zero subprojections of P in R is utmost countable. The von Neumann algebra R is said
to be countably generated if there exists an utomst countable set &’ of vectors in H such that
[Tz:TeR,z€ X]=H.



For the rest of the terminology in the theory of von Neumann algebras we follow Dixmier

[3]. For an easily accessible account of von Neumann algebras the reader is referred to [7].

PROPOSITION 2.6 ([7, Lemma 3.3.9]).Let P’ be an abelian projection in W'. If Cp: is
countably decomposable in W, then P' is cyclic (in W').

DEFINITION 2.8. For a projection P in W, its multiplicity (resp. uniform multiplicity) in
the sense of Halmos [5, pp.100-101] is referred to as its H-multiplicity (resp. UH-multiplicity)
relative to E(-).

As was observed in [9], Theorem 64.4 of Halmos [5] can be reformulated as follows:

PROPOSITION 2.7. A projection P in W has UH-multiplicity n > 0 relative to E(-) if
and only if there erists an orthogonal family {E! },cs of abelian projections in W' such that
Cg, = P, L4esE}, = P and card. J = n; in other words, if and only if W'P is of type I, or,
equivalently, if and only if 0 # P < Q.

DEFINITION 2.9 ([12]). The multiplicity set Mg of E(-) is defined as the set of cardinals
{n:Q. #0}.

For z € H, it is easy to verify that [Wz] = Zg(z).

DEFINITION 2.10 ([5]). For p € X, let C(u) be the projection on the closed subspace
{z € H: p(z) << p}. When p = p(z), C(p) is denoted by C(z). (Note that Halmos [5] uses
C(z) to denote Cpyw ). But, by Theorem 66.2 of [5], C(p(z)) = Ciw.) and hence we can use C(z)
to denote C(p(z)).)

The multiplicity and uniform multiplicity ug(u) of 4 € £ with respect to E(-) are defined
as on p.106 of Halmos [5].

PROPOSITION 2.8 ([12, Lemma 3.2]). If u € ¥ has uniform multiplicity ug(u) > 0, then
C(u) has UH-multiplicity ug(p) relative to E(-).

DEFINITION 2.11 ([8]). The total H-multiplicity of E(-) is defined as the supremum of
the H-multiplicities of all projections in W (in the order topology of cardinals). The total H-

multiplicity of a normal operator T, whether bounded or not, is defined as that of its resolution



of the identity.
The following result is due to Theorem 64.2 of [5].

PROPOSITION 2.9 ([8]). The total H-multiplicity of E(-) is equal to sup{n : n € Mg}. If
E(-) has the CGS-property in H, then its total multiplicity coincides with its total H-multiplicity.
For a normal operator T on a seperable Hilbert space, its total multiplicity is the same as its

total H-multiplicity.
3. Characterizations of Simple Spectral Measures

We define a simple spectral measure and a normal operator with simple spectrum. Using
the definitions and results given in Section 2 (after Proposition 2.5) we obtain several charac-
terizations of simple spectral measures (resp. of normal operators with simple spectra). These
characterizations include in particular those given in Theorem 9.1 of Brown [2]. Finally, we
deduce that the different definitions of a self-adjoint operator with simple spectrum given by

Wecken [17] and Segal [15] coincide with our definition and thus they are one and the same.

DEFINITION 3.1. E(-) is said to be simple if its total H-multiplicity is one. A normal op-
erator T (not necessarily bounded) on H is said to have simple spectrum if its resolution of the

identity is simple.

THEOREM 3.1. Let E(-) be an arbitrary spectral measure on S with values in projections of

H. Then the following statements are equivalent:
(i) E(-) is simple.

(i) Mg = {1}.

(iii) W is mazimal abelian.

(iv) Zg(z) = C(z) for each z € H.

(v) There do not ezist a pair of vectors z (# 0) and y in H such that p(z) = p(y) and
Ze(z) L Zg(y)-

(vi) There do not ezist orthogonal nontrivial reducing closed subspaces M and N for E(-) such
that E(-)|M and E(-)|N are unitarily equivalent.

(vil) The identity operator has UH-multiplicity one.
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(viii) If Jg = {p(z) : z € H}, then J, = {p(z) : C(z) < 1} = JE.

(ix) Every non-zero projection in W has UH-multiplicity one.

(x) If Zg(z) L Zg(y), then p(z) L p(y).
(xi) If P’ is a projection that commutes with the range of E(-) , then P € W.
(xii) For each u € X, ug(p) = 0 or 1 and there is some y € X with ug(p) = 1. *

(xiii) W-is spatially isomorphic to the algebra of all multiplications of bounded measurable func-
tions on the Hilbert space Ly(Q2,R,u) for some appropriate localizable measure space
(2, R, ) in the sense of Segal [15].

Proof.

We shall show that the statements (i) to (ix) are equivalent; then we shall prove (iv) & (x);
(ii) & (xi); (ix) < (xii) and finally, (ii) < (xiii).

(i) = (ii) by Proposition 2.9.

(ii) = (iii) Since Mg = {1}, Q1 = I and hence, by Proposition 2.7 there exists an abelian pro-
jection E’ € W’ such that Cg» = I. On the other hand, by Proposition 1.2.2 of [3] the abelian
algebra E'W'E’ is isomorphic to W/Cg: = W' and thus W’ is abelian. Therefore, W = W' and
hence (iii) holds.

(iii) = (iv) For z € H, by Theorem 66.2 of [5] we have C(z) = Cjw,] and by Corollary 2 of
Proposition L.1.7 of [3], Cjw,) = [W'z]. Since W = W' by (iii), it follows that Zg(z) = [Wz] =
[W'z] = Clwz) = C(z). Thus (iv) holds.

(iv) = (v) Suppose z € H,z # 0 and Zg(z) L Zg(y) for some y € H. Then by (iv) we have
C(z)C(y) = 0 and hence by Theorem 65.1 of [5], p(z) L p(y). Since p(z) # 0, p(z) is not
equivalent to p(y). This proves that (iv) implies (v).

(v) = (vi) Let M and N be asin (vi) and let F(-) = E(:) |M and G(-) = E(-) |N. If F(-) and G(-)
are unitarily equivalent, then there is an isomorphism U : M — N such that UF(-)U~1 = G(-).
Let z € M,z # Oandlet y = Uz. Then y # 0, p(z) = | E(-)z||* = {F()zI?, p(y) = |E()yl* =
IG(-)yli* and

p(z) = |F()z|?* = IUTG)U|? = IG(ylf® = o(y)-



Since M and N are reduced by E(-) and M L N, it follows that Zg(z) L Zg(y). Asz #0
and p(z) = p(y), this contradicts the hypothesis (v) and hence (v) implies (vi).

(vi) = (vii) Suppose (vii) does not hold. Then by Proposition 2.7 there exists n € Mg with
n>1. Let 2 € QuH, z # 0. Then by Theorem 58.2 of [5], P = C|w) is countably decompos-
ablein W. As 0 # P < @, again by Proposition 2.7 the projection P has UH-multiplicity n and
therefore there exist abelian projections Ej, E3 in W' such that E{E; = 0 and Cgy = Cpy = P.
Since W is abelian and P is countably decomposable in W, by Proposition 2.6 there exist vec-
tors y,z in H such that [Wy] = E| and [Wz] = E;. Then M = E{H and N = E}H are
orthogonal nontrivial reducing closed subspaces for E(-). Moreover, by Theorem 66.2 of [5],
C(y) = Clwy = Cpr=P=Cg =Cw;=C (2) and consequently, by Theorem 65.2 of [5] we
have p(y) = p(z). Therefore, by Theorem 60.1 of [5], E(-)|M and E(:)|N are unitarily equiva-
lent. This contradicts the hypothesis (vi) and hence (vii) holds.

(vii) = (viii) Since I has UH-multiplicity one, by Proposition 2.7 the central projection Q; = I

and hence (viii) holds.

(viii) = (ix) Since J, = JE, it follows that @; = I and consequently, by Proposition 2.7 the

statement (ix) holds.
(ix) = (i) Obvious from Definition 3.1.
Thus the statements (i) to (ix) are equivalent.

(iv) = (x) Suppose Zg(z) L Zg(y). Then by (iv) we have C(z)C(y) = 0 and hence, by Theorem
65.2 of [2], p(z) L p(y). Thus (x) holds.

(x) = (iv) Suppose (iv) does not hold. Then there exists z € H such that Zg(z) C C(z) and
Zg(z)#C(z). Ify € C(2)© Zg(z), y # 0, then clearly Zg(z) L Zg(y) and C(y) C C(z). But,
by (x) we have p(z) L p(y) and consequently, by Theorem 65.2 of [5], C(z)C(y) = 0. In other
words, C(z)C(y) = C(y) = 0 and hence y = 0, a contradiction. Hence (x) implies (iv).

(iii) = (xi) If P’ is a projection commuting with the range of E(-) , then P’ € W'. Since
W' =W by (iii), P’ € W and hence (xi) holds.

(xi) = (iii) Since W’ is the von Neumann algebra generated by all projections in W', the hy-



pothesis (xi) implies that W’ C W. Since W is abelian, it then follows that W = W’ and hence
(iii) holds.

(ix) = (xii) Let z € H, z # 0. Then by (ix), C(z) has UH-multiplicity one. Let 0 # v << p(z),
v € L. Then by Theorem 65.3 of [5] there exists y € C(z)H such that v = p(y) so that
C(v) = C(y) and hence by (ix), C(v) has UH-multiplicity one. This shows that ug(p(z)) = 1.
If ug(p) # 0 for some p € I, then for every v € £ with 0 # v << pu we have €(v) # 0 and
hence the hypothesis (ix) implies that ug(u) = 1. Thus (xii) holds.

(xii) = (ix) Let P be a non-zero projection in W. Let {z,}aecs be an orthogonal family of non-
zero vectors in H such that {{[W'z,]}ses is @ maximal orthogonal family of subprojections of P.
Let E, = [W'z,) . By maximality, Zae 7 Eo = P. Moreover, by Corollary 2 of Proposition 1.1.7
of [3] and by Theorem 66.2 of [5] we have E, = Ciw,) = C(za). If 0 # v << p(24), v € I,
then as in the proof of (ix) => (xii) we have C(v) # 0 and similarly, C(w) # 0 for 0 # w << v,
w € X so that ug(v) # 0. Consequently, by (xii) we have Ug(v) = 1. This shows that p(z,) has
uniform multiplicity one for each a € J. Then by Proposition 2.8, C(z,) has UH-multiplicity
one and consequently, by Theorem 64.3 of [5] we conclude that P has UH-multiplicity one and
hence (ix) holds.

(iii) > (xiii) by Theorem 1 of Segal [15].

COROLLARY 3.1. If T is a normal operator on H, then T has simple spectrum if and only if
its resolution of the identity E(-) on S = B(o(T)) satisfies anyone of the equivalent conditions
of Theorem 3.1.

REMARKS 3.1.

(a) As noted in the paragraph prior to Remarks 3.7 of [12], the statement (viii) of Theorem
3.1 is the same as (i) of Theorem 9.1 of Brown [2]. Moreover, the equivalence among the
statements (iv), (vi), (viii), (x) and (xi) of Theorem 3.1 have already been established in
the said theorem of [2]. However, we include here more characterizations and our proof
is based on von Neumann algebras and the results of Halmos [5]. The present study also
brings out clearly how von Neumann algebras play a key role in the unitary invariance

problem. Such a unified treatment is absent in the work of Brown [2].

(b) By the equivalence of the statements (i) and (v) (resp. (i) and (iii)) of Theorem 3.1, a self-



adjoint operator T on an arbitrary Hilbert space H has simple spectrum if and only if it does
s0 in the sense of Wecken [17] or Plesner and Rohlin [13] (resp. in the sense of Segal [15]).

4. Generalization of a Theorem of von Neumann

If T is a self-adjoint operator on a separable Hilbert space, then every bounded operator
A that commutes with all the operators commuting with the resolution of the identity of T is

given by
/a( )f( JAE(})

for some bounded complex Borel function f on o(T). This result is due to von Neumann (see
Theorem XVII.3.22 of [4] or see p.351, Section 129 of [14]). Presently, we generalize the above
theorem to spectral measures with the CGS-property in H.

Let L(H) denote the C*-algebra of all bounded operators on H.

THEOREM 4.1. Suppose E(-) has the CGS-property in H. Then a bounded operator A com-
mutes with every bounded operator that commutes with the range of E(-) if and only if A is of
the form

A=/de13

for some bounded S-measurable complez function f on X. Consequently, W coincides with F =
{S(f): f € B(S)}, where B(S)={f:X -, f S-measurable and bounded } and

5(f) = /X fdE , f € B(S).

Moreover, the set of all projections in W coincides with the range of E(-) .

Proof. Clearly, the condition is sufficient. Since E(-) is strongly countably additive, the range
E of E(-) is a o-complete Boolean algebra of projections in H. If R is the linear span of E, then
R is a *-subalgebra of L(H) containing the identity. As E(-) has the CGS-property in H, by
Lemma XVIIL.3.21 of [4] E is a complete Boolean algebra of projections.Therefore, by Corollary
XVIL3.17 of [4], R™ = R™», where™ ™ denotes the closure in the weak operator topology 7, in
L(H) and™ ™ denotes the closure in the uniform operator topology 7, in L(H). Moreover, by
Lemma XVII.3.6 of [4] the set of all projections in R™ coincides with E. On the other hand,
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by Corollary 1 of Theorem 1.3.2 of [3] we have W = R™. Thus W = R™.

Let F = {S(f): f € B(S)}. By Corollary X.2.9 of [4}, F is a *-subalgebra of L(H) contain-
ing the identity and is closed in the uniform operator topology 7,. As R C F and W = R™,
it follows that W C F. On the other hand, every element of F is obtained as the limit of a
sequence of elements from R in the uniform operator topology (see p.892 of [4]) and thus we
conclude that W = F. .

Let us now suppopse that A € £(H) commutes with every bounded operator that commutes
with the range of E(-). Then A € W” = W and hence the condition is also necessary.

The following corollary is immediate from the proof of the above theorem.

COROLLARY 4.1. If E(:) has the CGS-property in H, then the range of E(-) is a complete
Boolean algebra of projections in H. Moreover, the range of E(-) coincides with the collection of

all projections in W, the von Neumann algebra generated by E(-).

5. Characterizations of Simple Spectral Measures with the
CGS-property

Using the definitions and results given in Section 2 upto Proposition 2.5 and the results in
Sections 3 and 4 we give several characterizations of a simple spectral measure E(:) with the
CGS-property in H. We then deduce in Remarks 5.1 that a self-adjoint operator on a separable
Hilbert space has simple spectrum if and only if it does so in the sense of Stone [16] (resp. in
the sense of Akhiezer and Glazman [1]). We also obtain Lemma 1.2 of Segal [15] as a corollary
of the equivalence of the statements (vi) and (ix) of Theorem 5.1.

THEOREM 5.1. Let E(-) be a spectral measure on S with the CGS-property in H. Then the
following statements are equivalent. Moreover, they are equivalent to each one of the statements
of Theorem 3.1.

(i) E(-) is simple.
(ii) E(-) has total multiplicity one.

(i) E(:) has OSD-multiplicity one.

11



(iv) E(-) has UOSD-multiplicity one.

(v) E(-) has OSR-multiplicity one.

(vi) W has a generating vector.

(vil) W has a generating-separating vector.
(viii) Every projection in W' is cyclic.

(ix) There exists a measure u € ¥ such that W is spatially isomorphic to the algebra of multi-
plications by bounded S-measurable functions on L,(X,S, u).

(x) Suppose X is a Hausdorff space and S = B(X). Then my(t) =0 or 1 and m.(t) =0 or I
for each t € X and there ezists t, € X such that maz(my(t,), mc(t,)) = 1.

Proof. In the light of Theorem 3.1 it suffices to prove the equivalence of the statements (i) to (x).
Since E(-) has the CGS-property in H, the equivalence of the statements (i), (ii), (iii) and
(v) is immediate from Propositions 2.4 and 2.9. When E(-) has OSD-multiplicity one, trivially

every OSD of H relative to E(-) is a uniform OSD and consequently, by Proposition 2.2 the

statements (iii) and (iv) are equivalent. Thus the statements (i) to (v) are equivalent.

Now we shall prove (i) & (vi); (vi) = (vii) = (viii) = (vi); (vi) & (ix) and (ii) & (x).
(i) = (vi) As E(-) has the CGS-property in H, W is countably generated. Thus, by Corollary
to Proposition 1.2.6 of [3], W has a separating vector and hence W’ has a generating vector.

If (i) holds, then by Theorem 3.1 W is maximal abelian so that W (=W’) has a generating vector.

(vi) = (i) Let W have a generating vector z. Then [Wz] = H and hence by Corollary 2 of
Proposition 1.6.4 of [3], W is maximal abelian. Thus E(-) is simple by Theorem 3.1.

(vi) = (vii) As shown above, (vi) implies that W is maximal abelian and hence by Corollary to

Proposition I1.1.5 of [3] W has a generating-separating vector.

(vii) = (viii) If [Wz] = H, then for each projection P’ € W’ we have P/ = P'[Wz] = [WP'z]
and hence P’ is cyclic. Thus (viii) holds.
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(viii) = (vi) By the hypothesis (viii), the identity operator as a member of W’ is cyclic and
hence these exists z € H such that [Wz] = I. Thus (vi) holds.

(vi) = (ix) Let x be a generating vector of W and let p(z) = p. Then by Theorem 60.1 of [5]
there exists an isomorphism U : Zg(z) — L2(X,S, u) = K (say) such that
UE()U™'f = xf, f € K. (1)

4

Let B(S) = {f : X — @, f S-measurable and bounded}. For g € B(S), we define
M,f ='gf, f € K. Clearly, My € L(K). Let R = {M, : g € B(S)}. It is easy to verify
that R is a C*-subalgebra of L(K).

Given g € B(S), there exists a bounded sequence (s,,) of S-simple functions on X such that

sup [sn(t) — g(t)| = 0
teX
as n — 00. Then, for each f € K,

llgf — s fllz < sup|g(t) — sn(t)l [ fll2 — 0
teX

as n — co. Thus M, = lim M, in the uniform operator topology.
n

P
For an S-simple function s = E a;X,, we have

=1

S(s) = /X sdE =} aiB(o).
=1

Then by (1) it follows that

4
US@U™f=() aUE(o)U™")f =sf = M, f

=1
for f € K. Thus we have
Us(sn)U—lf= M, f, feK (2)
for all n. On the other hand, as on p. 892 of [4],
S(g) = lim S(sn) ®)

in the uniform operator topology. Therefore, by (2) and (3) and by the fact that || M,, —M,|| — 0

as n — 00, we obtain

IUS(@U™ ~ My)fll2< US()U = US(8)U ) fl2 + I(US(sn)U" — My) |2
< 15(9) = SCsp)ll 1/ llz + | Mo, — Mgl || fl}2 — O

13



as n — 00, for each f € K. This shows that
US(g)U™! = M,.

Consequently, R is spatially isomorphic to {S(g) : g € B(S)}. Since W = {S(g) : g € B(S)} by
Theorem 4.1, it follows that W is spatially isomorphic to R and hence (ix) holds.

(ix) = (vi) Taking R as in the above, it is easy to observe that the constant function 1 is a gen-
erating vector for R and consequently, W ,the spatial isomorphic image of R, has a generating
vector. Thus (vi) holds.

(ii) & (x) by Proposition 2.5.

COROLLARY 85.1. If T is a normal operator on a separable Hilbert space H, then T has
simple spectrum if and only if its resolution of the identity satisfies anyone of the statements in

Theorem 3.1 or in Theorem 5.1.

REMARKS 5.1. By the equivalence of the statements (i) and (ii) (resp. (i) and (x)) of Theo-
rem 5.1, a self-adjoint operator on a separable Hilbert space has simple spectrum if and only if
it does s0 in the sense of Akhiezer and Glazman [1] (resp. in the sense of Stone [16]).

The following result ( Lemma 1.2 of [15] ) is deduced as a corollary of the equivalence of (vi)

and (ix) in the above theorem.

COROLLARY 5.2. An abelian von Neumann algebra with generating vector is spatially iso-
morphic to the algebra of multiplications by bounded measurable functions on L, over a finite

perfect measure space.

Proof. Let A be an abelian von Neumann algebra on H with its maximal ideal space M. Since
M is extremally disconnected, for each o € B(M) there is a unique clopen set T(o) such that
T(0)Ao is meagre in M (see p. 159 of [6]). Let G(0) = 7' (x,(s)), Where & : A — C(M) is
the Gelfand isomorphism. Then, as shown on pp. 159-160 of [6], G(-) is a spectral measure on
B(M) and A is the von Neumann algebra generated by the range of G(-). If A has a generating
vector z € H, then [G(o)z : 0 € B(M)] = [Az] = H and hence G(-) has the CGS-property in
H. Now the equivalence of (vi) and (ix) in Theorem 5.1 establishes the corollary.
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