NOTAS DE MATEMATICAS Nº 146

ON SIMPLE SPECTRAL MEASURES

BY

T.V. PANCHAPAGESAN

PRE-PRINT

UNIVERSIDAD DE LOS ANDES
FACULTAD DE CIENCIAS
DEPARTAMENTO DE MATEMATICA
MERIDA-VENEZUELA
1994

ON SIMPLE SPECTRAL MEASURES

T. V. PANCHAPAGESAN 1

Abstract

The notion of a simple spectral measure is introduced and several characterizations of a simple spectral measure are given. A classical result of von Neumann on the double commutant of the range of the resolution of the identity of a self-adjoint operator on a separable Hilbert space is generalized to spactral measures with the CGS-property. For such spectral measures some further characterizations of simplicity are obtained, which include one derived from the said generalization of von Neumann's result.

1. Introduction

For self-adjoint operators in separable Hilbert spaces the notion of simple spectrum was given by Stone [16] in terms of the multiplicity functions m_p and m_c associated with the operator, while it was given differently by Akhiezer and Glazman [1] in terms of the total multiplicity of the operator. On the other hand, for such operators T in arbitrary Hilbert spaces H, Wecken [17] and Plesner and Rohlin [13] defined the concept using the measures $\rho(x) = ||E(\cdot)x||^2$ and closed subspaces $[E(\delta)x:\delta\in\mathcal{B}(\sigma(T))],x\in H$, where $E(\cdot)$ is the resolution of the identity of T. Later, in [15], Segal gave the concept for a bounded self-adjoint operator T in an arbitrary Hilbert space in terms of the W^* -algebra generated by T. Though the concept of simple spectrum is defined differently, all these definitions are equivalent (see 3.1(b) and 5.1).

In [16] Stone studied the problem of unitary invariance of self-adjoint operators in separable Hilbert spaces, while Dunford and Schwartz [4] studied it for self-adjoint and bounded normal operators in such spaces. In our recent work [11] we extended their results to spectral measures with the CGS-property and in particular, to unbounded normal operators in separable Hilbert spaces. Using some rudiments of type I von Neumann algebras along with the spectral multiplicity theory of Halmos [5], we have also given in [8-12] a unified approach to the study of the above problem for arbitrary spectral measures and for spectral measures with the CGS-property. Making use of the results from these papers, we give here the notions of simple spectral measures

¹Supported by the C.D.C.H.T. project C-586 of the Universidad de los Andes, Mérida, Venezuela and the international cooperation project between CNR-Italy and CONICIT-Venezuela.

¹⁹⁹¹ AMS subject classification: 47B15

Key words: simple spectral measures, normal operator with simple spectrum, total multiplicity, total H-multiplicity, maximal abelian von Neumann algebras.

and normal operators with simple spectra and obtain several characterizations of simplicity of a spectral measure $E(\cdot)$ (resp. of the spectrum of a normal operator in a Hilbert space H) when $E(\cdot)$ is arbitrary and when $E(\cdot)$ has the CGS-property (resp. when H is arbitrary and when H is separable). In this context, we generalize the theorem of von Neumann given in §129 of Riesz and Nagy [14] to spectral measures with the CGS-property (see Theorem 4.1) and deduce Lemma 1.2 of Segal [15] as a corollary of Theorem 5.1.

2. Preliminaries

In this section we fix notation and terminology. For convenience we recall some definitions and results from the literature, especially from [8-12].

 \mathcal{S} denotes a σ -algebra of subsets of a set $X(\neq\emptyset)$. H is a Hilbert space of arbitrary dimension (>0) unless otherwise stated and $E(\cdot)$ is a spectral measure on \mathcal{S} with values in projections of H. If $\mathcal{X} \subset H$, then $[\mathcal{X}]$ denotes the closed subspace spanned by \mathcal{X} . For $x \in H$ and $\mathcal{X} \subset H$, let $Z_E(x) = [E(\sigma)x : \sigma \in \mathcal{S}]$ and $Z_E(\mathcal{X}) = [E(\sigma)w : w \in \mathcal{X}, \ \sigma \in \mathcal{S}]$. The orthogonal direct sum of closed subspaces of H and that of a family of Hilbert spaces are denoted by \oplus .

An isomorphism between two Hilbert spaces is an inner-product preserving onto linear map. An operator T on H is a linear transformation with domain and range in H and is not necessarily bounded.

 Σ denotes the set of all finite (positive) measures on S. For $x \in H$, $\rho(x)$ denotes the measure $||E(\cdot)x||^2$. For $\mu, \nu \in \Sigma$, we write $\mu << \nu$ (or $\nu >> \mu$) if $\mu(E) = 0$ whenever $\nu(E) = 0$.

DEFINITION 2.1 ([11]). $E(\cdot)$ is said to have the CGS-property in H if there is an utmost countable subset \mathcal{X} of H such that $Z_E(\mathcal{X}) = H$.

DEFINITION 2.2 ([11]). Suppose $(x_i)_1^N$ is a finite or an infinite sequence of non-zero vectors in H such that (i) $H = \bigoplus_{i=1}^N Z_E(x_i)$, and (ii) $\rho(x_1) >> \rho(x_2) >> \dots$. Then $H = \bigoplus_{i=1}^N Z_E(x_i)$ is called an OSD of H relative to $E(\cdot)$.

PROPOSITION 2.1 ([11]). $E(\cdot)$ has the CGS-property in H if and only if H admits an OSD relative to $E(\cdot)$. If $H = \bigoplus_{i=1}^{N} Z_{E}(x_{i})$ is an OSD of H relative to $E(\cdot)$, then N is unique and N is called the OSD-multiplicity of $E(\cdot)$. When $N = \infty$, the OSD-multiplicity of $E(\cdot)$ is said to be countably infinite.

DEFINITION 2.4 ([10]). An OSD $H = \bigoplus_{i=1}^{N} Z_{E}(x_{i})$ is called a uniform OSD if $\rho(x_{1}) \equiv \rho(x_{2}) \equiv ...$, where, for $\mu, \nu \in \Sigma$, we write $\mu \equiv \nu$ if $\mu << \nu$ and $\nu << \mu$.

PROPOSITION 2.2 ([10]). If H admits a uniform OSD relative to $E(\cdot)$, then every OSD of H relative to $E(\cdot)$ is a uniform OSD. In that case, the OSD-multiplicity of $E(\cdot)$ is referred to as the UOSD-multiplicity of $E(\cdot)$.

DEFINITION 2.5 ([11]). Suppose $(\mu_i)_1^N$ is a finite or an infinite sequence of non-null elements in Σ such that $\mu_1 >> \mu_2 >> \dots$ If there is an isomorphism $U: H \to K = \bigoplus_{i=1}^N L_2(\mu_i)$ such that

$$UE(\cdot)U^{-1}(f_i) = (\chi_{(\cdot)}f_i), \ (f_i)_1^N \in K,$$

then U is called an OSR of H relative to $E(\cdot)$ and N is called the OSR-multiplicity of $E(\cdot)$ - since it is the same for all OSRs of H relative to $E(\cdot)$.

PROPOSITION 2.3 ([11]). H has an OSR relative to $E(\cdot)$ if and only if $E(\cdot)$ has the CGS-property in H.

DEFINITION 2.6 ([11]). Suppose $E(\cdot)$ has the CGS-property in H. If there exists a finite dimensional generating subspace Y in H (that is, dim $Y < \infty$ and $Z_E(Y) = H$), then the minimum of the dimensions of all generating subspaces of H is called the total multiplicity of $E(\cdot)$. If $E(\cdot)$ does not have any finite dimensional generating subspace, then the total multiplicity of $E(\cdot)$ is said to be countably infinite.

PROPOSITION 2.4 ([11]). Suppose $E(\cdot)$ has the CGS-property in H. Then its OSD-multiplicity, OSR-multiplicity and total multiplicity coincide.

DEFINITION 2.7([11]). Suppose X is a Hausdorff space and $S = \mathcal{B}(X)$, the σ -algebra of all Borel subsets of X. Suppose $E(\cdot)$ has the CGS-property in H. We define $p_E = \{t \in X : E(\{t\}) \neq 0\}$ and $c_E = X \setminus p_E$. Let $\mathcal{M}(E) = E(p_E)H$ and $\mathcal{N}(E) = E(c_E)H = H \ominus \mathcal{M}(E)$. Let $\mathcal{N}(E) = \bigoplus_{i=1}^{N} Z_E(y_i)$ be an OSD of $\mathcal{N}(E)$ relative to $E(\cdot)E(c_E)$.

The multiplicity function m_p on X relative to $E(\cdot)$ is defined by $m_p(t) = 0$ if $t \notin p_E$ and $m_p(t) = \dim E(\{t\})H$ if $t \in p_E$. The multiplicity function m_c on X relative to $E(\cdot)$ is defined as follows:

- (i) $m_c(t) = 0$ if $\mathcal{N}(E) = \{0\}$, or if $\mathcal{N}(E) \neq \{0\}$ and there exists an open set $U \ni t$ such that $E(U)y_1 = 0$;
- (ii) $m_c(t) = n \in \mathbb{N}$ if y_k do exist for k = 1, 2, ..., n and for every open set $U \ni t$, $E(U)y_k \neq 0$ for k = 1, 2, ..., n while N = n or y_{n+1} does exist and $E(U)y_{n+1} = 0$ for some open set $U \ni t$;
- (iii) $m_c(t) = \infty$ if $N = \infty$ and for every open set $U \ni t$, $E(U)y_k \neq 0$ for each $k \in \mathbb{N}$.

PROPOSITION 2.5 ([5]). Let $E(\cdot)$ have the CGS-property in H and let $S = \mathcal{B}(X)$, where X is a Hausdorff space. Then the total multiplicity of $E(\cdot)$ is equal to $\sup_{t \in X} (m_p(t), m_c(t))$.

We now proceed to give some definitions and results from [5,8,9 and 12], along with some rudiments of von Neumann algebras from [3,7].

Let W be the von Neumann algebra generated by the range of $E(\cdot)$. The commutant of W is denoted by W'. If $W' = \Sigma_n \oplus W'Q_n$ is the type I_n direct sum decomposition of W' (Dixmier [3] uses the notation II and the terminology product), then the central projections $Q_n(\neq 0)$ are unique and $W'Q_n$ is of type I_n ; in the sequel, Q_n will denote these non-zero central projections of W'. If P' is a projection in W', then the central support of P' is denoted by $C_{P'}$. As is customary in the theory of von Neumann algebras, a projection is also identified with its range.

Recall that a projection $P' \in W'$ is said to be an abelian projection if P'W'P' is abelian. As observed in [9], the projection $P' \in W'$ is abelian if and only if P' is a row projection in the sense of Halmos [5] and the column C(P') generated by P' in the sense of [5] is the same as the central support $C_{P'}$ of P'.

The abelian von Neumann algebra W is said to be maximal abelian if W' = W. The algebra W is said to have a generating vector $x \in H$ if $[Wx] = [Tx: T \in W] = H$ and a separating vector $y \in H$ if Ty = 0 for some $T \in W$ implies T = 0. A projection P' in W' said to be cyclic (in W') if there exists a vector $x \in H$ such that [Wx] = P'. A projection P in a von Neumann algebra \mathcal{R} is said to be countably decomposable (in \mathcal{R}) if every orthogonal family of non-zero subprojections of P in \mathcal{R} is utmost countable. The von Neumann algebra \mathcal{R} is said to be countably generated if there exists an utomst countable set \mathcal{X} of vectors in H such that $[Tx: T \in \mathcal{R}, x \in \mathcal{X}] = H$.

For the rest of the terminology in the theory of von Neumann algebras we follow Dixmier [3]. For an easily accessible account of von Neumann algebras the reader is referred to [7].

PROPOSITION 2.6 ([7, Lemma 3.3.9]). Let P' be an abelian projection in W'. If $C_{P'}$ is countably decomposable in W, then P' is cyclic (in W').

DEFINITION 2.8. For a projection P in W, its multiplicity (resp. uniform multiplicity) in the sense of Halmos [5, pp.100-101] is referred to as its H-multiplicity (resp. UH-multiplicity) relative to $E(\cdot)$.

As was observed in [9], Theorem 64.4 of Halmos [5] can be reformulated as follows:

PROPOSITION 2.7. A projection P in W has UH-multiplicity n > 0 relative to $E(\cdot)$ if and only if there exists an orthogonal family $\{E'_{\alpha}\}_{{\alpha}\in J}$ of abelian projections in W' such that $C_{E'_{\alpha}} = P$, $\Sigma_{{\alpha}\in J}E'_{\alpha} = P$ and card. J = n; in other words, if and only if W'P is of type I_n or, equivalently, if and only if $0 \neq P \leq Q_n$.

DEFINITION 2.9 ([12]). The multiplicity set M_E of $E(\cdot)$ is defined as the set of cardinals $\{n: Q_n \neq 0\}$.

For $x \in H$, it is easy to verify that $[Wx] = Z_E(x)$.

DEFINITION 2.10 ([5]). For $\mu \in \Sigma$, let $C(\mu)$ be the projection on the closed subspace $\{x \in H : \rho(x) << \mu\}$. When $\mu = \rho(x)$, $C(\mu)$ is denoted by C(x). (Note that Halmos [5] uses C(x) to denote $C_{[Wx]}$. But, by Theorem 66.2 of [5], $C(\rho(x)) = C_{[Wx]}$ and hence we can use C(x) to denote $C(\rho(x))$.)

The multiplicity and uniform multiplicity $u_E(\mu)$ of $\mu \in \Sigma$ with respect to $E(\cdot)$ are defined as on p.106 of Halmos [5].

PROPOSITION 2.8 ([12, Lemma 3.2]). If $\mu \in \Sigma$ has uniform multiplicity $u_E(\mu) > 0$, then $C(\mu)$ has UH-multiplicity $u_E(\mu)$ relative to $E(\cdot)$.

DEFINITION 2.11 ([8]). The total H-multiplicity of $E(\cdot)$ is defined as the supremum of the H-multiplicities of all projections in W (in the order topology of cardinals). The total H-multiplicity of a normal operator T, whether bounded or not, is defined as that of its resolution

of the identity.

The following result is due to Theorem 64.2 of [5].

PROPOSITION 2.9 ([8]). The total H-multiplicity of $E(\cdot)$ is equal to $\sup\{n : n \in M_E\}$. If $E(\cdot)$ has the CGS-property in H, then its total multiplicity coincides with its total H-multiplicity. For a normal operator T on a seperable Hilbert space, its total multiplicity is the same as its total H-multiplicity.

3. Characterizations of Simple Spectral Measures

We define a simple spectral measure and a normal operator with simple spectrum. Using the definitions and results given in Section 2 (after Proposition 2.5) we obtain several characterizations of simple spectral measures (resp. of normal operators with simple spectra). These characterizations include in particular those given in Theorem 9.1 of Brown [2]. Finally, we deduce that the different definitions of a self-adjoint operator with simple spectrum given by Wecken [17] and Segal [15] coincide with our definition and thus they are one and the same.

DEFINITION 3.1. $E(\cdot)$ is said to be simple if its total H-multiplicity is one. A normal operator T (not necessarily bounded) on H is said to have simple spectrum if its resolution of the identity is simple.

THEOREM 3.1. Let $E(\cdot)$ be an arbitrary spectral measure on S with values in projections of H. Then the following statements are equivalent:

- (i) $E(\cdot)$ is simple.
- (ii) $M_E = \{1\}.$
- (iii) W is maximal abelian.
- (iv) $Z_E(x) = C(x)$ for each $x \in H$.
- (v) There do not exist a pair of vectors $x \not= 0$ and y in H such that $\rho(x) \equiv \rho(y)$ and $Z_E(x) \perp Z_E(y)$.
- (vi) There do not exist orthogonal nontrivial reducing closed subspaces M and N for $E(\cdot)$ such that $E(\cdot)|M$ and $E(\cdot)|N$ are unitarily equivalent.
- (vii) The identity operator has UH-multiplicity one.

- (viii) If $\mathcal{J}_E = \{\rho(x) : x \in H\}$, then $\mathcal{J}_1 = \{\rho(x) : C(x) \leq Q_1\} = \mathcal{J}_E$.
 - (ix) Every non-zero projection in W has UH-multiplicity one.
 - (x) If $Z_E(x) \perp Z_E(y)$, then $\rho(x) \perp \rho(y)$.
- (xi) If P' is a projection that commutes with the range of $E(\cdot)$, then $P' \in W$.
- (xii) For each $\mu \in \Sigma$, $u_E(\mu) = 0$ or 1 and there is some $\mu \in \Sigma$ with $u_E(\mu) = 1$.
- (xiii) W is spatially isomorphic to the algebra of all multiplications of bounded measurable functions on the Hilbert space $L_2(\Omega, \mathcal{R}, \mu)$ for some appropriate localizable measure space $(\Omega, \mathcal{R}, \mu)$ in the sense of Segal [15].

Proof.

We shall show that the statements (i) to (ix) are equivalent; then we shall prove (iv) \Leftrightarrow (x); (iii) \Leftrightarrow (xii) and finally, (iii) \Leftrightarrow (xiii).

- (i) \Rightarrow (ii) by Proposition 2.9.
- (ii) \Rightarrow (iii) Since $M_E = \{1\}$, $Q_1 = I$ and hence, by Proposition 2.7 there exists an abelian projection $E' \in W'$ such that $C_{E'} = I$. On the other hand, by Proposition I.2.2 of [3] the abelian algebra E'W'E' is isomorphic to $W'C_{E'} = W'$ and thus W' is abelian. Therefore, W = W' and hence (iii) holds.
- (iii) \Rightarrow (iv) For $x \in H$, by Theorem 66.2 of [5] we have $C(x) = C_{[Wx]}$ and by Corollary 2 of Proposition I.1.7 of [3], $C_{[Wx]} = [W'x]$. Since W = W' by (iii), it follows that $Z_E(x) = [Wx] = [W'x] = C_{[Wx]} = C(x)$. Thus (iv) holds.
- (iv) \Rightarrow (v) Suppose $x \in H, x \neq 0$ and $Z_E(x) \perp Z_E(y)$ for some $y \in H$. Then by (iv) we have C(x)C(y) = 0 and hence by Theorem 65.1 of [5], $\rho(x) \perp \rho(y)$. Since $\rho(x) \neq 0$, $\rho(x)$ is not equivalent to $\rho(y)$. This proves that (iv) implies (v).
- (v) \Rightarrow (vi) Let M and N be as in (vi) and let $F(\cdot) = E(\cdot) \mid M$ and $G(\cdot) = E(\cdot) \mid N$. If $F(\cdot)$ and $G(\cdot)$ are unitarily equivalent, then there is an isomorphism $U: M \to N$ such that $UF(\cdot)U^{-1} = G(\cdot)$. Let $x \in M, x \neq 0$ and let y = Ux. Then $y \neq 0$, $\rho(x) = ||E(\cdot)x||^2 = ||F(\cdot)x||^2$, $\rho(y) = ||E(\cdot)y||^2 = ||G(\cdot)y||^2$ and

$$\rho(x) = \|F(\cdot)x\|^2 = \|U^{-1}G(\cdot)Ux\|^2 = \|G(\cdot)y\|^2 = \rho(y).$$

Since M and N are reduced by $E(\cdot)$ and $M \perp N$, it follows that $Z_E(x) \perp Z_E(y)$. As $x \neq 0$ and $\rho(x) \equiv \rho(y)$, this contradicts the hypothesis (v) and hence (v) implies (vi).

(vi) \Rightarrow (vii) Suppose (vii) does not hold. Then by Proposition 2.7 there exists $n \in M_E$ with n > 1. Let $x \in Q_nH$, $x \neq 0$. Then by Theorem 58.2 of [5], $P = C_{[Wx]}$ is countably decomposable in W. As $0 \neq P \leq Q_n$, again by Proposition 2.7 the projection P has UH-multiplicity n and therefore there exist abelian projections E'_1, E'_2 in W' such that $E'_1E'_2 = 0$ and $C_{E'_1} = C_{E'_2} = P$. Since W is abelian and P is countably decomposable in W, by Proposition 2.6 there exist vectors y, z in H such that $[Wy] = E'_1$ and $[Wz] = E'_2$. Then $M = E'_1H$ and $N = E'_2H$ are orthogonal nontrivial reducing closed subspaces for $E(\cdot)$. Moreover, by Theorem 66.2 of [5], $C(y) = C_{[Wy]} = C_{E'_1} = P = C_{E'_2} = C_{[Wz]} = C(z)$ and consequently, by Theorem 65.2 of [5] we have $\rho(y) \equiv \rho(z)$. Therefore, by Theorem 60.1 of [5], $E(\cdot)|M$ and $E(\cdot)|N$ are unitarily equivalent. This contradicts the hypothesis (vi) and hence (vii) holds.

(vii) \Rightarrow (viii) Since I has UH-multiplicity one, by Proposition 2.7 the central projection $Q_1 = I$ and hence (viii) holds.

(viii) \Rightarrow (ix) Since $\mathcal{J}_1 = \mathcal{J}_E$, it follows that $Q_1 = I$ and consequently, by Proposition 2.7 the statement (ix) holds.

 $(ix) \Rightarrow (i)$ Obvious from Definition 3.1.

Thus the statements (i) to (ix) are equivalent.

- (iv) \Rightarrow (x) Suppose $Z_E(x) \perp Z_E(y)$. Then by (iv) we have C(x)C(y) = 0 and hence, by Theorem 65.2 of [2], $\rho(x) \perp \rho(y)$. Thus (x) holds.
- $(x) \Rightarrow (iv)$ Suppose (iv) does not hold. Then there exists $x \in H$ such that $Z_E(x) \subset C(x)$ and $Z_E(x) \neq C(x)$. If $y \in C(x) \ominus Z_E(x)$, $y \neq 0$, then clearly $Z_E(x) \perp Z_E(y)$ and $C(y) \subset C(x)$. But, by (x) we have $\rho(x) \perp \rho(y)$ and consequently, by Theorem 65.2 of [5], C(x)C(y) = 0. In other words, C(x)C(y) = C(y) = 0 and hence y = 0, a contradiction. Hence (x) implies (iv).
- (iii) \Rightarrow (xi) If P' is a projection commuting with the range of $E(\cdot)$, then $P' \in W'$. Since W' = W by (iii), $P' \in W$ and hence (xi) holds.
- $(xi) \Rightarrow (iii)$ Since W' is the von Neumann algebra generated by all projections in W', the hy-

pothesis (xi) implies that $W' \subset W$. Since W is abelian, it then follows that W = W' and hence (iii) holds.

(ix) \Rightarrow (xii) Let $x \in H$, $x \neq 0$. Then by (ix), C(x) has UH-multiplicity one. Let $0 \neq \nu << \rho(x)$, $\nu \in \Sigma$. Then by Theorem 65.3 of [5] there exists $y \in C(x)H$ such that $\nu = \rho(y)$ so that $C(\nu) = C(y)$ and hence by (ix), $C(\nu)$ has UH-multiplicity one. This shows that $u_E(\rho(x)) = 1$. If $u_E(\mu) \neq 0$ for some $\mu \in \Sigma$, then for every $\nu \in \Sigma$ with $0 \neq \nu << \mu$ we have $C(\nu) \neq 0$ and hence the hypothesis (ix) implies that $u_E(\mu) = 1$. Thus (xii) holds.

(xii) \Rightarrow (ix) Let P be a non-zero projection in W. Let $\{x_{\alpha}\}_{{\alpha}\in J}$ be an orthogonal family of non-zero vectors in H such that $\{[W'x_{\alpha}]\}_{{\alpha}\in J}$ is a maximal orthogonal family of subprojections of P. Let $E_{\alpha} = [W'x_{\alpha}]$. By maximality, $\sum_{{\alpha}\in J} E_{\alpha} = P$. Moreover, by Corollary 2 of Proposition I.1.7 of [3] and by Theorem 66.2 of [5] we have $E_{\alpha} = C_{[Wx_{\alpha}]} = C(x_{\alpha})$. If $0 \neq \nu << \rho(x_{\alpha})$, $\nu \in \Sigma$, then as in the proof of (ix) \Rightarrow (xii) we have $C(\nu) \neq 0$ and similarly, $C(w) \neq 0$ for $0 \neq w << \nu$, $w \in \Sigma$ so that $u_E(\nu) \neq 0$. Consequently, by (xii) we have $U_E(\nu) = 1$. This shows that $\rho(x_{\alpha})$ has uniform multiplicity one for each $\alpha \in J$. Then by Proposition 2.8, $C(x_{\alpha})$ has UH-multiplicity one and consequently, by Theorem 64.3 of [5] we conclude that P has UH-multiplicity one and hence (ix) holds.

(iii) ⇔ (xiii) by Theorem 1 of Segal [15].

COROLLARY 3.1. If T is a normal operator on H, then T has simple spectrum if and only if its resolution of the identity $E(\cdot)$ on $S = \mathcal{B}(\sigma(T))$ satisfies anyone of the equivalent conditions of Theorem 3.1.

REMARKS 3.1.

- (a) As noted in the paragraph prior to Remarks 3.7 of [12], the statement (viii) of Theorem 3.1 is the same as (i) of Theorem 9.1 of Brown [2]. Moreover, the equivalence among the statements (iv), (vi), (viii), (x) and (xi) of Theorem 3.1 have already been established in the said theorem of [2]. However, we include here more characterizations and our proof is based on von Neumann algebras and the results of Halmos [5]. The present study also brings out clearly how von Neumann algebras play a key role in the unitary invariance problem. Such a unified treatment is absent in the work of Brown [2].
- (b) By the equivalence of the statements (i) and (v) (resp. (i) and (iii)) of Theorem 3.1, a self-

adjoint operator T on an arbitrary Hilbert space H has simple spectrum if and only if it does so in the sense of Wecken [17] or Plesner and Rohlin [13] (resp. in the sense of Segal [15]).

4. Generalization of a Theorem of von Neumann

If T is a self-adjoint operator on a separable Hilbert space, then every bounded operator A that commutes with all the operators commuting with the resolution of the identity of T is given by

$$A = \int_{\sigma(T)} f(\lambda) dE(\lambda)$$

for some bounded complex Borel function f on $\sigma(T)$. This result is due to von Neumann (see Theorem XVII.3.22 of [4] or see p.351, Section 129 of [14]). Presently, we generalize the above theorem to spectral measures with the CGS-property in H.

Let $\mathcal{L}(H)$ denote the C^* -algebra of all bounded operators on H.

THEOREM 4.1. Suppose $E(\cdot)$ has the CGS-property in H. Then a bounded operator A commutes with every bounded operator that commutes with the range of $E(\cdot)$ if and only if A is of the form

$$A = \int_X f dE$$

for some bounded S-measurable complex function f on X. Consequently, W coincides with $\mathcal{F} = \{S(f): f \in B(\mathcal{S})\}$, where $B(\mathcal{S}) = \{f: X \to \mathcal{C}, f \text{ S-measurable and bounded }\}$ and

$$S(f) = \int_{Y} f dE , f \in B(S).$$

Moreover, the set of all projections in W coincides with the range of $E(\cdot)$.

Proof. Clearly, the condition is sufficient. Since $E(\cdot)$ is strongly countably additive, the range E of $E(\cdot)$ is a σ -complete Boolean algebra of projections in H. If \mathcal{R} is the linear span of E, then \mathcal{R} is a *-subalgebra of $\mathcal{L}(H)$ containing the identity. As $E(\cdot)$ has the CGS-property in H, by Lemma XVII.3.21 of [4] E is a complete Boolean algebra of projections. Therefore, by Corollary XVII.3.17 of [4], $\bar{\mathcal{R}}^{\tau_w} = \bar{\mathcal{R}}^{\tau_n}$, where $\bar{\tau}^{\tau_w}$ denotes the closure in the weak operator topology τ_w in $\mathcal{L}(H)$ and $\bar{\tau}^{\tau_n}$ denotes the closure in the uniform operator topology τ_n in $\mathcal{L}(H)$. Moreover, by Lemma XVII.3.6 of [4] the set of all projections in $\bar{\mathcal{R}}^{\tau_w}$ coincides with E. On the other hand,

by Corollary 1 of Theorem I.3.2 of [3] we have $W = \bar{\mathcal{R}}^{\tau_w}$. Thus $W = \bar{\mathcal{R}}^{\tau_n}$.

Let $\mathcal{F} = \{S(f) : f \in B(\mathcal{S})\}$. By Corollary X.2.9 of [4], \mathcal{F} is a *-subalgebra of $\mathcal{L}(H)$ containing the identity and is closed in the uniform operator topology τ_n . As $\mathcal{R} \subset \mathcal{F}$ and $W = \bar{\mathcal{R}}^{\tau_n}$, it follows that $W \subset \mathcal{F}$. On the other hand, every element of \mathcal{F} is obtained as the limit of a sequence of elements from \mathcal{R} in the uniform operator topology (see p.892 of [4]) and thus we conclude that $W = \mathcal{F}$.

Let us now suppose that $A \in \mathcal{L}(H)$ commutes with every bounded operator that commutes with the range of $E(\cdot)$. Then $A \in W'' = W$ and hence the condition is also necessary.

The following corollary is immediate from the proof of the above theorem.

COROLLARY 4.1. If $E(\cdot)$ has the CGS-property in H, then the range of $E(\cdot)$ is a complete Boolean algebra of projections in H. Moreover, the range of $E(\cdot)$ coincides with the collection of all projections in W, the von Neumann algebra generated by $E(\cdot)$.

5. Characterizations of Simple Spectral Measures with the CGS-property

Using the definitions and results given in Section 2 upto Proposition 2.5 and the results in Sections 3 and 4 we give several characterizations of a simple spectral measure $E(\cdot)$ with the CGS-property in H. We then deduce in Remarks 5.1 that a self-adjoint operator on a separable Hilbert space has simple spectrum if and only if it does so in the sense of Stone [16] (resp. in the sense of Akhiezer and Glazman [1]). We also obtain Lemma 1.2 of Segal [15] as a corollary of the equivalence of the statements (vi) and (ix) of Theorem 5.1.

THEOREM 5.1. Let $E(\cdot)$ be a spectral measure on S with the CGS-property in H. Then the following statements are equivalent. Moreover, they are equivalent to each one of the statements of Theorem 3.1.

- (i) $E(\cdot)$ is simple.
- (ii) $E(\cdot)$ has total multiplicity one.
- (iii) $E(\cdot)$ has OSD-multiplicity one.

- (iv) $E(\cdot)$ has UOSD-multiplicity one.
- (v) $E(\cdot)$ has OSR-multiplicity one.
- (vi) W has a generating vector.
- (vii) W has a generating-separating vector.
- (viii) Every projection in W' is cyclic.
- (ix) There exists a measure $\mu \in \Sigma$ such that W is spatially isomorphic to the algebra of multiplications by bounded S-measurable functions on $L_2(X, \mathcal{S}, \mu)$.
- (x) Suppose X is a Hausdorff space and S = B(X). Then $m_p(t) = 0$ or 1 and $m_c(t) = 0$ or 1 for each $t \in X$ and there exists $t_o \in X$ such that $\max(m_p(t_o), m_c(t_o)) = 1$.

Proof. In the light of Theorem 3.1 it suffices to prove the equivalence of the statements (i) to (x).

Since $E(\cdot)$ has the CGS-property in H, the equivalence of the statements (i), (ii), (iii) and (v) is immediate from Propositions 2.4 and 2.9. When $E(\cdot)$ has OSD-multiplicity one, trivially every OSD of H relative to $E(\cdot)$ is a uniform OSD and consequently, by Proposition 2.2 the statements (iii) and (iv) are equivalent. Thus the statements (i) to (v) are equivalent.

Now we shall prove (i) \Leftrightarrow (vi); (vi) \Rightarrow (vii) \Rightarrow (viii) \Rightarrow (vi); (vi) \Leftrightarrow (ix) and (ii) \Leftrightarrow (x).

- (i) \Rightarrow (vi) As $E(\cdot)$ has the CGS-property in H, W is countably generated. Thus, by Corollary to Proposition I.2.6 of [3], W has a separating vector and hence W' has a generating vector. If (i) holds, then by Theorem 3.1 W is maximal abelian so that W (=W') has a generating vector.
- (vi) \Rightarrow (i) Let W have a generating vector x. Then [Wx] = H and hence by Corollary 2 of Proposition I.6.4 of [3], W is maximal abelian. Thus $E(\cdot)$ is simple by Theorem 3.1.
- (vi) \Rightarrow (vii) As shown above, (vi) implies that W is maximal abelian and hence by Corollary to Proposition I.1.5 of [3] W has a generating-separating vector.
- (vii) \Rightarrow (viii) If [Wx] = H, then for each projection $P' \in W'$ we have P' = P'[Wx] = [WP'x] and hence P' is cyclic. Thus (viii) holds.

(viii) \Rightarrow (vi) By the hypothesis (viii), the identity operator as a member of W' is cyclic and hence these exists $x \in H$ such that [Wx] = I. Thus (vi) holds.

(vi) \Rightarrow (ix) Let x be a generating vector of W and let $\rho(x) = \mu$. Then by Theorem 60.1 of [5] there exists an isomorphism $U: Z_E(x) \to L_2(X, \mathcal{S}, \mu) = K$ (say) such that

$$UE(\cdot)U^{-1}f = \chi_{(\cdot)}f, \ f \in K. \tag{1}$$

Let $B(S) = \{f : X \to \mathcal{C}, f \text{ S-measurable and bounded}\}$. For $g \in B(S)$, we define $M_g f = g f, f \in K$. Clearly, $M_g \in \mathcal{L}(K)$. Let $\mathcal{R} = \{M_g : g \in B(S)\}$. It is easy to verify that \mathcal{R} is a C^* -subalgebra of $\mathcal{L}(K)$.

Given $g \in B(S)$, there exists a bounded sequence (s_n) of S-simple functions on X such that

$$\sup_{t\in X}|s_n(t)-g(t)|\to 0$$

as $n \to \infty$. Then, for each $f \in K$,

$$||gf - s_n f||_2 \le \sup_{t \in X} |g(t) - s_n(t)| ||f||_2 \to 0$$

as $n \to \infty$. Thus $M_g = \lim_n M_{s_n}$ in the uniform operator topology.

For an S-simple function $s = \sum_{i=1}^{p} \alpha_i \chi_{\sigma_i}$ we have

$$S(s) = \int_X s dE = \sum_{i=1}^p \alpha_i E(\sigma_i).$$

Then by (1) it follows that

$$US(s)U^{-1}f = (\sum_{i=1}^{p} \alpha_i UE(\sigma_i)U^{-1})f = sf = M_s f$$

for $f \in K$. Thus we have

$$US(s_n)U^{-1}f = M_{s_n}f, \ f \in K$$

for all n. On the other hand, as on p. 892 of [4],

$$S(g) = \lim_{n} S(s_n) \tag{3}$$

in the uniform operator topology. Therefore, by (2) and (3) and by the fact that $||M_{s_n} - M_g|| \to 0$ as $n \to \infty$, we obtain

$$||(US(g)U^{-1} - M_g)f||_2 \le ||(US(g)U^{-1} - US(s_n)U^{-1})f||_2 + ||(US(s_n)U^{-1} - M_g)f||_2 \le ||S(g) - S(s_n)|| ||f||_2 + ||M_{s_n} - M_g|| ||f||_2 \to 0$$

as $n \to \infty$, for each $f \in K$. This shows that

$$US(g)U^{-1}=M_g.$$

Consequently, \mathcal{R} is spatially isomorphic to $\{S(g):g\in B(\mathcal{S})\}$. Since $W=\{S(g):g\in B(\mathcal{S})\}$ by Theorem 4.1, it follows that W is spatially isomorphic to \mathcal{R} and hence (ix) holds.

(ix) \Rightarrow (vi) Taking \mathcal{R} as in the above, it is easy to observe that the constant function 1 is a generating vector for \mathcal{R} and consequently, W, the spatial isomorphic image of \mathcal{R} , has a generating vector. Thus (vi) holds.

(ii) \Leftrightarrow (x) by Proposition 2.5.

COROLLARY 5.1. If T is a normal operator on a separable Hilbert space H, then T has simple spectrum if and only if its resolution of the identity satisfies anyone of the statements in Theorem 3.1 or in Theorem 5.1.

REMARKS 5.1. By the equivalence of the statements (i) and (ii) (resp. (i) and (x)) of Theorem 5.1, a self-adjoint operator on a separable Hilbert space has simple spectrum if and only if it does so in the sense of Akhiezer and Glazman [1] (resp. in the sense of Stone [16]).

The following result (Lemma 1.2 of [15]) is deduced as a corollary of the equivalence of (vi) and (ix) in the above theorem.

COROLLARY 5.2. An abelian von Neumann algebra with generating vector is spatially isomorphic to the algebra of multiplications by bounded measurable functions on L_2 over a finite perfect measure space.

Proof. Let \mathcal{A} be an abelian von Neumann algebra on \mathcal{H} with its maximal ideal space \mathcal{M} . Since \mathcal{M} is extremally disconnected, for each $\sigma \in \mathcal{B}(\mathcal{M})$ there is a unique clopen set $\Upsilon(\sigma)$ such that $\Upsilon(\sigma)\Delta\sigma$ is meagre in \mathcal{M} (see p. 159 of [6]). Let $G(\sigma) = \Phi^{-1}(\chi_{\Upsilon(\sigma)})$, where $\Phi: \mathcal{A} \to C(\mathcal{M})$ is the Gelfand isomorphism. Then, as shown on pp. 159-160 of [6], $G(\cdot)$ is a spectral measure on $\mathcal{B}(\mathcal{M})$ and \mathcal{A} is the von Neumann algebra generated by the range of $G(\cdot)$. If \mathcal{A} has a generating vector $x \in \mathcal{H}$, then $[G(\sigma)x: \sigma \in \mathcal{B}(\mathcal{M})] = [\mathcal{A}x] = \mathcal{H}$ and hence $G(\cdot)$ has the CGS-property in \mathcal{H} . Now the equivalence of (vi) and (ix) in Theorem 5.1 establishes the corollary.

REFERENCES

- 1. N. I. Akhiezer and I. M. Glazman, Theory of linear operators in Hilbert space, (1950) (Russian), English Translation, Frederick Ungar, New York, V.2 (1963).
- 2. A. Brown, A version of multiplicity theory, Topics in operator theory, AMS Mathematical surveys, No. 13, Providence, RI, pp. 129-160 (1974).
- 3. J. Dixmier, Les algébres doperateurs dans lespace Hilbertien, Gauthier-Villars, Paris (1969).
- 4. N. Dunford and J.T. Shwartz, Linear operators, Parts II and III, Interscience, New York (1963), (1971).
- 5. P.R. Halmos, Introduction to Hilbert space and the theory of spectral multiplicity, Chelsea, New York (1951).
- 6. E. Hille and R.S. Phillips, Functional analysis and semigroups, Amer. Math. Soc. Colloquium Publ. V.30, New York (1957).
- 7. T.V. Panchapagesan, Introduction to von Neumann algebras: Lecture Notes, V.1 (Chapters 1-4) and V.2 (chapters 5-7) to be published in Notas de Matemática, "Universidad de los Andes, Mérida, Venezuela.
- 8. T.V. Panchapagesan, *Unitary invariants of spectral measures*, Proc. of the Ramanujan Centennial International Conference, Annamalainagar, Ramanujan Math. Soc. Madras, India, pp.103-108 (1988).
- 9. T.V. Panchapagesan, Multiplicity theory of projections in abelian von Neumann algebras, Revista Colombiana de Mat. V.22, pp.37-48 (1988).
- T.V. Panchapagesan, Uniform ordered spectral decompositions, Revista Colombiana de Mat. V.24, pp.44-49 (1990).
- 11. T.V. Panchapagesan, Unitary invariants of spectral measures with the CGS-property, Rend. Circ. Mat. di Palermo, V.42, pp.219-248 (1993).
- 12. T.V. Panchapagesan, Orthogonal and bounded orthogonal spectral representations, (to appear).
- 13. A.I. Plesner and V.A. Rohlin, Spectral theory of linear operators, AMS Translations, Ser. 2, V.62, pp.29-175 (1967).
- 14. F. Riesz and B.Sz. Nagy, Functional analysis, Frederick Ungar, New York (1955).
- 15. I.E. Segal, Decomposition of operator algebras II, Memoirs Amer. Math. Soc. V.9 (1951).
- M.H. Stone, Linear transformations in Hilbert spaces and their applications to analysis, Amer. Math. Soc. Colloquium Publ. V.15, New York (1932).
- 17. F.J. Wecken, Unitärinvarianten selbstadjugierter Operatoren, Math. Ann. V.116, pp.422-455 (1939).

Departamento de Matemáticas, Facultad de Ciencias, Universidad de los Andes, Mérida, Venezuela. Author's e-mail address: panchapa@ciens.ula.ve