NOTAS DE MATEMATICA Nº 141

A CHARACTERIZATION OF CONTINUITY

BY

JORGE VIELMA

UNIVERSIDAD DE LOS ANDES
FACULTAD DE CIENCIAS
DEPARTAMENTO DE MATEMATICA
MERIDA-VENEZUELA
1994

A CHARACTERIZATION OF CONTINUITY

Jorge Vielma

In [2] Kasahara introduced the concept of an operator associated to a topology. Following his approach we introduce two concepts that generalize those of almost-continuity and nearly-continuity of a function, and generalize the characterization of continuity given in [1].

Definition 1. ([2]) Let (X,τ) be a topological space and α an operator from τ to P(x). We say that α in an operator associated to τ if

- 1. $\alpha(\phi) = \phi$
- 2. U c α(u) for every uετ

Definition 2. Let (X,τ) and (Y,ρ) two topological spaces and α an operator associated to τ . Then a function f:X+Y is said to be almost α -continuous if for any open set V in Y, $f^{-1}(V) \subset Int \alpha(Int f^{-1}(V))$, and it is said that f is α -nearly continuous if for every open set in γ , $f^{-1}(V)$ is an open subset of $\alpha(Int f^{-1}(V))$ with the subspace topology.

Remark. If α is the closure operator, the above definitions coincide with that of almost continuity and nearly continuity respectively ([1]), and if α is the identity operator then each imply continuity.

Theorem. Let (X,τ) and (Y,ρ) be two topological spaces and α an operator associated to τ . A function $f:X\to Y$ is continuous if and only if it is almost α -continuous and α -nearly continuous.

Proof. Suppose f is continuous then for every open set V in Y the set $f^{-1}(V)$ is open. Then by (2) of definition 1, $f^{-1}(V) \subset \alpha(f^{-1}(V))$, then clearly $f^{-1}(V)$ Inta(Int $f^{-1}(V)$). Also since $f^{-1}(V)$ is open in $\alpha(Int f^{-1}(V))$ then f is both almost α -continuous and α -nearly continuous.

Conversely, if V is an open set in Y then $f^{-1}(V)$ is a subset of Int $\alpha(\operatorname{Int} f^{-1}(V))$ and an open subset of $\alpha(\operatorname{Int} (f^{-1}(V)))$. Then there is an open subset U of X such that $f^{-1}(V) \subset U \subset \alpha(\operatorname{Int} (f^{-1}(V)))$ but that implies that $f^{-1}(V)$ is an open subset of U, which in fact implies that $f^{-1}(V)$ is an open subset of X therefore f is continuous.

References

- [1] Jingcheng Tong, A characterization of continuity, Math Magazine, Vol. 65, N. 4(1992), 255-256.
- [2] Kasahara, S., Operation-compact spaces, Math Japonica 24(1979), 97-105.