THO COMPETING SPECIES IN AN T-PERIODIC ENVIRONMENT
IN N-DIFFERENT LOCATIONS

CARLOS S. ALVAREZ G*

ABSTRACT: We consider a model for competition between two spe-
cies which may be situated in several locations. We give con-
ditions under which the amounts of the species in the various

locations tend to become equal with increasing time.
1. INTRODUCTION.

In this work, we consider a model for competition between
two species in which the two species are situated in N d4if -
ferent locétions. We assume that there may be movement of
each of the species from a given location to another location.
We assume that the rate of such movemeht is proportional to
the difference of the amounts of the species present in the
two locations and it is possible for each species to move
from any location to another. However, we assume that in

each location the growth rate, rate of self destruction and
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where SL and SM denote the minimum and the maximum of a func-
tion S respectively, it was proved in DJ that such condition
imply the existence of a unique T-periodic soltuion of (1.1)
with both components positive which is asymptotically stable
and attracts all solutions starting in the open first quedrant
of the u-v-plane.

In section 2 we fix the conditions under which we work
and the notation to be used. 1In section 3 we stablish and we
prove various theorems which lead us to show the existence and
uniqueness of a T-periodic solution with the 2N-components po-

sitive for our problem which will be globally asymptotically

stable.
2. CONDITIONS AND NOTATION.

In this work we used as fundamental refference the paper
(0] which consider the problem (1.1) together with condition
(1.2) given in the introduction . 1In [1] was proved that
condition (1.2) imply the existence and uniqueness of a solu-
tion (uo(t),vo(t))T of (1.1) which is T-periodic, with both
components positive and globally asymptotically stable with
respect to the solutions of (li with initial values in the

first quadrant of the u-v plane. Here

(u, (), v, (€))7 = col(u, (t), v (£)),




<4
it is colum vector.

Now, we consider two species u and v competing in un
T-periodic environment in N locations where each species

can move from one location to another.

We,-in the next section, will show the existence and uni-

T . . e L.
%b) which is positive

.

queness of a T-periodic solution (ﬁo,
in a sense to be determined later, and also we show that this

solution is globally asymptotically stable.

In order to do that, we fix the following notation:
Ui(t) denotes the amount of the species wu at location

i(i=1,...,N), in analogue form

Vi(t) denotes the amount of the species V at location
i(i=1,...,n]. Migration of the species u from location
i to location j per unit time at time t will be denoted
by kij(uj(t) - ui(t)) where kij > 0 is a constant. Simi-
larly, mij(vj(t) - Vi(t)) denotes the migration of v from
i to j per unit time at time t where mij >0 .1is a

constant. With this in mind, we have the following system

of differential equations:



N
'ui(t)§§lkij(uj(t)-ui(t))+ui(t)(a(t)-b(t)ui(t)
—c(t)vy(B)]

2.1) | N

VECEI=E (v (£) 7y (£)) v (£) [4(8) e () vy (%)

-f(t)vi(t)].

-

Where a,b,...,f are as in (1.1), and ui(t)zo, vi(t)zo

.

(i=1,...,N).

Definition 2.1

kijlf i#3 mij if i#j
N I N
Let ¥i5%\x k.. if i=3 3™ 843% 1z m . if i
gl gy M
(AL AL

Remark.

We have that ¥y and &, are nonnegative if i#j

J 3

N N
and also that T %.,.=X &,.=0.
j=1 *J4=1 I
Rewriting the equation (2.1) and taking into

consideration the definition 2.1 we obtain the

equivalent system:




r N

j=l 1) 3] -
p, (t,4,¥)
(2.2) N
vi(t);ilaijvj(t)+vi(d(t)-e(t)ui(t)—f(t)vi(t))=
q (t,8,9)

with H(t)=(ul(t),uz(t),...,uN(t))T and

V() =(Vq (£),V,(E),0nn,vig(E)) T,

If we write B=(pl,p2,...,pN)T and 3=(ql,...,qN)T,

then we have in a compact form the system:

(2.3)

Here we assume that given two integers il’ i2, lsil,

izsN and il#iz, there exists jl,...,jr such that

¥: 4 >0, ¥+ s >0,...,%: . >0. Physically this means
43, 313, )

that species u can get from one locaticn to another.

We make the same assumption concerning 6ij'

We use (U(t),V(t))® to denote a solution of (2.3).

. T - T
Also, if 2=(al,...,aN) and n =(nl,...,nN) are

two vectors in R\ we say that g<q if and only if

&y<ny for i=1,...,N.

ui (£)=E Uy (E)+uy (£) (a(t) =b(E)uy (t) =c(t)vy (8))=



3. SOLUTION OF THE PROBLEM.

Theorem 3.1.

Let (U(t),V(t)) be a solution of (3.1) such that

d(0)>3 and ¥(0)>3
then

Q(t)>3 and V(t)>8 for all t>o0.

Proof.

If we suppose the contrary, there exists t*>0 such
- -

such that u(t)>3 and v(t)>0 for all te{0,t*) and

ﬁ(t*)23, V(t*)23 and either um(t*)=0 for some

me{l,...,N} or vm(t*)=0 for some me{l,...,N}. Suppose

that um(t*)=0.

Since um(t)>0 for ogt<t* and u (t*)=0 we have ué(t*)so.

N
But uﬁ(t*);ilymjuj(t*)+um(t*)(a(t*)-
b(t*)u (t*)=-c(t*)v (t*)).
N
' = T
So um(t*)jilymjuj(t*)zo, from which we
J#m

conclude that uﬁ(t*)=0.
We want to show that for anv i#m ui(t*)=0.
By assumption there exist jl’jz"”’jr such that

20,000 ,%2 i>O.

?m >0, ¥.
31 ] ip .

lj2



N
From u! (*)=E y_.u,(t*) and U(t*)>0, ¥
m j=1 mj Jj '
j#m

and.ymjzo for m#¥j, we have ujl(t*)=0.

" Replacing m by jl in our reasoning we have

N
u! (t*)=x . LU (t*)=0.
3y j=1 31373 \

3734

We have ﬁ(t*)23 and ?j jzo (jl#j): therefore, since

1
¥: « >0, u, (t*)=0. Replacing m by j., in our
3132 32 2

reasoning we have

N
O=u! (t*)=x ¥: 2u.(t*) and using-
J, 3=1 3,373
3#3,

T(t*)20, ¥ -

32320 for 3#32 and yj2j3>0 we conclude

that u, (t*)=0.
I3
Repeating this reasoning a sufficient number of
times we get finally that

ujl(t*)=uj2(t*)=...=ujr(t*)=0.

Replacing m in our reasoning by jr we have

N
ul! (t*)=X <¥. .u.(t*)=0 and taking into consideration,
Jr j=1 12373
73,

once again, that U(t*)>0, y. .20 for j#3_, and y. .>0
I r B U



we conclude that ui(t*)=0.

We have shown that if um(t*)=0 for some
me{l,...,N) then u,(t*)=0 for all i. Thus U(t*)=0.

Now let us consider the system:

T T
(#%) ¥'=q(t,8,¥) where G=(qy,-«-,qy) s ¥=(¥qs - r¥y)

5 N
and gy (£,8,9) 78 8357, (£)+y; (1) (A(E)-£(E)y; (£)) .
j=

Let Y(t)=p(t) be the solution of (**) such that
G (E*)=V(£*) .

- T . .
Then (3,¢(t)) is solution of (2,.2); and since

(B(t),¥(t))T is solution of (2.2) and both satisfy

the same initial condition at t=t*, we have from

uniqueness that 3(t)§3, which is a contradiction. A

similar contradiction results if we suppose vm(t*)=0

for some me{l,...,N}.

Theorem 3. 2.

-9~

It (3l(t),vl<t))T and (az(t>,vz<t))T are solutions

of (3.2) such that

3<31(o)<32(0) and 6<32(0)<Vl(0)
then

3<Hl(t)<32(t) and 3<vz<t)<vl(t) for all t>0.
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Proof:
Let T, (£)=(u.. (t),u..(t) U, (t))T and
i il 1732 re** 124N

Vi(;)=(vil(t),...,viN(t))T for i=1,2.

Let us suppose the contrary; then there exists

t*>0 such that
3<31(t)<32(t) and 3<vz(t)<vl<t> for all te(0,t*),

and also

Gl(t*)gﬁz(t*) and vz(t*)svl(t*> and either
ﬁl(t*)<32(t*) or 32(t*)<$l(t*) does not hold.
Suppose that 3l(t*)<32(t*) does not hold.

(3 * (]

Since ﬁl(t*)suz(t*), ulj(t*)guzj(t*) for j=1,...,N,
there exists me{l,...,N} such that ulm(t*)=u2m(t*)
and v2m(t*)sv1m(t*).

Let hj(t)=u2j(t)-ulj(t) =1, ...,N.
Since hm(t)>0 for all te[0,t*) and hm(t*)=0 we have
hﬁ(t*)go.

Calculating hﬁ(t*) we cbtain:
hp (E*)=u) (t*)-uj (t¥)

N
=Z?

o g (g (£9) 5 (£9)) 40 (65) 6 (85) (V1 (£4) Vo (£9)

mj
Since uZm(t*)c(t*)(vlm(t*)-vzm(t*)zo and from

hypothesis the terms in the summation are nonnegative,
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we conclude that hﬂ(t*)zo, so we have shown that
hé(t*)=o.

N
N°w-hﬁ(t*)§§l g (Upq (E*)=uy 5 (E%) ) +uy (%) C(E%) (v (%)
j#m
v, (£*)), or,

. N M
(3.1) hu(EX)SE - Ypghhy (E4) 4y (EX) S (8%) (V1 (E4)
j#m
-v2m(t*)).

N

Now.z ?m.hj(t*)zo and u
=1 3
J#m

vlm(t*)-VZm(t*)=0.

2m(t*)c(t*)>0 implies that

We will show that for any i#m we also have

hy (t*)=u,, (t*)=u,, (£*)=0 and v , (t*)=v,, (£*)=0.

By assumption there exist jl’jz""'jr such that

v >0, ¥i o
mj, ! 3132>0,...,yjri>0.

From (3.1) since jl#m, ymjl>0 and ymjzo (j#m)

we conclude that hj (t*)=0,
1

Replacing m by jl in our reasoning we have

N
O=h! (t*)=X y. .h.(t*)+u, . (t*)c(t*) (v, . (t*)=-v, . (t*))
bRy j=1 71373 235 135 211 !
j#jl . .
and taking into consideration that ~ e
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uzjl(t*)c(t*)>o, yjljzo for j#jl, yjlj2>0 and

hj(t*)zo we obtain hj (t*)=0 and vljl(t*)-vzjl(t*)=0.

2

- Replacing m by j2 in our reasoning we have:

N

| 0=h} (t*)=% 9. .h.(t*)+u2.2(t*)c(t*)(vljz(t*)-

373,
Va3, () n

>0, ¥; 420 for j#jzl

d i that %y.
and using that yg 3,3

2j3

u,. (t*)c(t*)>0 and hj(t*)zo we conclude that hj (t*)=0
2

27 3

and vljz(t*)-vzjz(t*)=o.

Repeating this reasoning a sufficient number of times
we finally get

hjl(t*)=hj2(t*)=...=hjr(t*)=0.

Replacing m by jr in our reasoning we have

N
O=h! (t*)=Z v, .h.(t*)+u,. (t*)c(t*) (v (t*)
Jp' T Tym1 7333 2], S
Jf]r
~V2jr(t*)).
Since ?jrjzo for j#jr, yjri>o, hj(t*)zo, uzjr(t*)>0

and c(t*)>0, we obtain that

h, (t*)=0 and v, r(t*)-vz-r(t*)=0r

J 3
so uzi(t*)=uli(t*).

Finally replacing m by i in our reasoning we obtain
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vli(t*) = v,; (E%).

Since 1 is arbitrary, ul(t*l = uz(t*) and vl(t*)=v2(t*)
which contradicts the uniqueness theorem because

El (0) < d,(0) and v,(0) < v, (0).

A similar contradiction is reached if it is assumed that

32(t*) < $l(t*) is not true.
Remark. By continuity of the solution with respect to ini-

tial conditions, it follows that if (El(t), gl(t))T and

(ﬁz(t), \‘72(,t))T are solutions of (2.2) with 0 < ﬁl(O)jii (0)

2
and § < %2(0) < Gi(O), then 0§ < ﬁl(t) < ﬁz(t) and

0 < vy(t) < ¥ (&) for t > 0.

Definition 3.3.

. Let ¢, Kl and K2 such that
(3.2) e < aM/bL < Kl and € < dM/fL < K2 and
(3.3) aL-bM €-Cy kL > Q0 and dL— ey kl - fM e > 0.
holds
So, we define the set A by
A > > T .
A= {(,n) e < gi < kl and € < n; < k2 for i=1,...,N}.

Lemma 3.4.

Let (.u(t),v(t))T be any solution of (1.1); then the pair

(G(t),¥(t]) T defined by:
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H(t)=(ul(t),...,uN(t))T with ug(t)=u(t) for 3=1,...,N

and J(t)=(vy(t), ..., V()" with v, (t)=v(t) for

j=1,...,N, is solution of (2.2).

| Proof:

This proof follows easily taking into consideration

N N *
that % _.=X & _.=0 for each me{(l,...,N}.

i=1 mjj=1 mJ
Remark:

From this lemma we have that the pair (ﬁ’o(t),?;o(t))T

with ¥ (t)=(u,(t),...,u (t))T and

Vo (£)=(V, (£), ...,V (£))T where (u_(t),v_(t))T is the
uniqﬁe T-periodic solution of (1.1), is a T-periodic

solution of (2.2).

Theorem 3.5.

If (B(t),V(t))T is a solution of (2.2) with
(3(0),¥(0)eA, then (U(t),V(t))eA for t>0 and
Id(t) U, (t) =0, IV(t)-V, (t)[-+0 as t-o where

('ﬁ'o(t),vo(t))T is the T-periodic solution of (2.2)

defined above.

Proof:
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Let Oﬁ_(t), vl(t))T nad (uz(t), vz(t))T be the solu-

tions of (1.1) such that (ul(O), vl(O))T = (g,k )T and

2
T T
(0,00, vy 1) = ey e)

In [1] it was proved the following if 0 < uy (0) < u,(0) <k
and 0 < v,(0) < v, (0) <k, then 0 < u (£l < u,(t) < Ky

and 0 < V2(t) < vl(t) < k for all t > 0.

2

Also, it was proved that
Il u, (&) - u(t) |+ 0 and | v, (8) - v (t) - o0

when t - o for 1 = 1,2. This implies that if

(ul(t), vl(t))T and (uz(t), v2(t))T are the solutions of
(2.2) defined by

(@, 6, vy T = Cluy e, eepuy N7, oy (B, v @) DT

then & 0) <& (£) < U, () < U@ and V,0)< v,(8) <V @ <V
for t >0 and | Ei(tl-ﬁo (€1 ]| »0, || v (e} =V, (£1 ]| > 0 as

t >~ for 1i-1,2. 1If (G(t),z(t))T is a solution of (3.2}
with (4(0), v(0)) € & then u, (0) < u(0) < 4,(0) and
32(0) < v (0) < 31(D) and so by the remark following "the
proof of theorem 3.2 we have 31 (0) < 1—31 (tl< () < 1_52(1:) < 32(0)
and ;2(0) < v, (t) < v (t) < 31(t) < $l(0). This implies

taht (Q(t), v()) ¢ A for t >0 and | Uttl-u,(t) ||~ o,

| ¥ () -, ()] >0 as t > o,

15 ~
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Remark.

This tells us that (ﬁo(t), Go(tl)T is asymptotically
stable in ﬁ, and this implies that this T-periodic solution

~

of (2.2) is unique in A,

Theorem 3.6. (Global Stability of (3, (t), v, (t))1).

Let k and k2 satisfy kl > aM/bL, k2 > dM/fL and

1l
ar, = ©y k2 > 0, dL - ey kl > 0,
-> -+ T .
Let (u(t),v(t)) be any solution of (2.2) such that
> -> > >
u(0) > 0 and +v(0) > Q. Then there exists t* > Q0 such
that u, () < k;, v, (t) <k, for i=l,...,N and t > t¥,

and

lim || Q(e)=G, (t) || = 0, 1lim || V(t)-v,(t) |l = 0.

£t £

Proof.

First, consider the uncoupled system of self competing

problem
(3.4) U' = U [a(tl - b(t)U]
(3.5) V' = v [dtl - £(£)1V]

where a,b,d and f are as in (1.1) and U(t},v() > 0.

It is well known that the equations (3.4) and (3.5) have

an unique T-periodic, positive solution denoted by Uo(t)
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and V,(t) respectively, which are globally asymptotically

stable (see 2 ).

Ou the other hand, it is easy to see that if (U,, VO)T

is the T-periodic solution of (3.4) and (3.5) then
(3.6) ap/by < Uo (t) < ay/b,~ and
(3.7) d,/fy S Vo (t) < 4y/f,  for all t > 0.

Now, let (U(t), V(t))® be any solution of (3.4)-(3.5)

such that
max {ui(O): i=1l,...,N} < U(0) and
max {vi(Ol: i=1,...,N} < v(0).
CLAIM:

ui(t) < U(t) and vi(t) < v{t) for all t > 0 and

i=l,...,N. Suppose, on the contrary, that our claim is not

true. Then there exists t, >0 such that for all

i=1,...,N, u; (£} < U(t) and v, (t) < V(t) for all t e[0,t.),

but at t = t,, um(to) = U(t,) for some m e{l,...,N}, or
Vh(to) = V(t,) for some m €{1,...,N}. Suppose um(t°)=U(t°)
holds.

If hj(t) = U(t) - uj(t), then hj(t) > 0 for all

t e[0,t,) 3=1,...,N and h (t;) = 0. This implies that

- 17
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-1 8
h1;1 (t,) < 0.

We have hI'n(tO) = U'(t,] = U' (tc,)—ul;,1 (t,) where

N
U' (to) = Ulty) (alty) - b(t,)U(t,)) =] vy . Ult,) + Ult,) (alt,)-
=™

- b(t,)U(t,)])

because Zl ij = 0, and

w (t,) = Y Ymy Y3 (ko) + u (to) (alte]l - blt,) u (t,] -

- c(t,) v (tol).

Now u (t,) = U(t,) and so
N
u (t,) =j£l Tmi 5 (to] + Ult,) (alte) - b(t,) U(t,) -

- c(t,} vm(toll.
From this we obtain

N
hr;x(t°) =7 Y_. hj (t,) + c(t,) U(t,) Vm(to) and since
J";L‘/M
ij >0 for j # m, hj(to) >0, c(t,) >0, U(t,)] >0 and
v, (t,1 > 0, we have hn'1 (t,) > 0, which is a contradiction.

This proves our claim, because a similar contradiction
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is reached if we suppose that vm(t°)=V(t°) holds.

On the other hand, we have (U(t), V(t))T is
soluticn of (3.4) - (3.5) with U(0)>0 and V(0)>C, so
U(t)-U,(t) and V(t)-V_(t) as t-» where
aL/bMSUo(t)SaM/bL<k1 and dM/fL-f Vq(t)'i dL/fM < K, for all
t>0 . Theréfore, for t 1large, ie, for t > t* for

.

some t* » 0, we have 0 < U(t) < t1 and

0 < v(t) < kz‘

Hence there exists m>0 such that
0<U(mT)<kl and o<V(mT)<k2 and therefcre O<ui(mT)<U(mT)
and 0<vi(mT)<V(mT) for i=1,...,N. Choose £>0 such
that s<ui(mT) and s<vi(mT) for i=1,...,N, and such that

inequalities (3.2).and (3.3) are satisfied. Let A be

defined as in definition 3.3.

-]
Now we have (ﬁ(mT), V(mT))sA.

1£ U, (t)=d(t+nT) and V,(t)=V(t+mT), then we have that
- - T ., .
(u3(t), v3(t)) is solution of (2.2) because of
T-periodicity.
, - - I .
Since (u3(0), v3(0))sA, it follows from
Theorem 3.5 that (33(t), Vs(t))cﬁ for all t>0 and

iy (£) =, ) B0, I¥5(0) =9, (£) a0 as tea.

This means: 19 -
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Id(t)-d, (t) =0, IV(t)-V_(t)|+0 as t-o and the proof

is complete.

-20-
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