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KRONECKER FUNCTION RING AND STRONG N-RINGS

J. Pascual Garcia*

Universidad de Los Andes

Departamento de Matemiticas, Mérida, Venezuela

Thioughout this paper R will be a conmutative ring with identity having
total quotient ring T(R). A nonzerodivisor of R is called a regular element
and an ideal of R is regular if it contains a regular element. An ideal I
is faithful if 0:1 = 0 (for ideals A,B of R, A:B = {xeR| x B € A}) and an
ideal is semiregular if it contains a finitely generated faithful ideal.

A ring is called a Prufer ring if every finite generated regular ideal is
invertible.

Many of the characterizations of Prufer domains when properly stated
for rings with zero divisors yield characterizations of Prufer rings. For
example, see Anderson and Pascual [4], Griffin [6] and Larsen and McCarthy
[11, chap. 10]. R is said to be strongly Priifer ring if every finitely
generated faithful ideal is locally principal. Strong Prifer rings were
introduced in Anderson ef alk. [3]. In general, our terminology and notation

will follows that of Gilmer [7] and Larsen and McCarthy [11].

*This research is part of the author's dissertation done at the University

of Iowa under the direction of Professor D. D. Anderson.
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Let D be an integrally closed domain with identity and {Vu} the
set of valuation overrings of D. TFor an ideal A of D, K =/&Ava is
an ideal of D called the completion of A. The Kronecker function ring
D of D is defined to be D" = {f/g|f, & € D[x], &, ¢k and
D(X) = {f/glf, g € D[XI, Ag = D}. Kronecker function rings have been
studied by Prufer, Krull and Nagata [13]. The generalization for rings
with zero divisors has been done by Hinkle and Huckaba [9] and also by
Matsuda [12] when the ring R has Property (A) and is a Marot ring.
Here; we define the ring RK for strongly Priifer rings and for those
rings we show that R(X) = RK. Also we define and characterize strong
N-rings, a generalization of N-rings.
be the content of £, that is, if

£ —_

n . .
ag + a; X+ ...+ a X, then Af = (ao, ceey an), s0 Af is the ideal

of R generated by the coefficients of f. It is clear that for f, g in

For f € RLX], we let A

f =

R[X], A_, CA_+A_ and that A, C AA, also for any element XA in
g— £ &8 g— fg

f+ f
R, we have A>\f = AAf. Anderson [2] pointed out that if Af is locally
principal then Afg = Ang. Among integral domains with identity, Prifer

domains are characterized by the property that Afg = Ang for each pair
f,g of polynomials of KEX]. A similar theorem holds for Prufer rings.
Now, we wish to recall a theorem from Gilmer([7], Corollary 28.3).

PROPOSITION 1. If f£f,g €& R[X], then there exists a positive integer

k such that AT1a = aKa_ .
f g ffg
If A; is a cancellation ideal of R, thus for any g ¢ T(R) [X] we
have Ang = Afg' Thus for Prufer rings we have the following.
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COROLLARY 2. Let R be a Priufer ring with total quotient ring T(R).

A =A

is regular, we have Af 2 fg-

Then for any f €'T(R)EX] such that Af

We have a partial converse of Corollary 2.

THEOREM 3. Let R be a ring with identity with total quotient
ring T(R). If for all f,g € T(R){X], with f or g regular, we have
Ang = Afg then R is a Prufer ring.

Proof. We will show R 1is integrally closed and for every regular
ideal generated by two elements we have (a,b)? = (a?,b?), then by
Theogem 1 of J. Pascual [4] follows that R is a Prufer ring.

Let b be an element of T(R) integral over R. Then there exists
a monic polynomial f(X) in REX] such that b is a root of f(X). 1In
T(R)[X], £(X) = (X-b)g(X), where g(X) € T(R) [X]. Then we have R = A
= A(l,b)Ag' But g(X) is monic, so 1l € Ag' Consequently b € (l,b)Ag

R so R 1is integrally closed.
Now if a,b € R and a is a regular element of R, the equality
RY = a2v2 _ 12 . -
(aX+b) (aX-b) = a“xX b“ implies that A(a,b)A(a,b) A(az,bz) SO

(a,b)(a,b) = (a,b)? (a?,b?). Theorem 1 of Anderson and Pascual [4]

implies that R is a Prufer ring.

Now we shall define *-operations for rings with zero divisors. Let
A be a submodule of T(R) with bA C R for some regular element b € R,
then A is called a fractional ideal of R. We denote by F(R) the
set of all fractional ideals of R.

DEFINITION 4. Let * be a mapping from F(R) into F(R),

* 1 F(R) > F(R), such that:
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(1) For each A € F(R), we have A C A* and if A C B, then

A* C B*,

(2) For each regular element b ¢ T(R) and A € F(R) we have
(b)* = (b) and (bA)* = bA%*,

(3) For each A € F(A), (A%*)* = A*,

then * is called a *-operation in F(R).

Since each fractional ideal A of R, A

B/d = Bd~! for some

ideal B of R, then an *-operation on R is completely determined by

its action on the ideals of R.

DEFINITION 5. i) Let * be a *-operation on R, then * is a.b.

*-operation if
(aB)* C (AC)* implies B* C C*
for A, B and C 1in F(R) and A finitely generated and regular.
ii) 1If for B,C finitely generated and A regular finitely
generated fractional ideals, we have
(AB)* C (AC)* implies B*  C*
then * is e.a.b. *-operation.
PROPOSITION 6. Let F > F* be an *-operation on a ring R.

for all A,B F(R), we have:

3 *) % i 1 i :
(1) (gAa)’ (gAa) if ZA@ is a fractional ideal of R.

(2) (NA)* =(Na*)* if NA* 4 0.
o o o o o

o

(3) (AB)* = (AB*)* = (A*B*)%*,

Then

Proof. The same proof as for integral domains (Gilmer [7], Theorem

32.2).
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THEOREM 7. Let R be a Prufer ring and {Ru} be the set of all
valuation overrings of R. Define the map * : F(R) - F(R) by

(F)* =[\FRa. Then * 1is a *-operation.
(¢4

Proof. First we note that F* =f}FRa is a nonempty submodule of
o
T(R) and if d 1is a regular element of R such that dF ¢ R, then

d(fJFR)) =ANdFR, CRR, =NR, = R.
a o o o
Therefore, F* € F(R).
‘We show that F - F* is a *-operation.
(1) If a is a regular element of R, then
(a)* =faR_ = (a){DR.) = (a)R = (a), and if A € F(R),
o ¢ a @

aA* = a(nARa) ={\(aA)Ru = (alA)*.
a o

(2) 1t is clear that A& A* and if AC B, then A* C B*.

(3) Let F ¢F(R), so F =Ad"!, where d is a regular element

so that F* = (Ad"!})* = d"!A* and F** = A**d”!. Therefore

to show (3) we need to show A** = A* for A an ideal of R.

Since (A*)* =I\A*Ra, then A* C (A*)*., For each a, ARoc is
o
the extension of an ideal of R, so ‘ARa is the extension

of its contraction to R, AR = (AROLnR)Ron 2 A*Roc' Then we

have A* = {'\OLAROL QnA*Ra = (A%)*,
o

Therefore (1), (2) and (3) prove that the conditions of Definition 4
are satisfied so F* ={\FR@ is a *-operation.

o
Moreover, FR@ = F*Ra for each fractional ideal F.
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Furthermore, ¥ > F* is a.b. *-operation. Let A,B,C be elements

of F(R) with A finitely generated and regular, such that (AB)* C (AC)*.

Then for each O,
= * * =

Since R 1is a Prufer ring and A is finitely generated and regular,
then ARa is a finitely generated regular ideal of Ra’ then ‘ARa is
invertible, so that AR, is a cancellation ideal. Therefore, BRa S;CRa
for each o, and consequently B* C C*,

LEMMA 8. Let R be a strongly Priifer ring, then for f,g ¢ R[X] - {0}

with f regular

(Afg)* (Ang)*-

Proof. Since f 1is regular, then O : Af = 0, and then Af is a
semiregular ideal of a strongly Priufer ring and hence is locally principal,
$0 Afg Ang and thus (Afg) (Ang) .

LEMMA 9. Let R be a strongly Prifer ring and let f,g,h ¢ R[X]
such that f is a regular element of R[X], if (Ang)* é;(AfAh)* then

* *
(A )% S (8%

Proof. Since R 1is a strongly Prufer ring and f is a regular
element of R[X], we have (O:Af) = (0, that is, Af is a semiregular
ideal of R. Let {Rq} be the set of all valuation overrings of R.

—_ * % =
Then for each o, AngRa (Ang) RG,E; (AfAh) Ra AfAhRa'

Since Ra is a Prufer valuation ring, then AfRa is a cancellation

; * *
ideal, then AgRocg AhRoc for each o. Therefore (Ag) c (Ah) .



~-104-

THEOREM 10. Let R be a strongly Prufer ring and let
R* = {0} U {-g’lf,g € R[X] - {0} with g regular and A? SA;}. Then
(1) R* is a Prufer ring.
(2) Every finitely generated regular ideal of R* is principal.
Proof. (1) We have to show first that R* is well defined. Hence

§3 g,t regular and

we assume that f,g,s,t g R[X] - {0}, and-é

t
A’E C Ag. We show that A’s‘ SA’E. We have ft = gs, so :
(8,4, ay) (Ag,) (AGA)
= kA )% *A )% = %*
(AfA)* C (AgAt) (AgAt) .

* %
So (AgAs) S;(AgAt) .
But Ag is a semi-regular ideal and locally principal, then Ag

is a cancellation ideal (Anderson [1], Theorem 3). By Lemma 9,

(Ag)* C (Ap)*.

If -é and -% are nonzero elements of R*, then A CA., +A

ft-gs = " ft gs’

so that
[ ?:\

% % x 4+ A% )%
Aft—gs ft + Ags) S:(Aft Ags)

* %)%
((AfAt) + (AgAs) )
= *AX) % AR &) %
((AfAt) + (AgAS) )
*kA%)k = A%
- (AgAt) Agt
then ft-gs --é-— %— is in R*,

gt

R* is also closed under multiplication, the proof follows in a

similar way.

109
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It is clear that R R* and {X,X '} CR*. In particular R* C
total quotient ring of R[X].

(2) Let A be a finitely generated regular ideal of R*. We need
to show A is principal. We can assume that A 1is generated by a
and B with o regular, say A = (a,B), o = %3 B = %3 where f,g,h €
R{XJ - {0}. We choose a positive integer n greater than the degree of

f. Set y = 0o+ XnB, and we prove that (a,B) = (y). .

The containment (y) C (a,B) is clear.
f

f+Xng

. o
To show the reverse containment, we need to prove — = , and

=-——ga— are elements of R*. Note that f + Xng is regular. By the
f+X''g

=< [

choice of n, we have

Af+Xng = Af + Ag.

and (Ag)* C(a ).

f+xX0g

Then (Ag)* g (Af+Xng)*

Therefore, (a,B) = (y).

of T(R), where a,b ¢ R, is in

olw

Note that a nonzero element
R* if and only of (a) € (a)* C (b)* = (b), that is, if and only if
% € R. Therefore R* NT(R) = R. Also, if A is a finitely generated
regular ideal, say A = (ao,al,...,an) then the fact that AR* =
(ao+a1X+...+aan)R* follows in the same way as the proof of (2). There-
fore, if d € T(R), d € AR* if and only if d/(ao+alx+...anxn) €R or
equivalently, if and only if (d) C (d)* g;(ao,...,an)*. Therefore
AR* N\ T(R) = A*.

We state this result in the following.
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CORROLARY 5.11. Let R be a strongly Priifer ring then R* ) T(R)
= R and if A 1is a finitely generated regular ideal of R,

AR* M\ T(R) = A%,

The ring R* defined in Theorem 10 is called the Kronecker function
ring of R with respect to {X} and the operation *. All the results
are valid for an arbitrary set of indeterminates. Therefore, we may
extend the Kronecker function ring of R for any set of indeterminates.
We denote the Kronecker funtion ring of R with respect to the
b—opération, that is, completion by DK.

DEFINITION 12. Let R be an integrally closed ring and let {Va}
the collection of all valuation overrings of R. If T is an ideal of
R, then TI' =f&IVa is the completion of I. If I = 1I', we say that
I 1is a complete ideal.

PROPOSITION 13. If R is a Prufer ring, then every ideal of R
is complete.

Proof. Let {Vu} be the set of all valuation overrings of R.
Since R is a Priifer ring Va = REPa] for Pa = Ma(\ R, where Ma is
the maximal regular ideal of Va' Given an ideal I of R, by Gilmer

and Huckaba ([8], Lemma 5), we get

I ={\OLIVOLQIR[MB] = I.

Therefore, every ideal I of R 1is complete.

In [9], Hinkle and Huckaba showed that if R is a Marot ring, then

R is a Prufer ring if and only if every ideal is complete.

AR B
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We wish now to introduce the ring R(X) and study the relation

between R(X) and R. Let S = {f € R[X]IAf R} then S is a

multiplicative closed subset of R[X] and S

R [Xl - (\gLMOL [X]) » where
{Ma} is the set of all maximal ideals of R and Mu[X] denotes the
ideél of REX] generated by Ma. The ring R[X]S is denoted by R(X).
For some properties of R(X), the reader is referred to Gilmer ([7],
Section 33). The relation between the ideal theory of R(X) apd R
has peen studied by several authors. For integral domains, Arnold [5]
showéd that the following conditions are equivalent:
(1) R is a Prufer ring
(2) R(X) is a Prufer ring
(3) REX) = RK, where RK denotes the Kronecker function ring with
respect to b-operation.
(4) RK is a quotient ring of REX].
Arnold's results have been partially extended to rings with zero divisors
by Hinkle and Huckaba [9]. Anderson [1] proved that R is arithmetical
of and only if R(X) is arithmetical. Another result of Anderson,
Anderson and Markanda [3] is stated here for completeness.
THEOREM 14.
(1) If R is a ring with identity, then R(X) 1is a Prufer ring
if and only if R is strongly Prufer.
(2) The following conditions are eqﬁivalent.
(a) R 1is strongly Prifer.

() If 6 : L(R) ~» L@®REX)) is the map 6(I)

[}

IR(X), then

the regular ideals of R(X) are a subset of the image of 0

112
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(¢c) © is a multiplicative lattice isomorphism between the
sublattice of semiregular ideals of R and the sublattices
of regular ideals of R(X).
The following theorem shows the equality between R(X) and RK for

R strongly Prufer.

THEOREM 15. If R is a strongly Prufer ring, then R(X) = rK.

Proof. By definition and Theorem 10, RK = fé[f,g € R[X] - {o}

with g regular and A% g,Ag}. Since R is a strongly Prufer ring, we

have that each ideal is complete, so A% = Af and Ag = Ag' Then

RE = {—g—lf,g € R[x] - {0}, with Ag gAg, and (O:Ag) (0)}.

Since the containment R(X) C Y s always true, we have to show
only the reverse containment. Let g— be an element of RK with
Af g Ag' Since R is a strongly Prufer ring, Ag is locally principal.
Then we have gR(X) = AgR(X) and AgR(X) - AfR(X) 2DER(EX), so
gR(X) Q fR(X). Thus f = gh where h € R(X). Therefore, é = h € R(X)
and R(X) = R\,

Larsen [10] defines an N-ring R to be a ring R such that for
all regular maximal ideals P of R, 1igﬂ is a discrete rank one
valuation ring. Griffin Bﬂ proved the following theorem.

THEOREM 16. For a ring R the following are equivalent:

(1) R is an N-ring.

(2) 1If A,B,C are ideals of R, with A regular the AB = AC

implies B = C.

(3) R is a Prufer ring with each regular prime ideal maximal and

not idempotent.
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(4) The semigroup of regular ideals of R may be embedded in a
direct product of ordered cyclic groups.

(5) R 1is a Prufer ring such that for any ideal A of R,

s
b3
=

consists entirely of zero divisors.

To extend those results, we introduce a new definitiomn.

DEFINITION 17. A ring R 1is a strong N-ring if the cancellation
law holds in R for all semiregular ideals of R. .

.Then, it follows from the definition that every strong N-ring is
an N-ring, and as the following lemma shows, any strong N-ring is strongly
Prufer.

LEMMA 18, If R is a strong N-ring, then R 1is a strongly Prufer
ring.

Proof. Since the cancellation law holds in R for semiregular
ideals, in particular it holds for finitely generated regular ideals of
R, so that R 1is a Prufer ring. Let A be a finitely generated
semiregular ideal of R, then A 1is a cancellation ideal and for any
maximal ideal M, Ay is a cancellation ideal (Gilmer [7], pag. 66
Exercises 5 and 6). Furthermore, A 1is locally principal, so R is a
strongly Prufer ring.

THEOREM 19. The following conditions are equivalents:

(1) R(X) is an N-ring.

(2) R 1is a strong N-ring.

(3) R is strongly Priifer and everly semiregular prime ideal P

is maximal and satisfies P? # P.
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(4) The semigroup of semiregular ideals of R may be embedded
in a direct product of ordered cyclic groups.

Proof. (1) => (2). Let 1 be a semiregular ideal of R. Then
I(X) = IR(X) 1is a regular ideal of R(X). Now if IJ = IK, then we
havé IJX) = IK(X) and IX)JX) = TX)KX) and since RX) is an
N-ring TI(X) is a cancellation ideal, so that J(X) = K(X), and hence
J=JXNR=KXNR =K. .

(2) => (3). Assume R 1is a strong N-ring, then by Lemma 18, R
is sfrongly Prifer. If P is a semiregular prime ideal of R, then
P # P2 by the cancellation law. We want to show that any semiregular
prime ideal is maximal. Let P be a semiregular prime ideal and P C M,
for M a maximal ideal of R; if we show that PM = P we will get a
contradiction. We show this relation locally. Let N be a maximal

ideal of R with N # M, then MRN = RN and (PM)RN = PRNMRN = PRN so
(PM)N = PN.
Assume now that N = M. Since P 1is semiregular then there exists
A C P, finitely generated and (0:A) = (0). Let x g¢P and y €M - P.
Then (A,x,y) is a finitely generated semiregular ideal, so (A,x,y)M

is principal, say, (A,x,y)M = (z) where necessarily z g€ M - P.

M
Then x/1 = Xz/1, where X € Ry Now z/1 = x/1 € R, and

z/1 GPM, then A € Ry so that x/1 € Py.My and then PyC (PM)y, and

since the other inclusion is always true, we have PM = (PM)M. Therefore

P =MP, but P is a cancellation ideal, so R = M, a contradiction.

Hence P is maximal.
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(3) => (1). By Theorem 14, if R is strongly Prufer, R(X) is
a Priufer ring. Let P(X) be a regular prime ideal R(X). Thus there
exists a polynomial £(X) = ag + a;X + ...+ aan such that £(X) € P(X)

and f(X) 1is regular, that is, (Af:O) = (0). Then A_ 1is a finitely

f
genérated semiregular ideal, so A is locally principal, then AfR(X)
= fR(X) €P(X), so Afg PX)NAR = Py. Hence Py 1is a semiregular
prime ideal of R. Thus P; is maximal and Pg # Py- Then Pg(X) C
P(X)‘ and PO(X) is maximal and P(X) = PO(X) # Pg(X). Therefore, by
Theorem 16, R(X) is an N-ring.

(4) => (). It is clear.

(2) => (4). Since we have already proved the equivalence of (2)
and (1), the semigroup of ideals of (RX) may be embedded in a‘direct
product of cyclic groups. By Theorem 14,(c), the map 6 : L(R) > L(R(X)),
8(I) = IR(X) is an isomorphism between multiplicative lattices, in
particular, is a semigroup isomorphism, then the semigroup of semiregular
ideals of R may be embedded in a direct product of cyclic groups.

LEMMA 20. If R' 1is an overring of R, then R'(X) is an overring
of R(X).

Proof. Let R' be an overring of R. Then R'(X) = fé!f,g € R'[X]
and Ag = R'} and the total quotient ring of R(X) is T(R(X)) =
f%|s,t € R(X) and t is regular}. Then if -% €ETREX)), w= é; where
f,s ¢ R[X] with AS =R and t =-§, where r,g € R[X] with Ag = R and
r regular element of R[X]. Then to show that R'(X) is an overring

of R(X) it will be enough to prove R(X) CR'(X) CT(R(X)). If é is

an element of R'(X), then f = ag + alx + ...+ aan, g = bO + b1X +
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... + b X® where a. €R', b.g R' and A =R'. Then
m i ] g

_}.vv 1y lvv 1y 1
f= S(aO+a1X+...+anX ) and g t(b0+b1X+...+me ) where s, al, and

bj €R, (i=1,...,n, j=1,...m). Thus

Tyt 1 Yyt 11
(a0+a1X+...+anX )st (a0+alx+...+anx )t
£ _ s - 1
g TRt ) Tt Erell
(b0+b1x+...+bmx )st (b0+b x+...+bmx )s
t 1

then é € T(R(X)).

Also, if ‘g € R(X), the Ag = R, then the ideal generated by the
coefficients of Ag as an ideal of R' 1is R' since 1 € Ag' Then
g-é.R'(X) and consequently R(X) € R'(X).

Note that we have the following containments:
R[X] € R(X)E R'(X) € T(R) (X) € T(R[X]).

PROPOSITION 21. Let R be a strongly Prufer ring, then any overring
of R 1is also strongly Prufer.

Proof. Let R' be an overring of R. Then R(X) 1is a Prufer ring
and by Lemma 20. R'(X) 1is an overring of R(X), so R'(X) is a Prufer
ring. By Theorem 14, R' 1is a strongly Priifer ring.

PROPOSITION 22. Let R be a strong N-ring. Then any overring of
R is a strong N-ring.

Proof. Let R' be an overring of R. Then R'(X) is an overring
of R(X). Now R(X) 1is an N-ring and by Larsen ([10], Theorem 4), an
overring of an N-ring is an N-ring, so we have R'(X) is an N-ring.

Then by Theorem 19, R' is a strong N-ring.
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THEOREM 23. Let R be a strong N-ring. Then for any semiregular
ideal A of R, R/A 1is a strong N-ring.

Proof. If R is a strong N-ring, and N = N/A is a semiregular
ideal of R/A, then N is a semiregular ideal of R. Assume we have

NC = ND. Let N,D be ideals of R such that N=N, C=C and D =D,

then NC = ND. Since N 1is semiregular, we have C = D, therefore

C=N, that is C =D0. Thus R/A is a strong N-ring. )
-PROPOSITION 24. Let R be a ring such that RM is a strong

N-ring for every maximal ideal M of R. Then R 1is a strong N-ring.
Proof. Let' A be a semiregular ideal of R. Then there exists

a finitely generated ideal B such that B¢ A and (0:B) = 0. Then

(O:B)M = (0:B

M) =0, so in RM’ AM is semiregular and by hypothesis

RM is a strong N-ring, so that AM is a cancellation ideal. By Gilmer
([7], Exercise 6, p. 67), A 1is a cancellation ideal of R. Hence the
cancellation law holds in R for semiregular ideals. Therefore R is
a strong N-ring.

THEOREM 25. If R 1is a strong N-ring, then each semiregular ideal
of R with prime radical is a prime power.

Proof. If R is a strong N-ring, then R(X) is a N-ring. Thus
any regular ideal of R(X) with a prime radical is a prime power by
Larsen ([10], Theorem 1). Let A be a semiregular ideal of R with a
prime radical, say vA = P. Then P is a semiregular prime ideal of R,
and by Theorem 19, P is maximal. Then PR(X) 1is a maximal ideal of
R(X) and AR(X) has PR(X) as its radical, so AR(X) = PnR(X), and

hence A = AR(X)/VR = P'RX)() R = P™.
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