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ABSTRACT

We present a simplified approach to the problem of obtaining classical mechanics from
difussion equation. We consider the case of particles in static electromagnetic fields.
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I-Introduction.

In this note we present two simple approaches to obtainig the h--->{ asymptotic
behaviour of the solution to

(I.1-a} h 3¢ ¥, = 172007 + B) 2y, + V 4, xeR”, 1> 0

under the initial condition

(I1.1-b) ¥, %,00= £(x) exp-th™% S

We shall assume that £(x) is bounded and continous, that So(x), Vix), A &) k=1,2,...,0
are all bounded, continous and have two bounded continous derivatives in all variables. We
shall moreover make the simplifying assumption (usually called the transversality condition
or gauge in the physical literature) that ¥.A(x)=0. We obtain the existence of the limits‘

(I—Z)‘ limh__:’O -hlog ¥, (x,t) = Six,t)

{I-3) limh__\.)oexp(S(x,t)/h) P X,0) = £x) exp(i/Z)._;r'.;f £S(x(s),t-s)ds

where S(x,t) solves the Hamilton-Jacobi equation

(i-& 3y S0+ 1720 TS, - AN= + V(x) = 0 S0,00=5,)

The first approach is somewhat similar to that of Elworthy and Truman in [1]. A
similar problem, but in the quantun case was recently discussed in [2]. The second approach
is a variation on the technique used by Shilder [5], adapted to the particular situation we
deal with. Both approaches have (II-1) as starting point, so some explanation of our notation
is in order. By {By(t); t20} we denote the standard brownian motion on R"” of variance h.
Eﬁ(.) denotes the path integral on C([O,M),R"), the class of all continuos maps fram [0,=)
to R", constructed from the transition semigroup with density

plg-y,0) = (exp—(x-y)3/2th)/(2nht)n/2.

which is the fundamental solution to the heath equation 3¢u = h/2 &u. All the probabilistic
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constructions and results that we shall need can be found in [3].

An important property of the process {Bh(t)) that will be used below is that of the
equidistribution of {By(t)} and h'i/aB(t) where by {B(t):t=0} we denote the standard brownian

motion (i.e. the h=1 case). .

We shall be using the repeated indices sumation convention, and we shall not distinguish
between lower and upper indices, which will be written according to typographical convenience,

We will write 3;, 3;; for the derivatives with respect x ;; % ;% j, etc...

II-First approach.

Under our assumptions on V(x) and A(x), see [3], the solution to (I.1) can be written
as

(L.t Wi = Enl £B, () exph™H{[JAB, (s).9B,,(s)+ [ VB, (s))ds - S (B}, (th1]

For each fixed t in [O,T] apply Ito’s formula to S(Bs(s),t-s) to obtain

dS(BRis),t-5) = ¥S(By,(51,1-8).dB{(€) -2+ S(B:,{s),t-si+th/2 AS(Bj(s),t-5)ds

and now integrate both sides from 0 to t and make use of ([.4) to obtain for (II.1)

(11-2) Wht,t) = exp-Si,t) Ep[£B (N2, (1) exp-(1/2) o 2S(B; (s),t-s)ds ]

where Zj,(t) is the exponential martingale

L () = exp-h~1{J (¥S-A) (B (8),t-9).dBy () +1/2[ (FS-R)Z By, (9),t-s)ds].

The martingale property of Zi(t) follows from the fact that.our assumptions imply
that Enlexp(1/2)Jo(9S-A1Z(Bn(s),t-sids] < ®. Now rescale By(t) as to have a fixed probability
law on C0,00,R™ and consider for each t in [0,T] the equation

(11.3) dX,(8) = [ TS}, (8),t-5)- AlX(sh Jds+ hi’/23Bs) , X (03= x.
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From our boundedness assumptions on A and S we obtain the uniqueness and existence
of Xi,(s). Again by the Cameron-Martin-Girsanov translation formula rewrite (I1.2)as

(11.4) ¥ (2,0 = exp-Six,t)/h E[ (X (Dexp-1/2 [0 aS(Xnis), t-5)ds ].

Fron the uniform convergence in probability of X (s), t2s20, as h-—->0 to the solution
of (see [4)

(I1.5) x(s) = —(TS(x(s5),t-s) - Alx(s)) x{0)=x

we obtain (1.2) and (I.3) namely
limh__>0-hlog Yzt = Six.t)

lim, __y0€2pSt,t/h wh(x,0) = £k (thexp-1/2[4 BS&(3),t-s).

The existence, uniqueness, and regularity of solutions to (I1.5) fallows easily from

the boudedness and regularity of A and ¥S.

I1I.Secaond Appraoach.

[n this s=action we isclate the limitung value by a diffcrent procedure. wWe transiate
the By (s) by the curve x(s} obtained by solving (I1.5) with tne extra end condition

x(t)= "Z"So(x(t)) + Alx(t)

in terms of which S(x,t) can be written (as we shall see below) as

(1.1 S, = S x(th+ [ 1/2(%Z(s)-Alx(sN)-Vix(s)}ds
over the class of curves y: [0,t J--->R" such that y(0)=x.

Alsg, x(s) satisfies the Lagrange (Newton) equation on [O.t]

(111.2) ;= x8A-%73;A,4-3;V L i= 1,200

with %0) = x, x(0) = "G"So(x(t)) + AR,
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Now, by applying the Cameron-Martin translation formula, we can rewrite (I1.1) as

(I11.3) Wh(x,0 = Ep[EG OB EIM, (0 exp-1/h{ [ x(8).dBy(8)+1 /2] %E(s)ds} ]

where M (t) is given by

M) = expt/h[ [ Ax(s)+By(s)).(dx(5)+dBy, (s)+ [y V(x(5)+By,(s)ds - S (x(t)+By, () ].

Note_ that in (II1.1) the integration is over brownian paths starting from the origin
since the initial condition is included in x{s). We shall now make use of the Taylor expansion
formula

£x+b) = £x) + BV 5800 + b N1-wa 4 jEub+rIu

valid for f in C2R"™) and we rewrite the terms in the exponent of My, (t) as
(I11.4-a) S & (0+By, (1) = Sc‘](x(t))+Bhi(t)8 1S, () + B H0BL (08, it
(I11.4-b) Jo Vix(s1+Bpishds =
Tavixsnds + [oBYs)a; Vixs) + [By @B, @V, isids
(11.4-¢) Jo A& (SI+BSN.(dx ($)+dBy(s) =

+

ToRi(S35.dxS1*+dBp () + (7B, L (1B (2, (8) dx ™ (s)+dBR 5.

We have introduced the notations §iJ=fO1(1-u)ai\;so(uBh(s)*rx(s))ds and V; j(si, A,.(s) are
similarly defined. With this (1I11.3) becomes

(111.5) WhX,t) = exp=Six,0)/h En[ fx(t)+By (INL(D ]

where Ej, is the path integral with respect to the brownian motion starting in 0 and
Ni(D=exp1/h{JoBh (8B Vi isids + [o B (5)Bp " (9)A,. 1 i(s)(dx" (s)+dB (s
™t

.

TiBL )13 Ajx(sNdBR(8) - By (B 310,

We must verify that the terms not appearing in the exponent of Nn(t) nor 1n Six, 0
drop away. Consiger

ToBR1a;Vixisnds + [oBp x'3,A ds 87 -
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which equals
- By, (5 -% 3 A )ds
as follows from (II1.1). This added to
- [ 0B o)+ fo B (x(SNdBy, Hs)
yields
[ d[Br X e)x ;(s)-A s (x(s) ]
which cancels
-B, .38 Stk

since at t

?So.(x(s)) + x(t) - Alx(t) = 0.

Again, rescale (II1.5) to obtain

(111.6) ¥hx,0 = exp-h~ S, DE [ £x (0+h*/ ZBIIN, (0]

where Ny"(t) 1s given by
Ny (t) = expl[oBisIBYS)V ; jts)ds + JaBLeIBY@)A", ; jidx"+h1’ZdB%(s))
+ [iBY3A jixeMdBYs) - BLoBUnS" ;i)
where, for example, V";.its) = [ (1-u)a i»;V(uhil 2B(s}+x(shdu

similar expressions hold for $";{t), A", i.{s). It is now an easy to show that
- lim__\gh log ¥n(x,t) = Sk, 0

limy__ygexph ™S,y (x,y) = £x(0) EO[N" (0],

This limiting procedure can be pstified as foliows. The family

£Hx(0) + h/ZB() Ny "0
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is uniformly integrable. To see this we must proof that

(111.8) E {£z(0) + h1/ 2B Ny 3K

is bounded uniformly in 0 < h < €, for some 0 < k. But it is an easy consecuence of the
Hélder inequality and of the expectation of the exponential martingale for the function

bis.y) = J 3 Al(si+hi/ 2y y) v, du.

We still have to verify (II1.1) . For that let S{(x,t)} be the solution to (l.4), and
differentiate S(x(s),t-s) with respect to s, use (1.4) and (I1.5) to obtain

ac Slx(s),t-s) = =1/2 %=(8) + Vix(s) + Alx(s).x(s)

now integrate in s from to t to obtain

St = S k() + Jol172 %3s) - Atxis).x(s) - Vixish ]ds.

Comparing the procedures in sections Il and III we obtain the result

E?[N 0] = exp - 1/2 [& £Sx(s),t-s)ds.

Wwhen Az0, and Sc(x) = %. P for some constant vector P, then $"; ;=0 and

E% exp 1,’2J‘¢.‘Bi(s)B‘i(s) 2;,;Vixtsnds] = exp-1/2 {2 AS&x(s),t-s)ds.
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