THE SEPARABILITY OF THE STRICT TOPOLOGIES ON $C_{R}(X)$

BY

JORGE VIELMA

ABSTRACT.

The concept of a V-separabily submetrizable space is introduced and it is proved that for such spaces all strict to-pologies on $\,c_{_{\rm B}}(X)$ are separable.

AMS(MOS) SUBJECT CLASSIFICATIONS:

PRIMARY: 46E10, 28A10

SECONDARY: 54D20

Key words and phrases: strict topology, separable space, τ -additive measure, σ -additive measure, grothendieck measure, perfect measure.

THE SEPARABILITY OF THE STRICT TOPOLOGIES ON $C_{\rm B}({\rm X})$

BY

JORGE VIELMA

ABSTRACT. The concept of a V-separably submetrizable space is introduced and it is proved that for such spaces all strict topologies on $C_b(X)$ are separable.

INTRODUCTION. All topological spaces consider here are assume to be completely regular Hausdorff. If X is such a space, then $C_b(X)$ denotes the space of all bounded real-valued continous functions on X. Sentilles, [5], consider locally convex topologies β_0 , β_{τ} and β_{σ} on $C_b(X)$ which yield the space $M_t(X)$, $M_{\tau}(X)$ and $M_{\sigma}(X)$ of tight, τ -additive and σ -additive Baire measures as duals. Koumoulllis, [3], introduces the topology β_p on $C_b(X)$ which yields the space $M_p(X)$ of Baire perfect measures as dual, and Wheeler, [7], discusses the topology β_g on $C_b(X)$ which yields the space $M_g(X)$ of Grothendieck measures as dual. Summers, [6], proved that β_0 is separable if and only if X is a separable submetrizable space.

Let us use β_z as a generic symbol for β_p , β_g , β_{τ} and β_{σ} .

201

If $f: X \to Y$ is continous, then the map $T_f: (C_b(Y), \beta_z) \to (C_b(X), \beta_z)$ defined as $T_f(g) = g$ of is also continous and its adjoint $T_f^*: (M_z(X), w^*) \to (M_z(Y), w^*)$ is continous in their respective weak*-topologies. A space X is said to be a V-separably submetrizable space if there exist a separable metric space Y and a one-to-one continous function f from X onto Y such that the adjoint map $T_f^*: M_{\sigma}(X) \to M_{\sigma}(Y)$ is one-one. It is not difficult to prove that R_e , the real numbers with the lower limit topology is a V-separably submetrizable space.

THEOREM 1. Let X be a V-separably submetrizable space, then $(C_b(X), \beta_{\sigma})$ is separable. Conversely if $(C_b(X), \beta_{\sigma})$ is separable then X is separably submetrisable.

PROOF. Let Y be a separable metric space and $f: X \to Y$ be a one-to-one continous onto map such that $T_f^*: M_{\sigma}(X) \to M_{\sigma}(Y)$ is one-to-one. Since Y is measure compact and since β_T is separable for separable metric spaces, we have that $(C_b(Y), \sigma(C_b(Y), M_{\sigma}(Y)))$ is separable. Also the hypothesis implies that $T_f(C_b(Y))$ is a $\sigma(C_b(X), M_{\sigma}(X))$ -dense subset of $C_b(X)$. Therefore $(C_b(X), \beta_{\sigma})$ is separable.

For the converse, let us note that $\beta_0 \leq \beta_\sigma$ then if $(C_b(X), \beta_\sigma)$ is separable. We have that $(C_b(X), \beta_o)$ is separable, which implies that X is separably submetrizable, [6].

COROLARY 2. If X is a V-separably submetrisable space, then $(C_{\rm b}(X)\,,\beta_{\rm z}) \text{ is separable.}$

THEOREM 3. Let X be a metric space. Then $(C_b(X), \beta_p)$ is separable if and only if card (X) < C.

PROOF. If $(C_b(X), \beta_p)$ is separable, then X is separably submetrizable, then $card(X) \leq C$.

Suppose card(X) \leq C, then there is a countable subset $\{f_n\}$ of $C_b(X)$ which separates the points of X. Now define $F\colon X\to \mathbb{R}^N$ by $F(x)=(f_1(x),f_2(x),\ldots,f_n(x),\ldots)$ then F is a continous, one-to-one map from X onto a separable metric subspace of \mathbb{R}^N . Then X is separably submetrizable which also implies that X is real compact [2]. Then $M_p(X)=M_t(X)$, [4]. Now since $(C_b(X),\beta_0)$ is separable we conclude that $(C_b(X),\beta_p)$ is also separable.

Universidad de los Andes Facultad de Ciencias Departamento de Matemática Mérida - Venezuela