NOTAS DE MATEMATICAS

Nº 92

A NOTE ON REGULAR EXTENSIONS

BY

BERTHA GRANADOS DE J.

Υ

T.V. PANCHAPAGESAN

UNIVERSIDAD DE LOS ANDES
FACULTAD DE CIENCIAS
DEPARTAMENTO DE MATEMATICA
MERIDA - VENEZUELA
1988

A NOTE ON REGULAR EXTENSIONS

BERTHA GRANADOS DE J

Υ

T.V. PANCHAPAGESAN

A NOTE ON REGULAR EXTENSIONS BY

BERTHA, GRANADOS DE JAIMES AND THIRUVAIYARU, V. PANCHAPAGESAN* ABSTRACT

Let μ_0 be a Baire measure on T, a locally compact Haus dorff space. If μ is the regular Borel extension of μ_0 as given in Halmos [4] and $\hat{\mu}$ is the regular weakly Borel extension of μ_0 obtained via the Riesz representation theorem given in Rudin [6] or Hewitt and Stromberg [5], then an explicit description of $\hat{\mu}$ in terms of the outer measure μ^* induced by μ is given, thereby clarifying the implicit connection between the results of Halmos [4] and those of Rudin [6].

RESUMEN

Sea μ_0 una medida de Baire en T, un espacio localmente compacto y de Hausdorff. Si μ es la extensión regular Borelea na de μ_0 como se dió en Halmos [4] y $\hat{\mu}$ es la extensión regular débilmente Boreleana de μ_0 deducida a través del teorema de representación de Riesz dado en Rudin [6] o Hewitt y Stromberg [5], entonces damos una descripción explicita de $\hat{\mu}$ en términos de la medida exterior μ^* inducida por μ . Este estudio aclara las conexiones implicitas entre los resultados de Halmos [4] y los de Rudin [6].

^(*) Supported by the C.D.C.H.T. project C-S-150 of the Universidad de Los Andes, Mérida Venezuela.

Let T be a locally compact Hausdorff space. U (respy. U_0) is the family of the open sets (respy.open F_0 sets) in T; C (respy. C_0) is that of the compact sets (respy. compact G_0 sets) in T. For a family F of sets in T let S(F) denote the σ -ring generated by F. Let $B_0 = S(C_0)$, B = S(C) and W = S(U). The members of B_0 (resp. B, W) are called Baire (respy. Borel, weakly Borel) sets of T (vide [1]). A measure is a positive measure. A measure G_0 (respy. G_0 $G_$

For a ring R of sets in T, H(R) denotes the hereditary σ -ring generated by R. If μ is a measure on R let μ^* be the outer measure induced by μ on H(R) and let M_{μ^*} be the σ -ring of all μ^* -measurable sets in H(R). Let $\tau(\mu) = \{ E \subset T : E \cap A \in M_{\mu^*}, A \in M_{\mu^*} \}$. It is known from [3] that $\tau(\mu)$ is a σ -algebra, $\tau(\mu) \supset M_{\mu^*}$ and the set function

$$\tilde{\mu}^*(E) = \sup \{ \mu^*(F) : E \supset F \in M_{\mu^*} \}$$
, $E \in \tau(\mu)$

is a measure on $\tau(\mu)$ and $\tilde{\mu}^* \mid M_{\mu^*} = \mu^*$. Hence by abuse of notation we shall denote $\tilde{\mu}^*$ by μ^* and the measure μ^* on $\tau(\mu)$ is said to be induced by μ .

Definition 1: Let m be a weakly Borel measure on W. We say that m is regular if

(i)
$$m(E) = \inf\{m(U): E \subset U \in U\}, E \in W$$
 and

(ii)
$$m(U) = \sup\{m(C): U \supset C \in C\}, U \in U$$
.

A Borel (respy. Baire) measure m is said to be regular if (i') m(E) = sup {m(C): E \supset C \in \hat{C} },

(ii')m(E) = inf {m(U): E
$$\subset$$
 U ε $\hat{B} \cap U$ },
for E ε \hat{B} , where $\hat{B} = B$ (respy. B) and $\hat{C} = C$ (respy. C_0).

By Theorem 52.G of [4] every Baire measure μ_0 on T is regular and by Theorem 54.D of [4] μ_0 can be extended (uniquely) to a regular Borel measure μ on T. Let $\Lambda f = \int_T f \ d\mu_0$, $f \in C_c(T)$. Then Λ is a positive linear form on $C_c(T)$ and hence by the Riesz representation theorem given in Chapter 2 of [6] or in Chapter 3 of [5] there exists a regular weakly Borel measure $\hat{\mu}$ on T such that

$$\Lambda f = \int_{T} f d\hat{\mu} , f \epsilon C_{c}(T) .$$

Then $\hat{\mu} \mid \mathcal{B}$ is a regular Borel extension of μ_0 and hence $\hat{\mu} \mid \mathcal{B} = \mu$. Thus $\hat{\mu}$ is a regular weakly Borel extension of μ_0 and μ and this extension is unique.

On the other hand if μ^* on $\tau(\mu)$ is the measure induced by the $r\underline{e}$ gular Borel extension μ of μ_0 , what is the relation between μ^* and $\hat{\mu}$?. In this note we obtain $\hat{\mu}$ in terms of μ^* and observe that $\mu^* \neq \hat{\mu}$ in general.

In the sequel μ_0 is a Baire measure on T, μ and $\hat{\mu}$ are its unique regular Borel and weakly Borel extensions respectively.

The following result is immediate from Theorems 1 and 2 of \$16 in Dinculeanu[3].

Lemma 2: (Dinculeanu [3]). Let μ^* be the measure induced by μ on $\tau(\mu)$. Then:

- (i) $\mu^* \mid B = \mu$.
- (ii) $U \subset \tau(u)$ and hence $W \subset \tau(\mu)$.
- (iii) For A ε B, μ (A) = inf { μ *(U): A \subset U ε U \cap B}.
- (iv) For A ε $\tau(\mu)$, $\mu^*(A) = \sup \{\mu(K) : A \supset K \varepsilon C\}$.

Definition 3: Let $\lambda: \mathbb{W} \to [0, \infty]$ be given by

$$\lambda(E) = \inf \{ \mu^*(U) : E \subset U \in U \}.$$

In oder to show that λ = $\hat{\mu}$ we give the following lemmas.

Lemma 4:

- (i) $\lambda \mid B = \mu$.
- (ii) $\lambda \mid U = \mu^* \mid U$ and hence $\lambda(E) = \inf \{\lambda(U) : E \subset U \in U\}.$
- $(iii)\lambda(U) = \sup \{ \lambda(K) : U \supset K \in C \}, U \in U.$
- (iv) λ is countably subadditive.

Proof.

- (i) By Lemma 2(ii) we have $\mu(A) = \inf \{ \mu^*(U) : A \subset U \in \mathcal{U} \} \}$ $\geq \inf \{ \mu^*(U) : A \subset U \in \mathcal{U} \} \geq \mu^*(A) = \mu(A) \text{ for } A \in \mathcal{B}.$ Hence $\lambda \mid \mathcal{B} = \mu$.
- (ii) Trivial.
- (iii) As $u \subset \tau(\mu)$, (iii) follows from (i) and Lemma 2(iv).

(iv) Let $E = \bigcup_{1}^{\infty} E_n$, $E_n \in W$. It suffices to assume $\lambda(E_n) < \infty$ for all n. Let $\epsilon > o$. Then by (ii) for each E_n there exists $U_n \in \mathcal{U}$ with $E_n \subset U_n$ and $\lambda(U_n) < \lambda(E_n) + \frac{\epsilon}{2^n}$. Let $U = \bigcup_{1}^{\infty} U_n$. Then $E \subset U \in \mathcal{U}$ and by (ii) we have

$$\lambda(E) \leq \lambda(U) = \mu^*(U) \leq \sum_{n=1}^{\infty} \mu^*(U_n) < \sum_{n=1}^{\infty} \lambda(E_n) + \epsilon.$$
 Hence (iv) holds.

Lemma 5. Let $\Sigma_F = \{ E \in W \colon \lambda(E) < \infty \text{ and } \lambda(E) = \sup_{K} \lambda(K) \}$. Then: $K \subseteq E$

- (i) For E ϵ W and K ϵ C, E \wedge K ϵ Σ_F .
- (ii) $\Sigma_F = \{ E \in W : \lambda(E) < \infty \}.$
- (iii) λ is countably additive on W.

Proof.

- (i) Clearly, W = { E ϵ W: E \cap K ϵ B, K ϵ C}. Then for E ϵ W and K ϵ C, λ (E \cap K) = μ (E \cap K) < ∞ by Lemma 4(i). Consequently, E \cap K ϵ Σ_F since μ is a regular Borel measure and λ | B = μ .
- (ii) Let E ϵ W with $\lambda(E) < \infty$. Then there exists U ϵ U with E \subset U and $\mu^*(U) < \infty$. Let $\epsilon > o$. By Lemma 4(iii) there exists K ϵ C with K \subset U and $\lambda(U) < \lambda(K) + \epsilon/2$. Consequently, 0 < $\lambda(U)$ $\lambda(K)$ = $\mu^*(U)$ $\mu^*(K)$ = $\mu^*(U \setminus K)$ = $\lambda(U \setminus K) < \frac{\epsilon}{2}$ since $\lambda(U)$ $\lambda(U)$ + $\lambda(U)$ and $\lambda(U)$ is subtractive on $\lambda(U)$.

On the other hand, by (i) E \cap K ε Σ_F and hence there exists K_1 ε C with K_1 \subset E \cap K and λ (E \cap K) < λ (K_1)+ ε /2. Therefore,

$$\lambda(E) \leq \lambda(E \cap K) + \lambda(U \setminus K)$$
 $< \lambda(\overline{K}_1) + \varepsilon$

since λ is subadditive. Hence E ϵ $\Sigma_{F}^{}.$

(iii) First we shall show that λ is additive. Let E_1 , E_2 ϵ W

with $E_1 \cap E_2 = \emptyset$. As λ is subadditive we shall assume $\lambda(E_1 \cup E_2) < \infty$. Then, given $\varepsilon > 0$, by (ii) there exist $K_i \subset E_i$, $K_i \in C$ with $\lambda(E_i) < \lambda(K_i) + \frac{\varepsilon}{2}$, i = 1, 2.

As $\lambda \mid \mathcal{B} = \mu$, we have

$$\lambda(E_1)$$
 + $\lambda(E_2)$ < $\mu(K_1 \cup K_2)$ + $\epsilon \leq \lambda(E_1 \cup E_2)$ + ϵ

so that $\lambda(E_1)$ + $\lambda(E_2) \le \lambda(E_1 \cup E_2)$. Now the result (iii)holds by Lemma 4(iv).

Theorem 6: Let μ_0 be a Baire measure on T with its regular Borel extension μ . If μ^* is the measure induced by μ on $\tau(\mu)$, then the set function λ gives by

$$\lambda(E) = \inf \{ \mu^*(U) : E \subset U \in U, \}, E \in W$$

is the unique regular weakly Borel extension of $~\mu_0$ and hence $\hat{\mu}~$ = λ . Besides, $\hat{\mu}~$ does not coincide with $~\mu$ * | W ~ in general.

Proof: By Lemma 5(iii) λ is a measure on W. By Lemma 4(i) λ

is an extension of μ and hence $\lambda(C)<\infty$ for $C\in\mathcal{C}$. Por Lemma 4(iii) and by the definition of λ , λ is regular as a weakly Borel measure. If λ' in another regular weakly Borel extension clearly λ' = λ and hence λ is unique and coincides with $\hat{\mu}$.

As $\mu^*(E) = \sup \{ \mu^*(K) : E \supset K \in C \}$ for $E \in W$ by Lemma 2(iv) and since $\hat{\mu}(E) = \sup \{ \hat{\mu}(K) : E \supset K \in C \}$ does not hold for all $E \in W$ in general (vide Exercise 16, Chapter 2 of [6]), we conclude that $\hat{\mu} \neq \mu^*$ in general.

REFERENCES

- 1.-S.K. Berberian, Notes on Spectral Theory, Van Nostrand, New York (1966).
- 2.-Bertha, Granados de Jaimes, Medidas Vectoriales Regulares, Tesis de Maestría, Departamento de Matematicas, U.L.A. (1987).
- 3.-N.Dinculeanu, Vector Measures, Pergamon Press. New York (1967).
- 4.- P.R. Halmos, Measure Theory, Van Nostrand (1950).
- 5.-E.Hewitt and K.Stromberg, Real and Abstract Analysis, Springer verlag (1975).
- 6.-W. Rudin, Real and Complex Analysis, McGraw Hill (1966).

Departamento de Matemáticas Facultad de Ciencias-Universidad de Los Andes Mérida-Venezuela