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ABSTRACT

The concepts of orthogonal spectral representations (OTSRs,
in abbreviation), bounded orthogonal spectral representations
(BOTSRs, in abbreviation) and BOTSRs with countable multiplici-
ties (COBOTSRs, in abbreviation) are introduced and is obtained
a complete set of unitary invariants for a spectral measure E(.)
in terms of these representations. Also is shown that E(.) has
the generalized CGS-property (respy. CGS-property) in a Hilbert
space H if and only if H has a BOTSR (respy. COBOTSR) relative
to E(.). Besides, is studied the inter-relation between orde -
red spectral representations (or ordered spectral decompositions)

and COBOTSRs of H relative to E(.) when E(.) has the CGS-proper-
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ty in H and the ordered spectral decompositions are classified
in four types and each of them is characterized in terms of the

multiplicity set of E(.).
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Dunford and Schwartz obtained in [2] a complete set of uni
tary invariants of an operator T on a separable Hilbert space
Ho in terms of ordered spectral representations (0OSRs, in abbre-
viation) of H0 relative to T, when T is self-adjoint or is boun-
ded and normal. In [7] we extend the results of [2] to spectral
measures E(.) on an arbitrary Hilbert space H, when E(.) has the
CGS-property in H, thereby obtaining a complete set of unitary
invariants of E(.) in terms of OSRs (and ordered spectral decom-
positions) of H relative to E(.). In this work we introduce the
concept of orthogonal spectral representations (OTSRS, in abbre-

yiation), study their properties and obtain a complete set of
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unitary invariants of an arbitrary spectral measure E(.) in
terms of these representations. Thus we obtain results ana-
Togous to Theorems 9.8 and 9.9 of [7] (or to Theorems X.5.10,
X.5.12 and X11.316 of [2] ) for OTSRs. Besides, is given an
alternate proof for the main theorem of Halmos on p. 109 of
(3]. ‘

We study two particular types of OTSRS, called BOTSRs
and COBOTSRs, of H relative to E{.) and study their properties.
We show that E(.) has the generalized GS-property (respy. -
0GS-property) in H if and only if every OTSR of H relative to
E(.) is a BOTSR (respy. a COBOTSR). Various complete sets of
unitary invariants of E(.) are given when E(.) has the gene-
ralized GS-property and is given a theorem on the equivalen-

ce of two BOTSRS.

We also deduce the extensions of some of the results of Ples-
ner and Rohlin [ld] for spectral measures. This study obvio
usly sheds more light on the work of Halmos [3] and on that
of [10] when the spectral measure has the (GS-property or the

generalized G S-property.

In [7] we introduced the concepts of 0SD-multiplicity,
OSR-multilplicity and total multiplicity of a spectral measura
E(.) with the G S-property and showed that all of them are



-3-

the same. Here we introduce the concept of total H-multiplici-
ty (H stands for Halmos) of a spectral measure E(.) and prove
that it coincides with its total multiplicity when it has the
CGS-property. Given a COBOTSR of H relative to E(.) we construct
in a canonical way an ordered spectral decomposition (0SD, in
abbreviation) (equivalently an OSR) of H relative to E(.) and
vice versa. Finally, we classify the 0SDs (respy. OSRs)of H
relative to E(.) in four types and characterize each one~of them

in terms of the multiplicity sets of E(.).

1. PRELIMINARIES. In this section we fix the terminology and
notations and give some definitions and results from the litera-

ture which are needed in the sequel.

S isac-algebra of subsets of a set X (# ¢). H, H, and H

1 2
are (complex) Hilbert spaces and E(.), El(.) and EZ(’) are spec-
tral measures on S with values in projections of H, Hl and H2
respectively. The closed subspace spanned by a subset 9 is
denoted by [[)C]. For a vector x € H, Z(x) = [E(o)x, o € S].

Similarly, Z;(x;) = [E;(0) x5,0 e 8], x; € Hy, i=1,2. = B de-

i
notes either the orthogonal sum of a family of closed subspaces

or of Hilbert spaces, as the case may be.

W, W, and W, are respectively the von Neumann algebras ge-

1 2
nerated by the ranges of E(.), El(‘) and EZ(’)' W' (respy. w;)
is the commutant of W (respy. wi). If W' = @ W' Q, is the

type In direct sum decomposition of W', then 'the <central



b

projections Qn(# 0) are unique (such that W' Qn is of type In)

and in the sequel Qn will denote these central projections. Si-

(i)

milarly, Qn

, are defined with respect to w; for i=1,2. For

a projectioh P' ¢ W', C denotes the central support of P'.

p ]
Other terminology in von Neumann algebras is standard and we

follow Dixmier [1].

As was observed in [6] a projection P' in W' is abelian if
and only if P' is a row projection in the sense of Halmos [3]
and the column C(P') generated by P‘ as in [3] is the same as
CP" An operator T on H is a linear transformation with domain

and range contained in H and is not necessarily bounded.

NOTATION 1.1. Let P be a projection in W. The multiplicity
(respy. uniform multiplicity) of P in the sense of Halmos |[3]
will be referred to as its H-multiplicity (respy. UH-multiplici-

ty) relative to E(.).

As was noted in [6] Theorem 64.4 of Halmos [3] can be in-

terpreted as follows:

THEQOREM 1.2. A non-zero projection F in W has UH-multiplicity
n if and only if there exists an orthogonal family {E&}aed of

abelian projections in W' such that card. J = n, C = F and

EI

o
z E& = F. In other words, F has UH-multiplicity n if and only
aed

if W'F is of type In.



Consequently, the following proposition is immediate.

PROPOSITION 1.3. A non-zero projection P in W has UH-multipli-

city n if and only if P < Qn.

p(x) denotes the measure HE(.)xH2 for x ¢ H. Similarly,
2
D]'(Xf) = || Ei(_.)XiH

all finite (positive) measures on S. For Hys My € Z we'write

> Xi € Hi’ i=1,2. I denotes the set of

Hy = My if H1<< My and My << - Then '=' is an equivalence
relation on £. We say u; is orthogonal to u, (i 1 Hy, in sym-

bols) if v << Hy and v << p,, v e I then v = 0.

For x e H, [Wx] = [Ax: A e W] and, sometimes, also denotes
the orthogonal projection with the range [Mx]. For uw ¢ T the
projection C(u) (respy. Ci(“)) relative to E(.) (respy. Ei(’))
is defined as the orthogonal projection on the subspace {x ¢ H:
p(x) << u} (respy. {x: Hy e pi(x) << u }) and is well-known that
C(u) € W. The multiplicity u(u) (respy. pi(u)) of u relative
to E(.) (respy. Ei(')) is defined by

u(u) = min {H-multiplicity of C(v): 0 # v << u}

if u # 0 and u(0) = 0 (respy. us (p) = min {H-multiplicity of
Ci(“): 0 # v << u} if u # 0 and ui(O) = 0). pu is said to have
uniform multiplicity wu(u) if u(n) = u(v) for all v € £ with

0 # v << u.



2. ORTHOGONAL SPECTRAL REPRESENTATIONS (OTSRs). In this section
we introduce the definition of an OTSR of H relative to E(.) and
obtain several characterizations of the measure family of an
OTSR. FinaT]y, we show that for a given spectral measure E(.)

on H there always exists an OTSR of H relative to E(.).

LEMMA 2.1. Let wu e Z. Then:

.

(i) If C(u) = 0, then p has uniform multiplicity zero relati-

ve E(.).

(ii) If u has non-zero uniform multiplicity u(u) then u(u) iis

also the H-multiplicity of C(u).

(iii) In (ii), C(u) has UH-multiplicity u(u).

PROOF.

(i) By Theorem 66.3 of [3], C(v) < C(p) = 0 if v << u and hen-
ce (i) holds.

(ii) This is immediate from the definition of uniform multipli-
city of u and the fact that H-multiplicity of C(v) > H-mul-
tiplicity of C(n) if 0 # v << u and C(v) # 0.

(iii) By hypothesis and by (i), C{(pu) # 0. Let x be a non-zero
vector in C(u) H. Suppose Q is a non-zero projection in
W such that Q < CI:wx]‘ By Theorem 66.2 of [3] C[WX] =C(p(x))

and hence by (ii), the H-multiplicity of C[Wx7i§ u(u).
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i = - = W = ! = - =

Besides, Q QCLNX] Q [W'x] W' Qx] CLﬂQX] C(p(Qx)) by

corollary 2 of Proposition I.1.7 of [1] and by Theorem 66.2 of

|3]. Therefore, the H-multiplicity of Q coincides with

u(e(Qx)) = d(u) and hence Cfo] has UH-multiplicity u(u). Now,

let {Xj}jed be a maximal orthogonal family of non-zero vectors

in C(]J) H such that CI:WXJ] C!:wall = 0 for J 7 j'. Then

C(u) = ¢ Cp and consequently, by Theorem 64.3 of [3] we
J-E:J [_WXJ'] =4

conclude that C(u) has UH-multiplicity u(u).

DEFINITION 2.2. An isomorphism U fromHontoH=3 6 £ 8 L,(x.S.u5)
jed u.
J
is called an orthogonal spectral representation (an OTSR, 'in

abbreviation) of H relative to E(.) if

(i) {pj}jEJ is an orthogonal family in I;

(ii) each My has uniform multiplicity u(pj) = uy > 0 and

(iii) VE(.) U™} = E(.), where

av
ECD) Cadeery = O fjk)kalj
J ed jed

", . N
for (fjk)kelje H, with card. Ij uj-

jSt]

(Here ﬁ. B Lz(x’s’pjl =k§1.@ LZ(X,S,ujk), where card. Iy = u,

J J

. = . 1.).
and By = Wy k J)
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The set {pj}jed is called the measure family of the repre-
sentation U. By ME we denote the set {n: Qn # 0} and we call ME
the multiplicity set of E(.). We say that U is an OTSR of H
relative to a normal operator (bounded or not) T on H if it is

so relative to the resolution of the identity of T.

PROPOSITION 2.3. Let U be an OTSR of H relative to E(.) with

the measure family {“j} Suppose that each Uj has uniform

jed”’
multiplicity uj (relative to E(.)). THen the following asser -

tions hold:

(1) {C(uj)}jed is an orthogonal family of non-zero projections

in W.

-

(ii) = C(un,) =
jed J

(ii1) For u e £ with C(un) # 0,

C(u) = C(V (pa uj)).
jed

(iv) For u e £ Tlet u(p) be the multiplicity of u relative to

E(.). If wu(u) > 0, then

u= v (uAuj).
jed

(v) Mg = {uj: j €J} and coincides with the set of all UH-mul-

tiplicities of non-zero projections in W.



(vi) Q = &I C(uj), ne M.

PROOF.

(i) By Lemma 2.1, the H-multiplicity of C(uj) is the same as

uj ( >0) and hence C(“pj) # 0, j ¢ J. By Theorem 66.3 of

3] C(uj)-l Cluy') for § 7 3'.

.

(ii) If possible, let Q =1 - % C(uj) # 0. Then, by Theorem
_ Jjed
66.2 of |3] , for a non-zero vector x e QH we have

Clp(x)) = Cfo] < Q. Then by Theorem 66.1 of [3],
Clp(x)) A uj) = 0 for j e J. On the other hand, if
0 # v << p(x) A u;

J
exists y ¢ Cer] such that v = p(y) so that C(v) # 0.

» then by Theorem 65.3 of [3] there

Therefore, we conclude that p(x) 1 uis Joe J.

If Ux = f ¢ ﬁ, then by hypothesis
0 # o(x) = [[ECx|I % = [fueCx|l®= | ECOF)2.

If f = (fjk)kelj , card. Ij = uys then there exists

jed
Jo ed and k_ ¢ Ij such that f. K # 0 ujo- a.e. Let

N
g = (gjk)kgl. ¢ H, where gj K ° f . K and gjk = (

. Y 2 v 2 _
otherwise. Clearly, J| EC.)g]]“ << || EC.) Ff]|®= po(x). Let

Ul g =y. Then y # 0, IIE(-)9||2 =po(y) and p(y) << p(x).



(iii)

(iv)

(v)
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n
On the other hand, || E(,)g||2<< M and hence p(x) A M £0.
0 0

This contradiction proves (ii].

By (ii) we have C(p) = = C(u) C(u,). Since {u A u,’.
jed J J7jed

is a bounded orthogonal family, the set Jo ='{j:uiﬁﬁﬁ #0}

is countable. Then by Theorems 66.3 and 66.5 of [3] and

by hypothesis we have

0# Clu) = £ ClpAawny)=0cCV (0mAau))=cCV (uiru
jed, J jed, J jed J

let v =V (pgAmp.). Clearly, v << y. If v Z u, then
jed J

by Theorem 48.2 of [3] there exists 0 # v << u such that

v lv and v Vv = u. Then by Theorem 66.3 of |3] and

0 0
by (iii) we have

0 = C(v) Clvg) = Clu) Clvy) = Clu A v)) = Clv,).

Consequently, u{(u) = 0. This contradiction to the hypo-

thesis that u(p) > 0 implies that v = yu.

Since M has uniform multiplicity ”j > 0, by Proposition
1.3 and Lemma 2.1 (iii), clearly {uj: je J} S Mp. Con -
versely, let n e M. By (i), Q =12 C(u;) Q #0 so
ed J
that there exists j, € J such that C(uj ) Qn # 0. As
0
C(pj ) has UH-multiplicity uj by Lemma 2.1 (iii) and Q,

0 0
has UH-multiplicity n by Proposition 1.3, we conclude
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that uj = n. The last part is evident from Proposition
0
1.3.
(vi) Let P.= I C(pj), ne M. Then by Lemma 2.1 (i1i) and
U.=n

J
by Theorem 64.3 of [3], P has UH-multiplicity n and hence,
by Proposition 1.3, Pn < Qn‘ If Pn d Qn, then by (ii)

J

impossible by Proposition 1.3 and Lemma 2.1 (iii)as n # uy -
0

(Q.-P ) C(u, ) # 0 for some j_ e J\{j: u, = n} which is
n n Jo 0 .

The following theorem gives several characterizations of

the measure family of an OTSR of H.

THEOREM 2.4. Let {“j}jeJ be an orthogonal family of non-zero
finite measures on S, each My having uniform multiplicity
u; > 0 relative to E(.). Then the following statements are equi-

valent.

(i) {pj}jEJ is the measure family of an OTSR of H relative to

E(.).

(ii) {C(“j)}jsd is an orthogonal family of non-zero projections

and & C(u.) = 1I.
jed J

(iii) For p € T with C(p) # Q, C(p) = Cc(V (u A p.)).
jed J

(iy) For w e & with u(u) >0, p = VvV (u A pj) and if u(u)=0
jed
with C(n) # 0, then C(u) = C(V(u 12 uj)).
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(v) Qp = = Clugds ne Mg .

PROOF .By Proposition 2.3 it is ctear that (i) => (ii), (i) =>(iii),
(i) =>(iv) and (i) =>(v). Now we prove the reverse implications

by proving (ii) =>(i), (iii) =>(ii), (iv) =>(iii) and (v) =>(ii).

(ii) =>(i) Let n e M As My has uniform multiplicity u, > 0,

E- J
as in the proof of (vi) in Proposition 2.3, we have Qn=“ b Chﬁ)-
u.=n

Since C(u.) has UH-multiplicity uj = n by Lemma 2.1 (iii), there

exists an orthogonal family {En i, p}pEIJ of abelian projections
in W' such that C., = C(u;) for pel., card. I, = n and
En iap J J J
g E' . = C(p;). By Theorem 66.2 of [3] each C(un.) is
pel; MedsP J J
countably decomposable in W and hence, by Lemma 2.5 of [8]the-
: (J) 1 i = I (J)
re exists a vector x ' e EL 5  H such that En,j,p Iﬂxn’p].
Consequently, by Theorem 66.2 of [3] C(uj) = C(p(x( %)) so that

by Theorem 67.3 of [3] there exists a vector ngg e]yxgjg]

such that p, = p(yﬁjg) and lyygjg] =[yx§jg]. Thus
C(UJ) H=2Z (J)]
pte

and by Theorem 60.10f[3] there exists an isomoprhism Ugn) from

C(pj) Honto I @ Lz(X,S,pj) such that
n

Ugn) EC.) C(uy) (u§")>'1cfzizg1j = O fz)zerj
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If U= 12 8 =z 8 U(n), then clearly U 1is an OTSR of H
neM u.=n J
E J

relative to E(.) with the measure family (pj) since

-jed
Q = I C(pjl and £ Q_ = I.

LY neME n

n
n

(iii1) =>(ii). If possible, let Q=1 - I C(pj) # 0. Then
jed
there exists n ¢ ME such that Q Qn # 0. For x e Q Qn Hy, x #0,

.

by Theorem 66.2 of [3], 0 # C(p(x)) = Cfo] <QQ,. On the
other hand, by (iii) and Theorem 66.5 of [3] we have

Clp(x)) = = C(p(x)) C(u.) = 0.
jed J

This contradiction proves that Q = 0.
(iv)=> (iii). Trivial.

(v)=>(ii). As Hj has uniform multiplicity uj > 0, by Lemma
2.1 (iii) c(uj) # 0 for all j € J. Since My A M e for j # 3',

by Theorem 65.3 of [3] C(u;) C(uj') = 0. Besides,as I Q= 1,
neM
(v) implies that © C(u.) = 1I. E
Jjed J

This completes the proof.

THEOREM 2.5. For a spectral measure E(.) on S with values in

projections of H, there exists an OTSR of H relative to E(.).

PROOF. Let n e M. If {E is a maximal orthogonal fa-

E n,j}jedn

mily of cyclic projections in WQn, then by maximality = Enj=Qn‘
jed
n
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By Proposition 1.3, And Theorem 1,2 and by Lemma-2.5 of [8] there exists an

orthogonal family of vectors {x } in E . H such that

nsJj.p PEIJ ) n,J
) ™ = ‘
(i) lﬂxn,j,p] Fn,j,p are mutually orthogonal,
> . [ =
Gk P ™ Eng
J
and .
(i14) C(D(xn’j’p)) = C[yxn,j,p] = o j (vide Theorem 66.2 of
[3]), where card. I, = nand je J_.
Consequently, by Theorem 65.2 of [3] p(xn,j,p)g‘“xn,j,p')

for p,p' ¢ Ij' Thus, let u

11

n.3 p(xn,j,p)’ p € Ij' Then by,

(iii), C(un j) C(un J..) =0 for n#n' or j # j'. Besides, by
Theorem 67.3 of [3] it is clear that u
}

n,j has uniform multipli-

city n for j e Jn. Thus {p satisfies the hypothesis

n,Jj Jan

neME

and condition (v) of Theorem 2.4 and therefore, is the measure

family of an OTSR of H relative to E(.).

NOTE 2.6. An alternate proof of the above theorem can be given

as follows:

Let {“j}jgd be an orthogonal family of non-zero measures
in £ with unifarm multiplicity as given in Theorem 49.3 of

[3]. If J, = {3 e d: u(pj) > 0}, then as u(pj) is uniform we

observe that C(uj)=F 0 for Jj e J,. Then from the discussion
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on p. 108 of [3] it follows that _ZJ C(u;) = I so that, by Theo-
je
0

rem 3.4, {uj} is the measure family of an OTSR of H relative

to E(.).

Jedo

3. EQUIVALENCE OF OTSRs. In this 'section we introduce the con-
cept of equivalence of two OTSRs and give some characterizations
of this concept. The principal theorem of this section (Theorem
3.7) obtains a complete set of unitary invariants of speétra]

measures in terms of the equivalence of OTSRs.

DEFINITION 3.1. Suppose Ui is an OTSR of Hi relative to Ei(‘)

with the measure family {“§1)}jgd s i=1,2. We say that the

1
OTSRs U; and U, are equivalent if u (u$!)) = u,(ult)), 5e gy

and ul(u§2)) = “2(”§2))’ je J2 and uq and u, are uniform in
(1) (2)
each of {uj }jedl and {“j }jedz

The following theorem is immediate from Definition 3.1.

THEOREM 3.2. Any two OTSRs of H relative to E(.) are equivalent.

The following theorem gives some characterizations of the

concept of equivalence of OTSRs.

THEOREM 3.3. Suppose U, is an OTSR of H, relative to Ei(') with

gf)} i=1,2. Let uchgll) and ul(u(?))

the measure family {u 3

jeJi’
be unifaorm and positive for j e J; and j'edz. Then the follo -

wing statements are equivalent.
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(i) U, and U, are equivalent as OTSRs.

(ii) Far j e Jl let Jz,j = {j' ¢ J2: ugl) A p§?) 0 and
ul(ugl)) = uz(yg?))} and for j € J2 let
C_ s . (2) (1) 1)y . (2) .
Jl,j = {j' e Jy M3 A M3 # 0 and ul(pj. ) uz(pj )}. Then

(a) u(l)f v (ugl) A u(?)), je dy
j'€J2 i J

and

() w2z v @Bl e,

J J'edl’j J J'
hold.
(i11) MEl = ME2 and for n ¢ MEl
(1) _ ) (2)
(a) Q, (3) Cl(uj )
U2(U5 )=n
and
(b) q!?) = cp(uit).
u $)=n
PROOF.

(i) => (ii) By hypothesis, uz(p§1}) > 0. Therefore, by Propo-

cition 2.3 (iy) we have

A1y G0

J'€J2
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By (i) and the hypothesis that wu; and u, are uniform in “§1)

we have

TN Al S IR S A L IRt

for all those J ¢ J2 for which p§l) A p§?) # 0. Therefore,

(1

1

(1) (2) ‘
A TR W TR I
j'€J2,j pJ UJ

Similarly, (i) implies (ii) (b).

(ii) => (4iii). Let n e M

(1)
J

By Proposition 2.3 (v) the set

o € Jél).

E.-
1
Jﬁl) = {je le ul(u ) = n} is non-empty. Let J

Then by hypothesis (ii) (a) there exists j' e J, such that

”2(“§?)) = ul(uj(l)) = n. Therefore, again by Proposition 2.3
0
(v) we have n ¢ ME and hence ME C:ME . Similarly, (ii) (b)
2 1 2
implies that M. €« M and hence M = M. .
Eo” Ep By B

Let ul(ugl)) = n. Then by (ii) (a) and by Theorem 66.5

of [3] we have

(1) -y Gt g efh
uz(mgg)i=n
since Cl(“gl) A pg?)) = Cl(pgl)) Clﬁlg%)) = 0 whenever

ugl) A p§?) - 0. Then by Proposition 2.3 (vi) we obtain
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(1) . (1
ot - Loy aofh - by gefth o ) gl

n C J
jEJn JSJ 2(.]
. (22 ’ - (2)
= Q (]J-l )
2(11( V)=n J
If P = 2(2) Cl(ug?)), then {Pn}neME is an orthogonal fa-
u (Uél ),=n 1
2+"

mily of projections and Pn > Qﬁnfor each n. Since & d§j= I, we

conclude that Pn = Qﬁ”and therefore, (ii) (a) => (iii) (a).

As M __M s
Ep = &

Similarly, (ii) (b) => (iii) (b) for ne ME .
2

(iii) holds.

(i1i) => (i) Let jo € Jl and let u (pgl)) = n. ThenneM_ =M
0
so that by (iii) (b)

ol® - 1 ¢, (u$t)

and therefore, C (u(l)) < Q(Z). Since u2( gl)) > 0 and s
0

uniform, by Lemma 2.1 (iii) u (“(1 is the same as the UH-mul-

tiplicity of Cz(uglb. Thus C(y (1)) # 0 so that by Proposition
Jo

1.3 we conclude that uz(ugl)) = n. Thus ul(p§l>) =y (p )
0

for j e J;. Similarly, (iii) (a) and the hypothesis that

M. = M. imply that ul( g ) (2)),
2

E, ) = uz(y jed,.

E

NOTE 3.4. Under the hypothesis of the above theorem,
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a1 Gift) = w6l e 0 =) (@) and w6 = 0,603
j e J2 =>(ii) (b) of the said theorem; Theorem 3.3 (ii) (a) =>

=> ME c M and (iii) (a) while Theorem 3.3 (ii) (b) => MEC.M

1 E2 2 El
and (iii) (b).
LEMMA 3.5. If u, ve £ and u = v, then there exists an iso -
morphism U from L,(X,S,u) onto L,(X,S, v) such that .
UX(.) f= X(.) uf, fe LZ(X,S,u).
du _ dv _
PROOF. Let 0 f, and L g,- Then fo € Ll(X,S,v) and
1o
9, € L1(Xs8,m), >0, 9,>0 and f g, =1a.e.letUf=r~Ff,
f e L2(X,S,u). Then U is the required isomorphism.
LEMMA 3.6. Let {“j}jed be an orthogonal family of non-zero
members of L with u = ) pj. Then there exists an isomorphism
jed
U from L,(X,s,u) onto K =13 @ LZ(X,S,pj) such that
jed

Ux .y F Oy U 5) 54

PROOF. Clearly, J is countable. Besides, by Theorem 47.2 of
[3] there exists a disjoint sequence {Nj}jeJ in S such that

Wy T Hp L j e d, where p (ol =nloc A ). As on p. 17 of 3] we
have u =1L py = v(say). Thus wu(X\ U N.) = 0. Due to
jed jed
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Lemma 3.5, without loss of generality, we shall assume pu = v.
Again by Lemma 3.5 there exists an isomorphism Ujfranz(X;L uj)

onto LZ(X,S, My ) such that
J

Us x(y) T3 Toxey Y5 Ty

N

For f ¢ LZ(X,S,u), let Uf = (fo.) It is easy to ve-
J

jed
'\J L)
rify that U 1is an isomorphism onto £ @ L2(X,S,uN ) such that
jed J

ey B e

1

If U =z U® and U =1U_" U, then U is the required

0o jed 0

isomorphism from LZ(X,S,u) onto K.

THEOREM 3.7. Suppose U, is an OTSR of H, relative to Ei(’) with

the measure family {“§1)}jed. » i=1,2. Then the following
i
statements are equivalent.

(i) There exists an isomorphism V from H1 onto H, such that
v El(.) V_1 = Ez(.), which we describe by saying that El(’)

and Ez(.) are unitarily equivalent.
(i1) ug(u) = up(u)s wex.

(iii) U, and U, are equivalent as OTSRs.

PROOF.

(i) => (ii) Suppose V is an isomorphism from H; onto Hy such
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that VE,(.) V71 = E,(.). Letwe . If ye Cylu)Hy, then

-1

by hypothesis V ~ y ¢ Cl(p) Hy- Similarly, if x € Cl(p) His

then Vx ¢ Cz(p) H,. Consequently,
Cudy =V ¢ ) Vly, v e Hy.

From this it follows that ul(u) = “2(“)'

.

(1) = (iii). Let je Jd;. For 0 # v << ugl), by (ii) and

by the fact that ul(u§lb is uniform we have
u, ) = w i) = ) = w0
. . (1) .. . .
and hence u, is uniform on “j . Similarly, uyq is uniform on

ugz)’ j e dy. Thus (iii) holds.

(iii) => (i). By (iii) and Theorem 3.3, ME = ME . Let ne M
1 2

and let ng) = {j e le ul(ugl)) = n}. Again, by Theorem 3.3

E,

we have

(1)_ (1) , @)y .
Uj :J'|EVJ2 . (]JJ A]JJ-I )9 J € Jl .
sJ

v
Therefore, by Lemma 3.6 there exists an isomorphism Uj from

L0Gs,utt) onto z g Lzogs;ugllzxp§?)l. For j e J, and
J j'€J2 . J
sJ
jte J, we observe that j' e Jz,j if and only if j € Jl,j"

clearly
1

For n ¢ ME
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z 8 Z @ Lz(.X’Ss}Jg:l) A u‘g?))
jsdgll‘ i'ed,

is canonically isomorphic to

8 8 L2(X¢Lu§l)JXu§?)L
jedﬁz) jedy g

.

Therefore, from the above it follows that there exists a canoni-

cal isomorphism U from =& 0] z LZOLSQAI)) onto

- J

Jedy it

1M
- . y
T ® 8 LZ(X,S,u(Z)). 1f U = u21 Uu, then U is an
jed, (2) J
uz(uj )

isomorphism from H1 onto H2 such that
be () 0= e ()
G ASRE

This completes the proof.

NOTE 3.8. The equivalence of (i) and (ii) in the above theorem
is directly established in Section 68 of Halmos [}]. Characte-
rization of the unitary equivalence of two arbitrary spectral
measures El(.) and Ez(.) in terms of the equivalence of the
OTSRs U, and U, in the above theorem is analogeaus to Theorem 9.9
of [7] or Theorem 8 (iv) of [5], which itself is a generalization of Theo

rems X.5.12 . and X1I.3.16.0f Dinford and Schwartz [2J‘to spectral measures with
the G5.%-property.



-23-

4. BOTS AND COBOTS—REPRESENTATIONS. Two new concepts, namely,
BOTS-representations and COBOTS-representations of H relative to
E(.) are introduced and is shown that H has a BOTS-representa -
tion (respy; a COBOTS-representation) relative to E{.) if and
only if E(.) has the generalized CGS-property (respy. the CGS-
property) in H. Apart from Theorem 3.7 we give some more charac-
terizations of the equivalence of two BOTS-representatiops and
this study sheds more 1ight on the work of Halmos [3] when the
spectral measure has the CGS-property or the generalized CGS-pro-

perty in H.

DEFINITION 4.1. E(.) is said to have the CGS-property (i.e.coun-
table generating set property) in H if there exists a countable

set 9 in H such that l}(o) X: 0 8, X EDC] = H.

As was shown in [8], E(.) has the CGS-property in H if and
only if every Qn is countably decomposable in W'. This motiva-

tes the following

DEFINITION 4.2. A spectral measure E(.) on S 1is said to have
the generalized CGS-property in H if the projections Qn are

countably decomposable in W.

The following proposition is easily deduced from Theorem

3.1 of [8] and the above definition.

PROPOSITION 4.3. (i) If E(.) has the CGS-preoperty in H, then
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E(.) has the generalized CGS-property in H.

(ii) If W is countably decomposable, then E(.) has the genera-

lized CGS-property in H.

(i1i) E(.) has the CGS-property in H if and only if W' is coun-

tably decomposable.

DEFINITION 4.4. Suppose U is an OTSR of H relative to E{.)with

the measure family {uj} Then we say that U is a bounded.

Jed -~
OTSR (BOTSR, in abbreviation) of H relative to E(.) if

(i) For each n ¢ ME’ {uj: u(uj) = n} is bounded in I .

The OTSR U is called a COBOTSR of H (relative to E(.))if

(i) u(“j) < 9“0’ j e Jd and U is a BOTSR.

(COBOTSR signifies a BOTSR with the multiplicities ofthe measu-

res of the representation being countable).

PROPOSITION 4.5. Let U be a COBOTSR of H relative to E(.)

with the measure family {“j}jed . Then:

(i) For 860 <n < dim H, Qn = 0.

(ii) J is countable.

PROOF. (i) is immediate from (ii) of Definition 4.4 and (v) of

Proposition 2.3. By (i), Mg is countable and hence (ii) holds

by Definition 4.4 (ii).
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LEMMA 4.6. Suppose U is an OTSR of H relative to E(.). Then:

(i) If U is a BOTSR of H, then E(.) has the generalized

CGS~property in H.

(ii) If U 1is a COBOTSR of H, then E(.) has the CGS-property

in H.

PROOF. Let {uj}j€J be the measure family of U. .

(i) When U is a BOTSR of H, for n ¢ ME the set {uj: u(pj)=n}
is, by Definition 4.1 (i), bounded in . Since T = I,/_

is a boundedly complete lattice, there exists v, € % such

that v

and by Theorem 66.5 of [3] we have

i

V{uj: u(uj) = n}. Therefore, by Theorem 2.4(v)

0, = & Cluy) = Clv,).
U(uj)=n

Consequently, by Theorem 66.2 of [3] we conclude that Q

is countably decompasable in W. Hence (i) holds.

(ii) If U 4is a COBOTSR of H, then by Proposition 4.5 (i) Qn=0
for n > ﬂSo. Besides, by (i) Q, are countably decomposa-
ble in W. Then from the equivalence of (ii) and (Viii) of

Theorem 3.1 of [8] the result follows.

LEMMA 4.7. If P is a countably decomposable projection in W,

then there exists x € PH such that C(p(x)) = P.
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PROOF. As W is abelian and P is countably decomposable in W,
by Lemma 3.3.12 of [4] P 1is cyclie. Let P = [W'x]. Then by
Corollary 2 of Proposition I.1.1 of [1] and by Theorem 66.2 of

[3] we have P = C[:Nx]= Clp(x)).

LEMMA 4.8. If E(.) has the generalized CGS-property (respy.
CGS-property) in H, then there exists a BOTSR (respy. COBOTSR)
Uof H relative to E(.). .

PROOF. By hypothesis, all Qn are countably decomposable in W.
By Lemma 4.7 there exists x e QH ' such that C(p(xn))=Qn,

ne M. . Let by, p(x,). Then by Theorem 65.1 of .[3] , {uQn}n e M

is an orthogonal family of non-zero members in z. IfO0 # v «:uQn,
then by Theorem 65.3 of [3] there exists a vector y e[Wx ] such
that p(y) = v and hence C(v) # 0. Then by Theorem 66.3 of [3]

C(v) < C(uQn) = Q.. Therefore, by Proposition 1.3 the H-multi-

plicity of C(v) = n and hence, Mg has uniform multiplicity n.

n
Thus {“Q }neM is the measure family of an OTSR U of H re -
n E
lative to E(.) by Theorem 2.4 since = C(uQ ) =1 and U is a
neM n
E

BOTSR if E(.) has the generalized CGS-property in H. If E(.)
has the CGS-property in H, then by Theorem &A(HyafﬂsLQn = 0 for
n > Sﬁo and hence U s also a COBOTSR.

NOTATION 4.9. Suppose Qn is countably decomposable. Choose

x, € Q, H such that C(p(x,)) = Q, (vide Lemma 4.7). If Cle(y))
= Q, then by Theorem 65.2 of 3] » ex,) = p(y). Weshall denote
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by uQ the measure p(xn). Then “Q is unique in I up to equi-
n n
valence.

THEOREM 4.10. The spectral measure E(.) has the generalijzed CGS-
property (respy. CGS-property) in H if and only if H has a BOTSR
(respy. COBOTSR) relative to E(.).

PROOF. The condition is necessary by Lemma 4.8 and is sufficient

by Lemma 4.6.

COROLLARY 4.11. Suppose S is the o-algebra generated by a coun-
table family of sets. Then H has a COBOTSR relative to E(.) if
and only if H is separable. Consequently, H has a COBOTSR re -
lative to a normal operator T,bounded or not, on H (in the sense
that it is a COBOTSR relative the resolution of the identity of

T) if and only if H is separable.

THEOREM 4.12. Suppose E(.) has the generalized CGS-property in
H. If U idis an OTSR of H relative to E{(.) with the measure

family {uj} then for n ¢ ME

jed ?

UQn v {Uj: U(UJ-) = n}
Consequently, every OTSR of H relative to E(.) is a BOTSR
and is, inparticular, a COBOTSR if E(.) has the CGS-property
in H. Besides, there exists a BOTSR (respy. COBOTSR) of H re -

lative to E(.) with the measure family {“Q } . A1l OTSRs of
n neM
E
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a separable Hilbert space H reltive to any spectral measure E(.)

are COBOTSRs.

PROOF. Let n ¢ ME and J_ = {J € J: U(Uj) = n}. From the proof

of Lemma 4.8 we have u(uQ ) = n and hence, by Proposition 2.3
n

(iv)

u =V (u A ..
Q" 560 ¢ T I ‘

On the other hand, for j ¢ Jn

C(uQn A uj) = C(uQn) C(uj) = Q, C(uj) = C(uj) (1)

by Proposition 2.3 (vi) and by Theorem 66.3 of [3]. Besides,

J

j e Jn. By Lemma 4.8 {uQn}"EME is the measure family of a
BOTSR of H relative to E(.) so that by Theorem 3.3 (ii) we ha-

C(uj) # 0 by Lemma 2.1 (iii). Consequently, o Au, # 0 for
n

ve
UQn = .V (UQn A Uj)
jed
We claim that HQ A M = pj, J e Jn. In fact, on the con-
n

trary, there exists 0 # »n << u. such that Y L(py, A uw.)
J n Q, J
and uy = v,V (ug A my). Then by Theorems 66.3 and 66.5 of
n
3] and by (1) we have

C(uj) = C(v ) + C(uqn) C(uj) = Clv ) + C(uj)
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so that C(vn) = 0. This shows that u(uj) is not uniform, which

is a contradiction. This proves that ¥ =V {uj: u(uj) = n}
n

The rest of the theorem is evident from the first part and

the proof of Lemma 4.8.

The following result is immediate from Theorems 4.10 and 4.12.

.

THEOREM 4.13. E(.) has the generalized CGS-property (respy.
CGS-property) in H if and only if every OTSR of H relative to
E(.) is a BOTSR (respy. COBOTSR).

NOTE 4.14. Let Jo < J be as in Note 2.6. If E(.) has the
CGS-property in H then 0 <u(uj) < “So for j e J, and hﬁ}ja%
in the principal theorem in Section 68 of Halmos [3] is the mea-

sure family of a COBOTSR of H by Note 2.6 and Theorem 4.13.

LEMMA 4.15. Let Ei(’) have the generalized CGS-property in H.

and let Ui be a BOTSR of Hi relative to Ei(') with the measure

(i)
J }jsJi

family {u » 1=1,2. Then the following statements are

equivalent.

(i) U, and U, are equivalent as OTSRs.
1 2

(11) ME = ME and M (1) = u (2) s N € ME
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and )
=y g, (1), (1)y _
N {“j : “l(“j ) n}t, ne Mg
Q 2
n
PROOF.
(i) => (ii). By Definition 3.1 and Theorem 3.3, ME = ME . Be-
1 2
sides, by Theorems 4.12 and 3.3 we have
~ (1) (1) (2) '
Mol T b Ly VDT gt 3T e dp )
Qn JEJn JEJn
=y {u.(l) A u(-?) u (u(l)) =y (u(-.z)) = n}
Jsl
_ 1) (2)
= V V ( A L | ]
iregl2) th M Jedy, !
_ 2
= V Ll(.
o q.(2) T
J an
= Ho(2)
Qn
(i) = . (i)y _ .
where Jn {j ¢ Ji' ui(“j ) = n} , i=1,2 and Jl,j’ Jz,j

are as in Theorem 3.3.
(ii) => (iii) by Theorem 4.12.

(ii4) => (i) By (iii) and by Theorem 66.5 of [ 3] we have
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(1) _ (2)
Qn = . 2(2) Cl(uj ) » ne MEl (1)
JEJn
and
(2) _ (p)
Qn - ng‘:]r(]l) CZ(UJ )3 n ¢ MEZ' (2)

Besides, by (1) for each n ¢ ME there exists j ¢ J, tsuch

1
that u2(u(2)) = n and for each n ¢ M by (2) there exists

J E,
j e Jl such that ul(u§1)) = n. Therefore, by Proposition 3.3
(v) we have M = M. .
E1 E2
Now, for j ¢ J, let u (u'?)) = n. Then n e M. and by (iii),
2 27 E1
(2) . . .
0 # ”j << UQ(I) . Since {“Q(l)}neME is the measure family of
n n 1
a BOTSR of H, ul(u (1)) is uniform and consequently, ul(ugz))
Q‘
n
is uniform and positive. Similarly, uz(u(l)) is uniform and

J
positive for j e Jl. Thus, by (1) and (2) and Theorem 3.3, U1

and U2 are equivalent.

The following theorem is immediate from the above Tlemma and

Theorem 3.7.

THEOREM 4.16. Let E;(.) have the generalized CGS- property in

H. and let Ui be a BOTSR of Hi relative to Ei(') with the mea-
(i)

sure family {uj }jed , i=1,2. Then the following statements
i

are equivalent.



-32-

(i) El(') and E2(.) are unitarily equivalent.

(i) U1 and U2 are equivalent as OTSRs.

(ii1) MEl = ME2 and pqgl) = quz) » N E MEl

(1) 3 (1) 2 vl By < e e,
and

NOTE 4.17. The equivalence of (i) and (iii) given in the above
theorem generalizes Theorem 27;2“¢m}g1g§wepwawdwmohqLn”[mo] for

-galFadjoint operators on H with certain restrictions.

The following theorem is analogous to Theorem 9.17 of |7]

for COBOTSRs.

THEOREM 4.18. Let T be a normal operator (bounded or not) on
a separable Hilbert space H with the resolution of the identity

E(.). Let {uj} be an orthogonal family of finite (non-ze-

Jjed
ro) measures on B(L) with uniform multiplicity U(pj) > 0 (rela-

tive to E(.)). Let K= 1 8 )X 0] LZ(I, B(L),u;). Then
jed U(}JJ) J

en isomorphism U from H onto K is a COBOTSR of H relative E(.)

if and only if

(1) uj(c) = 0 for o ¢ B(L) with c OV o(T) = ¢ and J e J;
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(ii) For every scalar Borel measurable function g on o(T) the

domain of the normal operator g(V) is given by

2 2
D(g(V)) = {(f, ) e K: L I j B gl® du,, < =}
Jk j jely /L Jk o] Jk

and

g(V) (f5) = (3 F )0 (Fy) e Do), .

- -1 - -
where V = UTU °, Wik = Hyo k € Ij and card. Ij = u(uj).

Assimilar result holds for an OTSR of H when H is arbitrary.

PROOF. Since E(L \ o(T)) = 0 and Lemma 9.16 of [7] is quite
general, the argument in the proof of Theorem 9.17 of [7] can
be slightly modified to prove the present result. Details are

left to the reader.

THEOREM 4.19. Suppose C(p(x)) has H-multiplicity n > 0. Then

there exists an orthogonal family {p(xj)} of measures such

Jjed
that p(x) = V p(xj) and C(p(xj)) has UH-multiplicity j. Any
jed

such orthogonal family {p(Xj) besides satisfies the follo-

jed
wing properties:

(i) J is countable.

(11) 9 = {3 e Mz Clo(x)) Q4 # 0).

(iii) n = min {j € J}.
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(iv) C(p(xj)) = C(p(x))Qj and consequently, p(xj) represents a

unique equivalence class in I =1,

o(x) =V p(xj) as in the above will be called a canonical
jed

orthogbna] decomposition of p(x).

PROOF. Since C(p(x)) is countably decomposable in W and I Qp=I,
*PeM
E

we have Jd = {j ¢ Mg - C(p(x))Qj # 0} is countable. Then for

j € J, by Theorem 66.2 and 58.3 of [3] there exist X; € C(p(x))Qj H
such that C(p(xj)) = C(p(x))Qj and consequently, by Proposition
1.3, C(p(xj)) has UH-multiplicity j. Besides, by Theorems 65,1
and 66.5 of [3]

Clp(x)) = T C(p(x))Q, = Z Clp(x;)) =c(V p(x;))
jed I ey J jed J

so that by Theorem 65.2 of [3] we have p(x) v p(xj). This

jed
proves the first part of the theorem.

Let {p(y.)} g be an orthogonal family with p(x) = V p(yph
P’ pe ped’

each C(p(yp)) having UH-multiplicity p. Clearly, J' is counta-
ble. By Proposition 1.3, C(p(yp))_ng. Then by Theorem 66.5
of [3] c(p(x)) Q, # 0. Thus J'<{j e Mgz Clo(x))Qy # 0}, For

J EME\JU
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and hence J' = {j ¢ Mg C(p(x))Qj # Q}

By hypothesis,

>
il

H-multiplicity of C(p(x))

tl

min {H-multiplicity of C(p(xj)), je J}

min {j: j e J}.

Finally, as C(p(,yj)) < @y and Clo(x)) = £  Clo(y.))
jed!' J
we have

Cp(x))05 = Claly, )0y = Cloly;))

and hence by Theorem 65.2 of [3], p(xj) = o(y;)s Jed=23".

This completes the proof.

THEOREM 4.20. Suppose C(p(x)) =1 and I has UH-multiplicity n.
Then there exists an orthogonal family {Xj}jeJ in H such that
p(xj) = p(x), jiJ ® Z(xj) = H and card. J = n. Consequently, if
C,(py(x)) = I and C,(p,(y)) = I and each of them has UH-multi-
plicity n relative to the corresponding spectral measure Ei(')’

i=1,2, then El(.) and EZ(.) are unitary equivalent if and only
if py(x) = 0,(y).

PROOF. The first part is immediate from the hypothesis, Theo-
rem 65.2 of Bﬂ and the fact that for an abelian projection E'fqn

w' with cwcountably decomposable in W, there exists a vector x
E
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such that E' = [Wx] and Cco = Clp(x)). The last part {s immedia-

te from the first and Lemma 1.2 of [7].

THEOREM 4.21. Suppose C(P(x)) has H-multiplicity n and let

C{p(x)) = I. If p(x) =V p(xj) is a canonical orthogonal decom-
' Jjed
position of p(x), then J = ME and p(xj) = M. - Consequently, if
J
cl(ol(x(?))) = T and cz(pz(x(z))) = I, then E;(.) and E,(.) are
= (1) (2)
3 MEZ and pl(xj = pz(xj )
1.(xJ{]) is a canonical orthogo-

unitarily equivalent if and only if “ME
for j € Jl, where pi(x(1)) =V )
jeJi

nal decomposition of pi(x(1)) with respect to Ei(')’ i=1,2.

PROOF. Since C(p(x)) =1, I is countably decomposable en W and
hence E(.) has the generalized CGS-property in H. By Theorem
4.19, d = {j ¢ Mg : C{o(x)) Qj # 0} = Mc and C(p(xj))= C(dx))0j=

=Q.=¢C ) so that p(xj) =g, j e J by Theorem 65.2 of [3]. Now
J

; (qu
the last part is immediate from the first and Theorem 4.16.

NOTE 4.22. As is shown in [9], if E(.) is the resolution of the
identity of a self-adjoint operator T on H, then C(p(x)) has
H-multiplicity (respy. UH-multiplicity) n if and only if p(x) has
multiplicity (respy. homogeneous multiplicity) n in the sense
of Plesner-Rohlin [10]. Consequently, the above theorems 4.19,
4.20 and 4.21 are the generalizations of the corresponding re-
sults of [10] to spectral measures. Also is given the genera-
lization of the principal theorem of [10] on unitary invariants

of a general self-adjoint operator to sepectral measures in [9].
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5. TOTAL H-MULTIPLICITY OF SPECTRAL MEASURES. In [7] we introdu-
ced the notions of O0SD-multiplicity, OSR-multiplicity and total
multiplicity of a spectral measure E{.)(and of projections commu-
ting with E(.)) and showed that they are all equal. Here we give
the concept of total H-multiplicity of a spectral measure E(.)
and study its relation with respect to the above multiplicities

when E(.) has the CGS-property.

Let us recall some of the definitions from [7].

DEFINITION 5.1. Llet {xi}N . NeIN Ufo}, be a countable set of

1
non-zero vectors in H such that

1

N
(i) H = % B Z(x.)

(11) plxq) »p(x5) » ...

N
Then we say that H =} § Z(xi) is an ordered spectral decompo-
1

sition (0SD, in abbreviation) of H relative to E(.). The car-
dinal number N (which depends solely on E(.))1is called the
0SD~-multiplicity of E(.). When N is infinite, the 0SD-multipli-
city is said to be f“o. If P is a projection commuting with
E(.), then the 0SD-multiplicity of P relative to E(.) is defined
as that of E(.) P. If T is normal on a separable Hilbert space
H with the resolution of the identity E(.), then the 0SD-multi-

plicity of T is defined as that of E(.).

DEFINITION 5.2. Let {u].}N , Ne IN U=}, be a countable set
1
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of non-zero finite measures on S such that My >> g 2> ... Let

N
K=18LK.s, uj). If there exists an isomorphism U from
1

H onto K such that
-1 N _ N

then U is called an ordered spectral representation (an OSR, in
N L]

abbreviation) of H relative to E(.). {“1}1 is called the mea-
sure sequence of U. The cardinal number N (which solely depends
on E(.)) is called the OSR-multiplicity of E(.). The OSR-multi-

plicity of a projection or a normal operator T is given analo -

gously as in Definition 5.1.

N

NOTE 5.3. If H =) B Z(Xi) is an 0SD relative to E(.), then
1

there exists an OSR with the measure sequence {p(xi)}¥ which

is said to be the OSR induced by the given 0SD; conversely, gi-
’ N

ven an OSR U with the measure sequence {ui}T, then H= | @ Z(xi)
1

)N

i3'5=1 > %1y

and this 0SD is said to be induced by the OSR U.

is an 0SD, where X; = U—l(é , 6 =0, j#1i, 6,; =1

11

Here we adopt the von Neumann definition of ordinal and car-
dinal numbers, so that each ordinal is identical with the set
of all smaller ordinals and a cardinal is an ordinal which

cannot be put in one-one correspondence with a smaller ordinal.

DEFINITION 5.4. The total H-multiplicity of E(.) is defined as
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the supremum of thevH-mu]tipTicities of all projections in W (in
the well-ordered set of cardinals). If T is normal, then the
total H-multiplicity of T is defined as that of its resolution
of the identity. If P is a projection commuting with E(.), then

the total H-multiplicity of P relative to E(.) is defined as that

of P E(.).

The following proposition is immediate from the fact that

I Q, =1 and from Theorem 64.2 of [3] and Proposition 1.3.
neME

PROPOSITION 5.5. For a spectral measure E(.) the following

statements are equivalent.

(i) The total H-multiplicity of E(.) is $§¥.
(1i) sup{n: n e M.} = X .

(iii) sup {UH-multiplicity of P, P a projection in W}.

THEOREM 5.6. Suppose E(.) has the CGS-property in H. Then
E(.) has the total H-multiplicity N if and only if its 0SD-mul-
tiplicity is N. Besides, N < §§, . Consequently, the total
H-multiplicity, the total multiplicity, the 0SD-multiplicity

and the OSR-multiplicity of E(.) are the same.

PROOF. Since E(.) has the CGS-property in H, W' is countably
decomposable. Therefore, by Proposition 1.3 Qn = 0 for n >YK§.

Thus by Proposition 5.5, N 5360.
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For n e ME’ the projection Qn is countably decomposable in
W' and hence in W. As Q, has UH-multiplicity n, by Theorem 1.2

there exists an orthogonal family {Pé} of abelian projections

jed
in W' such that card d = n, C, =Q andQ = J P. . Since
pj n n jed J
P3 is abelian and CP' = Qn is countably decomposable en W, there
exists x; e Py H such that Pj = I}ij], jed. If J={1,2,..,n}
n
thenQ H= ) @ Z(x.) and .
n j=1 J

P (xl) = p(xz)...

by Theorems 66.2 and 65.2 of [3].

Thus for each n € M. there exist vectors {x(‘])}n

E n =1 such that

g 23Ny, kU3 -

(1)) = 5(x(2)) -

and p(xn

Let M. = {n; <n, <....} U ?ﬁo, where {n;}, < IN. If
gﬁo ¢ Mg we omit the discussion corresponding to 966. The se-
quence terminates with ny if ME AN is finite and is infinite
on the contrary. Thus

P U] Z(xgj)), p(xgl)) = p(xgz)) =. ... (1)

1 p P p

L

-

n
he~1 =S

p Jj
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and

HI

(J) (1) (2)y _
yA s =S
. B (Xi‘o ) p(x%0 ) p(x“0 ) (2)

O

o

|
ne~1 8

“0 J

Let x£3)= 0 for §>n,, je IN. We define

MEINE)
1 ''p p No

~

where k' = o if ME is infinite and k' =k if ME(\]W= {nr<n2<“.<n }.

k
If &(0 ¢ ME and k' = k, then X; # 0 only for j in the range
1 <j<n =N If §so e Mg on if M. is infinite, then X 0

for j e N. For o,6 ¢S and jl # j2 we have

(E(o) E(8)x, ) E' ( L Gy E(c M §) (j2)>
g} X ’ X . = X > (0] X
1 Y2 p=l ;E "p "p
(j.) i)
e L TP AR
0 0
= 0

, = 0and Z(xgig) A Z(xﬁjé Ny,

since Q Q =0 for p#p'sQ Q
n n N
4] P Y p

p p'

=

Consequently, {Z(xj)} is an orthogonal family of non-zero

j=1
subspaces of H.

AFFIRMATION. p(xl) >> p(xz) >>. ...

In fact, it suffices to show that p(xj) >> p(Xj+1). Choose
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Po such that npo <J < np0+1 » Where we take n, = 0. Then

(5) = G+ g sor

X p = 1,2,...,p.. Thus
np np 0
k' . .
X; = y ﬁL, XgJ) + X(J)
p=p,*1 "p  p %o

and kl'

TR S S CL NS .

p=p,*1 P P Mo

where x(j+1) =0 1if n

N < J+1, which is the case when
Pyt
0

Po*l
j =n L Suppose p(Xj) () = 0. Then

2
i

I E(o)xj

1]
T~ X

L e xPFN P ey KB <0
np p 0

so that p(x,(]j)) (6) = 0 for p +1 <p < k' and o (x4} (6) = 0
p %o

(with p finite). From (1) and (2) we have p(xﬁj)) = p(xgj+l))
i . p P

if j+1 < n, and p(xr(];))>> p(xr(]‘;+1)) = 0 if §+1 > n; p(xéi))s

= p(x(§+1)) for all j. Thus p(xj+l) (¢) = 0.

N

N

Finally, we assert that H = Z_@_Z(xj). In fact, on the
I

contrary, suppose ) @ Z(xj) = K ¢#

1

H. Let y e HB K, y # 0.

Then there exists np such that Yo ° Qny # 0 or %K y=%“ #0.
Y Po Po 0 0
It suffices to discuss the case of n . As an(%)r : c;z(xj),
0 p ‘
0
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it follows that Qny 1 K. Therefore,

p0
0 =(y, ., E(o) x;) = (y, » Q E(o) x.)
npo ’ npo npo ’
' )
- (v, Ee) (L 9D
npo " npo

0

for o e€ S and hence’ Y A Z(ng)) for j=1,2,...,np . Conse-

n
Po . po Po °
quently, Y, & .Z @ZbﬁJ” = Qn H so that Y, = 0. This con -
P, J=1 P P Po |

tradiction proves that Qn y =0 for n¢e ME' Thus y = 0 and
K = H. This shows that

N

H=T 8 Z(x;)
1

is an 0SD of H and hence the 0SD-multiplicity of E(.) is N.

The Tast part follows from the first and Theorem 9.20 of

7]

COROLLARY 5.7. If E(.) has the CGS-property in H and P is a
projection commuting with E(.) then the total H-multiplicity

of P relative to E(.) is the same as its 0SD-multiplicity rela-
tive to E(.). Consequently, the H-multiplicity of P in W is

not greater than its 0SD-multiplicity relative to E(.).

The following theorem is an analogue of Theorem 9.22 of

| 7] for normal operators with total H-multiplicity n, an arbi-
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trary cardinal not greater than the dimension of H.

THEOREM 5.8. Let T be a normal operator on H with its total
H-multiplicity n. Then there exists an OTSR U of H onto

K=Y 6 } 8 L,( L, B(L), u;) relative to T with the measure
jed u(uy) J

family (“j)jed such that

(i) sup{u(pj): jed} =n

and

(ii) U TU * = M, where

g0 = O g0, (F) DO,

where B(L) is the o-algebra of Borel subsets of L.

We call MA the canonical orthogonal representation of T on

In the above, U is a COBOTSR of H relative to T if and only
if H is separable, in which case n ig“o .

PROOF.

(i) Holds by Proposition 2.3 (v) and 5.5.
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(ii) Let U be an QTSR of H relative to T with the measure fami-
1y (“j)jed as given in Theorem 2.5. Then the argument
in the proof of the necessity part of Theorem 9.17 of [7]
can be suitably modified to prove (ii). (Note that Lemma

9.16 of |7] is quite general and is applicable here).

The last part is immediate from Corollary 4.11 and (i).

.

6. COMPARISON OF COBOTSRs WITH OSRs AND 0SDs OF |7]. Theorems
2.5 and 9.4 of [7] characterize the CGS-property of E(.) in terms
of the existence of an 0SD and an OSR of H respectively, while
Theorem 4.10 does so in terms of the existence of a COBOTSR of

H.

In this section we construct an 0SD and an OSR of H relative
to E(.) in a canonical way from the given COBQOTSR of H, thereby
v providing an alternate proof of Theorem 2.5 of Dﬂ, Conver-
sely, given an OSR of H (equivalently, an 0SD of H relative to
E(.), we construct in a canonical way a COBOTSR of H relative
to E(.). Besides, we classify the 0SDs (respy. OSRs) into four
types and characterize each one of them in terms of the multi-

plicity set M Thus the results in this section not only ex-

£
plicity give the connection between 0SDs (respy. OSRs) and

COBOTSRs but also shed more light on the earlier work [7].

NOTATION 6.1. Throughout this section {xj}j denote the vectors

constructed in the proof of Theorem 5.6.
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DEFINITION 6.2. Let H =) @Z(wi) be an 0SD of H (respy. U an
1 [oe]
OSR of H with the measure sequence (ui)i) retative to E(.). Then

we say that the 0SD (respy. OSR U) is

(i) strongly infinite if there exists an infinite subsequence

{nk} such that

) .

p(w_ ) > p(w ) (respy. u >>
M- Mk+1 M2 Ml

and if there exists v € Z with C(v) # 0 such that
p(w.,) >> v (respy. u, >> v) for j € IN;
R J ¢
(ii) essentially finite if there exists n e IN such that

p(w,) = p(wno) (respy. u = uno)

for all n > ng;

(iii) semi-finite if there exists an infinite subsequence {nk}

such that

p(w_ ) > po(w ) (respy. u_ >>n )
' ¢ Mg+1 W £ Mk+1
and if there does not exist any v € £ with C(v) # 0 such

that
p(w.) >> v (respy. p., > v) for all j e IN.
Jog -
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N
An OSD H = ) @ Z(wi) (respy. an OSR U with the measure se-
1
quence (uj)?)‘of H relative to E(.) is said to be finite if

N e IN.

Obviously, the above four types of an 0SD (respy. of an OSR)
of H are mutually exclusive. Besides, in the light of Theorems
2.9 and 9.8 of [7] it follows that all the 0SDs (respy. OSRs)

~

of H relative to E(.) are of the same type.

LEMMA 6.3. Let E(.) have the CGS-property in H. Then:

(i) po(x;) = V{uQ i ne Mg, n > j} for all those j for which
n

J
X; # 0.
(i1) Clp(x;)) = I.
R
n<J

PROOF. Suppose ME = {n1 < n, <....+ U 9“0. The other cases

of M- can be similarly dealt with. With the notations in the

E
proof of Theorem 5.6 we have

I UV € ) N € R
X5 pzl s an < €
n
Since Qn H = E B Z(xgj)) with p(xﬁl)) = p(xgz)) S,
p j=1 p p p
it follows that C(p(xgj))) = C(p(xgj')) for .3 = 1,2,....n .

p Y
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Consequently, by Theorem 66.2 of [3], 0, Ha Clo(x{))) -

P p
= C _ (i) H c:Qn H and hence ‘C(piJ)) = Qn » 1 < jlf_npl Let
lwx ] p n p
_ g p
w € Q. H such that p(w. ) = ny . Then by Theorem 65.2 of
np np np Qn
- : ; p
|[3]we conclude that p(ng)) =g o 1 <j< ng- Similarly,
n
(3)y - : i P
p(x ) = u » j e IN.
No Qx
0 .
As Q. Q. =0 for n # m, by Theorem 65.1 of [3]
ﬁﬂxﬁj”}:=l\J {Dbﬁj)ﬂ-is an orthogonal family of measures in Z.
p 0
Besides,
p(x) = 1 S oty 4oy, jem.
J p=1 n, p o

Then by the discussion on p. 79 of [3] for j € IN with n, <Jx
0
< np0+1 we have

p(x.) =

P

Il <8

[oe)

v etxiih v o))
p,*1 p No

I

11

V{ug i noe Moo > ) (1)
n

since xﬁj) =0 for p = 1,2,..., p,- This proves (i).

By Theorem 66.5 of |3] from (1) we have
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Clo(xg1) = } c(pQ ] =7 Q =1

n
neME n neME
and
Clp(x;)) =) Q =1- 7} Q
J neME n neME n
n>j n<j
Thus {ii) and (iii) hold. .

DEFINITION 6.4. Let E(.) have the CGS-property in H Then we say
that E(.) is

(i) strongly infinite if ME is infinite and S&o € ME;
(i1) essentially finite if M is finite and 9&0 € ME;
(iii)semi-finite if M is infinite and W% ¢ Mo, and
(iv) finite if M is finite and SKO ¢ M.

LEMMA 6.5. Let E(.) have the CGS-property in H. Then the follo-

wing assertions hold:

(i) If ME = {nl < n, <....} L’{“b}’ then

(a) p(x_ ) >> p(x;) = o(x ) for n, < Jj <n, ., i=0,1,2.
ity Ni+1 1 i+l

where ng = 0 and the term corresponding to X, is
0

omitted; and

(b) p(x;) >>un , je N.
quvco



(ii)

(iii)

(iv)

(v)

PROOF.

(i)

-5Q-

If Mg o= {ng < n, <.oosn JUS,, then (il (a) holds for
i = 0919--'sk"‘1 and

(c) px:) =y s J>n,.
J Q“o k

If ME = {n1 < n, <...}, then (i) (a) holds and there does

not exist v e I with C(v) # 0 such that

p(xj) >> v for all je N.

If Mg = {n; <n, <...<n} , then (i) (a) holds for

i=0,1,2,...,k-1.

Consequently, if E(.) is strongly infinite (respy. essen-
tially finite, semi-finite, finite) then the same is true

for every 0SD of H relative to E(.).

Let Mo = {n; < ny<...} U{x}. As in the proof of Theo -
0
rem 5.6 the xj are non-zero vectors for all j e IN. Since

un # 0, it follows from Lemma 6.3 (i) that op(x.) >> u
O U
0 0

Besides, for n, < j < USEE from (i) of Lemma 6.3 we have

p(x ) ;; p(xj) = plx, ).

n p+l

P

Thus (i) holds.
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(i1) Suppose ME ={ny < n, <...<nk} U {8 ). Obviously,
G,

) = q for
0 %o QNLO

ji> ne- As in the case of (i), by Lemma 6.3 (i) we have

x = xi) fdr j > n_ and hence p(x.)OE p (x
i $ k J

p(_xni) e plxy) = p(X"1+1)’

for n. < j < n i=0,1,., k-1. .

i — i+l

(iii) If ME = {n1 < n2<...} » Clearly the arguments in the proof
of (i) (a) hold here verbatim. If there exist v e T with
C(v) # 0 such that p(xj) >> v for all j e IN, then by
Theorem 66.3 of [3] and by Lemma 6.3 (iii) we have

Clo(xy)) = (T -] Q) > C(v)
n<j
neMc

Consequently,

o=(-7 )= Na-71 q)>cw) 7o
neME jelN n<j
neME

Thus this contradiction proves (iii).

(iv) The proof of (iv) is similar to that of (i) (a) and we

note that xj = Q for § > Ny -

(v) This is immediate from Definitions 6.2 and 6.4, Theorem

2.9 of [7] and the earlier parts of the lemma.
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THEOREM 6.6. Let E(.) have the CGS-property in H. Then:

(i)

(ii)

(i11)

(iv)

(v)

(vi)

The total H-multiplicity of E(.) is ?ﬁo if and only if

X # 0 for je IN.

o0

H= )8 Z(xj) is an 0SD of H relative to E(.) if the to-
tal Himu]tip]icity of E(.) is ¢K0. Besides, it 'is a
strongly infinite (respy. essentially finite, semi-finite)
0SD if and only if E(9) is strongly infinite (respy. essen-
tially finite, semi-finite).

N

H=1)08 Z(xj), Ne IN is a finite 0SD of H if and only if
1

E(.) is finite. Then N is the total H-multiplicity of E(.).

ME(\ N = {i e IN: p(x,) > p(x
Vot

i is the total H-multiplicity of E(.) and SKO e M

only if ) Q. # I.
ne:ME AN

1+1)}’ where p(xi+1) =0 if

E if and

If V is an OSR of H relative to E(.), then V is strongly
infinite (respy. essentially finite, semi-finite, finite)

if and only if the same is true for E(.).

Suppose U is a COBOTSR of H relative to E(.) with the mea-
sure family {“j}jsd . Then there exists an OSR V of H
relative to E(.) with the measure sequence {vi}? >

Ne N VU {=}, where

vy = V{uj: u(uj) > i}



(vii)

PROOF .

(i)

(i1)
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for all those i ¢ IN for which there exists some with

.
u(pJ) > i. Such an OSR V is called the OSR induced by U
and is unique upto equivalence (vide [7])]. The 0SD indu-
ced by such V is also called the 0SD induced by U and is

unique upto equivalence as 0SDs (vide [7]).

If Vv, and V2 are the OSRs induced by the COBOTSRs Ul and

1
U, of H relative to E(.), then V1 and V2 are equivalent
as OSRs (vide [7]). Similar result holds for the 0SDs

induced by Ug and U2.

If ME is infinite or if SKO 5 ME’ from the definition of

X; in the proof of Theorem 5.6 it is clear that X # 0

for j ¢ IN. Conversely, suppose x, # 0 for j e IN. If

J
the total H-multiplicity of E(.) is finite, then ME is
of the form M. = {n, < n, <...<n. } €IN. Since x(j)= 0
E 1 2 k 4 n

for j > np, it follows that xj = 0 for j > np. This

contradiction proves that the condition is also sufficient.

From the last part of the proof of Theorem 5.6 and (i) it

follows that H =] 8 Z(x;) is an 0SD if the total H-mul-
1

tiplicity of E(.) is SUO.

(a) By Lemma 6.5 (v) the 0SD is strongly infinite if E(.)
is strongly infinite. Conversely, suppose the 0SD
is strongly infinite. By (i), the total H-multipli-
city of E(.) is % . If 9{0 ¢ Mo, then MEf\IN is
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(iv)
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infinite and by Lemma 6.5 ({ii) the 0SD is not stron-
gly infinite. If ME(\ IN is finite and S‘o € ME,
then by Lemma 6.5 (ii) again the 0SD fails to be
Strongly infinite. Therefore, we conclude that MEn]N
is infinite and &(o € ME‘ That is, E(.) is strongly

infinite.

(b) If E(.) is essentially finite, then by Lemma 6.5 (v)
the 0SD is essentially finite. Conversely, let the
0SD be essentially finite. Let N, € IN such that
p(xi) = p(xno) for i > Ny - Clearly, ME can not be
infinite by (i) and (iii) of Lemma 6.5. On the other
hand, by (i) the total H-multiplicity of E(.) is S¥o

and hence SKO e M Thus E(.) is essentially finite.

£

(c) 1If E(.) is semi-finite, then by Lemma 6.5 (v) the 0SD
is semi-finite. Conversely, if the 0SD is semi-fi-
nite, then by (i) and by the above cases (a) and (b)

we conclude that E{.) is semi-finite.

The first part is immediate from Lemma 6.5 (v) and from

(ii). The last part follows from Theorem 5.6.

If i ¢ Me NN, then by Lemma 6.5 we haye p(xi) ;;p(xi+1)

where p(xi+l) = 0 if i is the total H-multiplicity of

E(.). Conyersely, if p(xi) >> p(xi+l), then by Lemma 6.3
7

(i) we conclude that i € M- The last part is due to the
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(vi)

(vii)
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fact that ) Q, = I and that the total H-multiplicity
neM
E

of E(.) is less than or equal to 350.

This follows from (ii), (iii) and Theorems 2.9 and 9.6
of [7].

This is immediate from Lemma 6.3 (i) and Theorem 4.12 and
from the fact that H =1 § Z(xi) is an 0SD relative to
E(.) (vide Theorem 9.6 of |7] and the last part of the

proof of Theorem 5.6).

Let {p(i)} be the measure family of U,, i=1,2. Let
J jed; '
N be the total H-multiplicity of E(.). Let {vg1)}§=1 be

the measure sequence of Vi, i=1,2. Then

vgl) = \/{u§1): u(ugl)) > i}

1l

\/{uQn: n e ME’ n > i}

= Vo'l ul?h) > 0

by (vi) and Theorem 4.12. Hence V; and V, are equivalent

as OSRs. The last part is immediate from the first.

This completes the proof.
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NOTE 6.7. Theorems 4.12 and 6.6 proyide an alternate proof of
Theorem 2.5 of |7] . Besides, the present study in Theorem 6.6
gives more details about the 0SDs and OSRs in terms of the
behaviowr of ME. Also, the above theorem brings out clearly the
connections between OTSRs and 0SDs (or OSRs) when E(.) has the

CGS-property in H.

The next theorem, among other things, includes the construc-
tion of a COBOTSR of H in a canonical way from the given 0SD
(or OSR) of H.

N

THEOREM 6.8. Let H =) 8 Z(wi) be an 0SD of H relative to E(.),
1

N e NU{»}. Then:

(i) For n ¢ ME’

QH =1 B z(QVy)

j<n
je IN

J

is an 0SD of Q H. with p(Q W)

1
o
—~
)

x

N
~

!

Besides, wug = p(anj)" 1 <Jj<n, jeN.
n R

(ii) There exists a COBOTSR V of H relative to E(.) with the

measure family {p(an1 )}neME .

(111)ME is determined by (iy) of Theorem 6.6 if we replace X

by W, there.

(iv) If U is an OSR of H relative to E(.) with the measure
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_l(

sequence {pj}N , let = U fijl§ where fij = 0 for

"3
i # j and fjj = 1. Then (i) and (ii) above hold for these

vectors wj.

The COBOTSR V as in (ii) is called the COBOTSR induced by
N .
the 0SD H =) @ Z(Wi) or by the OSR U.
1

PROOF. By hypothesis, E(.) has the CGS-broperty in H. ‘There-
fore, by Theorem 4.12, {uqi neME is the measure family of a
COBOTSR of H relative E(.). Since any two 0SDs of H relative
to E( ) are equivalent by Theorem 2.9 of [|7] and since

% B Z(x is an 0SD of H by Theorem 5.6, we have by Lemma

6.3 (i)

p(wi) = p(xi) = \/{pqn: neM,n> i}
for 1 < i <N, i e N. Thus by Lemma 6.3 (iii), Z(wi) 1 Qj
for j € ME with j < i. Therefore, by Theorems 66.2 and 66.5

of [3] we have

Clwg,wi 17 O O owy] T G Clelig)) -

Qn if n >

for n e M_. Besides, by Theorem 60.2 of |3] the projections
E = I:Nan%;] » 1 <i=<n, (ne ME), i e N form an orthogo-
nal family of abelian projections. Since these projections
have the same central support Qn, it follows from Theorem 1.2

and from Theorem 65.2 of |3] that
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QI"IH =]'§n @ ZCani)
ie N

is an 0SD of Q H with p(ani) = p(anz} = ... .

consequently, C(Q(ani)) = Q, so that p(ani)

|
=
o
—f,
o
-3

1 <i<n, ielN.
(i1) This is immediate from (i) and Theorem 4.12. .

(i1i) Since any two 0SDs of H relative to E(.) are equivalent by

Theorem 2.9 of [7], (iii) holds by Theorem 6.6 (v).

(iv) This follows from (i) and (ii) and Theorem 9.6 of [7].
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