NOTAS DE MATEMATICAS Nº 64

A NOTE ON A PAPER OF MCARTHUR

POR

Luis Ramon Leon Montilla y
T.V. Panchapagesan

UNIVERSIDAD DE LOS ANDES
FACULTAD DE CIENCIAS
DEPARTAMENTO DE MATEMATICAS
MERIDA-VENEZUELA
1984

A NOTE ON A PAPER OF MCARTHUR

LUIS RAMON LEON M. AND T.V. PANCHAPAGESAN

ABSTRACT

This note fills the gap in the proof of Theorem 1 of the paper "On a theorem of Orlicz Pettis" by McArthur, Pacific J. Math. V. 22 (1967), 297-302.

A NOTE ON A PAPER OF MCARTHUR

LUIS RAMON LEON M. AND T.V. PANCHAPAGESAN

In [2], McArthur proved the theorem of Orlicz-Pettis about subseries convergence in locally convex Hausdorff spaces. In the proof of this theorem, the author makes an assertion (result (F)) without sufficient restrictions on the sequence $(f_n)_1^{\infty}$. The object of this note is to establish (F) when $(f_n)_1^{\infty}$ is equicontinuous. This additional hypothesis of $(f_n)_1^{\infty}$ is used in the statement of (D) in [2] and therefore, the rest of the proof of the theorem remains valid.

Following the notations in [2], E is a Hausdorff locally convex space with topology \mathcal{J} . E* denotes the space of all \mathcal{J} -continuons linear functionals on E. $\overline{\operatorname{sp}}\{\mathbf{x_i}\}$ is the closed linear subspace generated by $\{\mathbf{x_i}\}_1^\infty$ in (E,\mathcal{J}) . (ℓ) denotes the sequence space ℓ_1 .

In the proof of Theorem 1 of [2], the author proves that $\lim_{n \to \infty} \sum_{i=1}^{\infty} f_n(x_i) = 0$ (1), for each sequence $(\varepsilon_i)_1^{\infty}$, where $\varepsilon_i = \pm 1,0$ and $(f_n)_1^{\infty}$ is an arbitrary sequence in \mathbb{E}^* such that $\lim_{n \to \infty} f_n(x) = 0$ for all $x \in \overline{\operatorname{sp}}\{x_i\}$. The author then asserts that by following Pettis [3],

$$\lim_{n \to \infty} \sum_{i=1}^{\infty} |f_n(x_i)| = 0$$
 (F).

Since the argument of Pettis [3] is valid only for Banach spaces, a modification of the argument of Pettis has to be used to establish (F) and this needs the additional hypothesis that $(f_n)_1^\infty$ is equicontinuous.

Let $(f_n)_1^\infty$ be equicontinuous in E*. Then there exists a balanced, convex, open neighborhood U of zero such that $|f_n(U)| < 1$ for all n $\in \mathbb{N}$. If μ_U is the Minkowski functional of U, then μ_U is a continuous semi-norm on E. Let τ_U be the locally convex topology induced by μ_U on E . Then (E,τ_U) is a locally convex space, not necessarily Hausdorff. E_U^* denotes the space of all τ_U -continuous linear functionals on E.

LEMMA 1. Let $\| \mathbf{f} \|_{\mathbf{U}} = \sup_{\mu_{\mathbf{U}}(\mathbf{x}) \leq 1} |\mathbf{f}(\mathbf{x})|$, $\mathbf{x} \in \mathbf{E}$, $\mathbf{f} \in \mathbf{E}_{\mathbf{U}}^{\star}$. Then $(\mathbf{E}_{\mathbf{U}}^{\star}, \| . \|_{\mathbf{U}})$ is a Banach space. Further, $\| \mathbf{f}_{\mathbf{n}} \|_{\mathbf{U}} \leq 1$ for all $\mathbf{n} \in \mathbf{N}$.

PROOF. To show that $\|\cdot\|_U$ is a norm in E_U^* , it is enough to verify that f=0 if $\|f\|_U=0$. Suppose that $\|f\|_U=0$ and $x\in E$. As U is absorbing, there exists a $\lambda>0$ such that $\frac{x}{\lambda}\in U$ and consequently, $\mu_U(\frac{x}{\lambda})<1$, from which it follows that $f(\frac{x}{\lambda})=0$. Hence f=0. By a known argument, using the fact that U is absorbing, we can easily prove that $(E_U^*,\|\cdot\|_U)$ is complete. By the choice of U, it is clear that $\|f_n\|_U \le 1$ for all n.

We observe that $E_U^{\star} \subseteq E^{\star},$ as the topology $\tau_U^{}$ is weaker than ${\mathfrak J}$.

LEMMA 2. The transformation T: $E_U^* - (\ell)$, given by

$$Tf = \left(f(x_i)\right)_{i=1}^{\infty}$$

is linear and continuous.

PROOF. By the hypothesis (B) of [2], $\sum_{i=1}^{\infty} |f(x_i)| < \infty$ for all $f \in E^*$ and hence for all $f \in E^*_U$. Thus T has its range in (ℓ). By Lemma 1 and by the argument in the proof of Lemma 3.2.1 of [1], the result follows.

Using these lemmas, we shall now show that (1) \Longrightarrow (F) when $(f_n)_1^\infty$ is equicontinuous in E*. Let $\mathfrak D$ be the linear subspace generated in $(\ell)^*$ by all elements of the form $(\epsilon_i)_1^\infty$, $\epsilon_i = \frac{1}{2} \cdot 1,0$. Clearly, $\mathfrak D$ is dense in $(\ell)^*$. From (1), it follows that $\lim_{n \to \infty} \sum_{i=1}^{\infty} \beta_i f_n(x_i) = 0$ (2) for every $\beta = (\beta_i)_1^\infty \in \mathfrak D$.

Let $\alpha = (\alpha_i)_1^{\infty} \varepsilon(\ell)^*$. Given $\varepsilon > 0$, there exists a $\beta = (\beta_i)_1^{\infty} \varepsilon \mathfrak{D}$, such that $\|\alpha - \beta\|_{\infty} < \frac{\varepsilon}{2} \cdot \frac{1}{|T|}$, where $\|T\| < \infty$ by Lemma 2. By (2), there exists n_0 such that $\|\sum_{i=1}^{\infty} \beta_i f_n(x_i)\| < \frac{\varepsilon}{2}$ for $n \ge n_0$. In other words, $|\beta(y_n)| < \frac{\varepsilon}{2}$, where $y_n = \left(f_n(x_i)_{i=1}^{\infty} \varepsilon(\ell)\right)$. Therefore, it follows that

$$\begin{split} |\alpha(y_n)| &\leq |\alpha(y_n) - \beta(y_n)| + |\beta(y_n)| \leq ||\alpha - \beta||_{\infty} ||Tf_n|| + \frac{\varepsilon}{2} \\ &\leq ||\alpha - \beta||_{\infty} ||T|| + \frac{\varepsilon}{2} < \varepsilon, \end{split}$$

for $n \ge n_0$. Thus, $y_n \ne 0$ weakly in (ℓ). Consequently, by a well known result, $y_n \ne 0$ in the norm topology of (ℓ). This proves (F).

REFERENCES

- E. Hille and R. S. Phillips, Functional Analysis and Semi-groups. Amer. Math. Soc. Collog. Publ. V. 31, (1957).
- C.W. McArthur, On a theorem of Orlicz and Pettis, Pacific. J. Math. V. 22 (1967), 297-302.
- 3. B.J. Pettis, On integration in vector spaces, Trans.
 Amer. Math. Soc. 44 (1938), 277-304.

This work has been supported by the projects C-S-80-149,150 of C.D.C.H, of Universidad de los Andes, Mérida, Venezuela.

UNIVERSIDAD DE LOS ANDES
FACULTAD DE CIENCIAS
DEPARTAMENTO DE MATEMATICA
MERIDA-VENEZUELA
1984