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ABSTRACT

As is apparent from the title, the aim of the present work is to
investigate the form of linear operators intertwining with representa-
tion of groups, basically, the Euclidean and Poincare groups. We there-
after undertake the examination of those linear operators which are

invariant under the action of the group of homothetics as well.

.

The class of linear operators from one space of functions to
another that obey the principle of relativity, which states that the
laws and equations of Physics must maintain their forms under the action

of the Poincare group, are a particular instance of intertwining operators.

Chapter I is of introductory nature. The main references are

Boerner [ 2], Miller (161, Turnbull [20], Vilenkin [2}] and Weyl [221].

In Chapter II we examine the form of linear transformations, on some
linear spaces of functions, of a type that J. L. B. Cooper ([4].[5]:) has
called appropriate representations of groups. These are linear trans-

formations of the form

W(@)f(z) = Qzsg) f (V(g)z),

where E runs over some group G, W(E) is, for every 5, defined on a linear
space AOR") of functions on R", and W(E)f(x) is in some Tinear space of
functions BGR"). Also, W(g) is a representation of G on A(Rn) and Q(x,g)

is a multiplier. Change of variable is an example of this.

We restrict ourselves to the case when the group G is the semidirect

product Gxt(n) of some group G of transformations acting on R" and the
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group t(n) of translations of R". The operator V(és = V(g,h), g€ G,

h € «(n), is assumed to be affine, that is
V(gsh)x = A(g,h)z + B(g,h).

Further restrictions reduce the possible forms of A{g,h) and we
are led to consider the cases when A(g,0) = A(g) is either g_] or the
identity. In either case B(g,0) turns out to be zero. The~examination
of the operator V(g,h) leads to some system of functional equations which
we solve for a wide class of groups that embracé the rotation groups and
the Lorentz group. This is the outcome of theorems 1 and 2 of Section II.2,
As a consequence of these theorems the appropriate representations W(g,h)

are reduced to two canonical forms, namely

(1) W(gsh) f (2) = Qg) F (¢ =g '

h)
(2) W(g,h) f (x) = Qz,g,h) f (),

where in case (1) Q(g) is a fixed representation of the group G on the
space of values of the functions in AGR"). We must point out that although
we do not pursue the examination of the transformation of type (2) above,

we consider that theorem I1.2.2 has an interest of its own.

In Section II.3 we begin the discussion of linear operators inter-
twining between appropriate representations of type (1) above, that is,

linear operators that satisfy the condition
-1 -1
(3) {TLAg) f (g =g MII(u) =
Q* (@) (TLF(=)1} (g 'umg™ 'h).

Cooper ([4]1,[5]1) has called these equations, appropriate functional
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equations. The problem of linear operators intertwining with repres-

entations of the group of translations is dealt with in [4] and for

higher dimensions in [(5].
The expression (3) above can be split into the pair of expressions
(4) [Tf(z=h)] (u) = [Tf(z)] (u-h)

(5) [TQ(g)F(g ') (u) = Q*(g) TF(=)) (g™ u).

The main feature of this section is theorem II1.3.1, stated and proved

by J. L. B. Cooper, which determines the form of linear operators acting
on an o-space with values in a B-space that obey the expression (4)

above. These are space of functions (or equivalence classes of functions)
where spaces of infinitely differentiable functions are continuously em-

bedded.

In Chapter III we examine the form of the solutions of the
expression (4) that satisfy (5). We study separately the case when Q(g)
and Q*(g) are single valued representations of the special orthogonal
group and the proper Lorentz group. It is shown that in both cases we
can assume Q(g) and Q*(g) to be irreducible. The problem of linear
operators intertwining with appropriate'representations of the Euclidean

group has been investigated by J. L. B. Cooper.

In Section III.4 we investigate the form of the solutions of (3)

above that are homothetic invariant in the sense that

[Tf(Az)] (u) = Ah [Tf(x)] (Au), x> 0.



1.

CHAPTER I

INTRODUCTION

The purpose of this chapter is to present a brief introduction of
well-known results and definitions of group representation and

vector invariants, which will be needed in the subsequent chapters.

GROUP REPRESENTATIONS

Let G be a topological group. We write the product of the
e]ement;g1,gz of G as gy 9o By GL(A) we denote the linear space
of all non~singular, linear, continuous transformations of the

real or complex linear space A into itself.

DEFINITION 1. A representation T of a group G on the space A is a

homomorphism
T: G -+ GL(A),

such that, for every x in A, we have that
T(g,)z > Tlg)z,

whenever g, 9 with » in some set of indices.

Thus, by definition, for any g € G, T(g) belongs to GL(A),
and T(g,9,) = T(g7)T(g,) whenever gq,g,€ G. Also, T(g') =
(T(gn ™"
and GL(A) respectively.

and T(e) = I, where e and 7 are the unit elements of ¢

The linear space A is called the space of the representation

T(g). If the space A is finite dimensional, then the representation



T(g) is said to be finite dimensional. Otherwise the representation
T(g) will be called infinite dimensional. Unless we state the con-
trary, by a representation of a group we shall mean a finite repres-

entation,

It is natural and sometimes convenient to realize representations
of groups as groups of non-singular matrices with complex or real co-
efficients, as follows. Let A be a linear space of dimeﬁsion n.

Let T(g) be a representation of the group G on A, Choose a basis

{vis «.. v} in A, then for every g € G,

n™=>
—

T(g)vj = ;

Thus, with each operator T(g) of the representation we associ-
ate the matrix
(Tlg)) = (ti5ig)).
nxn Bxn

where the functions tij(g) are defined on the group G.
The homomorphism property becomes thus,
n - - .
tij(g-lgz) = kZ] t‘ik(g])tkj(gé) 1<i,j<n
Obviously, the functions tij(g) depend on the chosen basis. Under

. -1
a change of basis with matrix B , (T(g)) becomes B "(T(g))B.
nxn nxmn.

DEFINITION 2. Let T(g) be a representaiion of the group G on the
space A,. Let B be a linear bijection from the space A1 onto the

space A,. Define T'(g) by

Ti(g) = BT(g)B
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defines a representation of the group G on the space A2. The

representation T'(g) is said to be equivalent to T(g).

The equivalence of rebresentations is reflexive, symmetric
and transitive. Therefore the set of all representations of a
given group is partitioned in equivalence classes. Thus, in
order to determine all possible representations of a group G it
is enough to find one representation in each class. The remain-
ining representations T’(g) in each class are obtained by the

formula
T'(g) = BT(g)B™,

where B runs over GL(A,A]), the set of all linear biyections

from A onto A] and T(g) is a representation of G on A.

DEFINITION 3. Let T(g) be a representation of the group G on
the linear space A and let A] be a proper subspace of A. If for
every a 1in A and every g in G we have that T(g)a is in A1 Xhen

the subspace A] is said to be invariant under the representation

T(g).

DEFINITION 4. A representation T(g) on space A is called irredu-
cible if the only invariant subspaces of A under T(g) are A itself
and the nu]]ﬁspace {0}. Otherwise the representation T(g) is
reducible.

Let (T(g)) be a matrix realisation of some reducible repres-

nxn
entation T(g) of a group G on an n-dimensional linear space A.
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Let A] be a k-dimensional invariant subspace of A. Choose a basis
{V]S so0 o0y Vn'}Q-ln A] and extend .it tO a baS'iS {V'I, se 09 Vk,Vk+~|,...Vn}

of the whole space A.

Then

N

t‘.](g)vj ° 1 i<k

n
.
n M~z

(T(g) v,
nxn

so that tij(x) =0 forl1<i<kandk +1<j<n, Hence, the

matrix (T(g)) has, for this particular basis the form

nxn
(T(g)) = (T1(g)) (Q(g))
nxn nxk kx(n-k)
(I.1.7)
© (To(g))
(n-kTx(n-k)

It is not always possible to find a basis in which the matrix

(Q(g)) 1is zero. We discuss below when this is possible.
kx(n=-k)

DEFINITION 5. A linear space is said to be the direct sum of its
subspaces A] and A2 if every element a in A can be uniquely

written as a = a; + a,, where a; 6 Ay s and"a_2 € A,.

In particular the intersection of the subspaces A] and A2 is the

null space {0}.

If A is the direct sum of subspaces A] and AZ’ then we write
A= A] & AZ’

Suppose that T(g) is a representation of the group G on the




n-dimensional space A and that A splits into the direct sum

A= Aj Q>A2 of two subspaces invariant under T(g), that is

for all g € G.

Thus, calling T](g) and Tz(g) the restrictions of T(g) to the
subspaces A] and A2 respectively, we see that, if a € A, a =‘a] + 2,

with a; € Ai’ i=1, 2, then

T(gla = T(g) (37 *+ 3,)

with bi € Ai’ i=1, 2.

We see that by passing on to a matrix realization (T(g)) of T(g)
nxn
and then choosing a convenient basis, the matrix (I.1.1) becomes

(T(e)) - ( (T, (9)) o )
kxk (1.1.2)
o (T(a))
L (n-k)x{n-k) R

where k and n-k are the dimensions of Ay and A, respectively.

In this case, we write

Hg) = Tig) @ Tug)
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and we say that T(g) is the direct sum of its restrictions T](g),
Tz(g) to A] and A2 respectively.

de
Similar expressions are obtained for the /composition of A into the

direct sum of s Jnvariant subspaces.
In particular we have the following.

DEFINITION 6. A representation T(g) of a group G on a space A is
completely reducible if A splits into a direct sum of subspaces
A], A2, ...» As, each of which is invariant under T(g) and such that

the restriction, Ti(g), of T(g) to every Ais i =1,2, oiey s s

itself irreducible.
We see that in this case we have further that

T(g) =T-l(g) ®,..9 Ts(g).

On the other hand, the matrix realization (T(g)) of T(g) in some con-
nxn
venient basis becomes

(T(g)) (T1(g))

“(T4(9))
We end this section with a very important result due td I. Schur,

THEOREM 1.1. (Schur's Lemma)

Let T(g) and Q(g) be finite dimensional irreducible representations
of a group G on the complex linear spaces V] and V2 respectively. Let

A V2 > V] be a linear mapping such that
T(g)Av = AQ(g)v,

for any v € V2 and any g in G .
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Then either A is the zero operator or A is invertible.

. TENSORS AND TENSOR REPRESENTATIONS

Let V be an n-dimensional linear space on a field K and let V*
be its dual, that is, V* is the linear space of all linear forms v*
on V, v¥ : V> K, The value of v* at x € V will be written as
[V*,Xx]. |

n
Let {ei}if] be a basis for V, then [v*,x] = Z xi[v*,e]] s

- i=]
for every v* in V* and x in V. Thus, v* is uniquely determined,

with respect to the basis {91}121 by the n scalars [v*,eil i=1,2,...,N.

Let ei* be the element in V* defined by [e*i, ej] = Sij’ where

51j is the usual Kronecker delta. The elements {ei*}121 are a basis

for V*, this is the so-called dual basis to {ej}j21.

Hnea 3

We see that, if v* = ¢ vie*. and x =
. i

X.e., then [v*,X] =
; T "+

i
v’xi.
1

n~M3:

'i
*

The space (V*) = V** is canonically isomorphic to V, it can thus

be identified with V.

DEFINITION: 1 Let V*" be the m-fold cartesian product V¥ me* of

of the dual V* to a linear space V. A covariant tensor of rank m is

defined to be a multilinear form a,
a: VoL k.,

Let a(v]*, cees vm*) be a covariant tensor of rank m. The map
Vit a(v]*, .++s V. *) is linear, so that there is some x; in V such

that

a(v]*, cess vm*) = [v]*,x1]

p2)
a
T M

= (VZ*,oo.,vm*)[ v"*’ erl] b



By repeating the argument we see that a(v]*, cees vm*) can be written

as

a(v]*, cees vm*) = I . oo [v1*,e- ]..,[vm*,e 1.

r r r
r1..rm ] m 1 m

The Tinear form, (v]*, ceos vm*) - [v]*,e | I [Vm*!er | N

m
is a covariant tensor of rank m, and will be denoted by e, ... @er .
1 m

"

Thus,

e, ®R...R e, (v]*,...,v

*) = [ve*e ] L. [V *, e .
1 m 1 *°r

m 1 m Y‘m

The value of the tensor a at (v]*, coss vm*) becomes thus,
a(Vi¥y.0sv *) = 2 A, ... €, B...Q2€. (Vi*,...sv *).
1 "o, TN P 1 m

We see that,

r"..rm
The set of all covariant tensors of rank m on V*" is called

the m-fold tensor product VQ‘m of V.

DEFINITION 2. Let V™ be the m-fold cartesian product Vx...me of a
~ linear space V. A contravariant tensor of rank m 1is defined to be

§

a multilinear form b,
b oo yM > K.

By arguments similar to those in the case of covariant tensors of
rank m, we find that the value of a contravariant tensor of rank m

at (x],..,., xm) e V" §s given by

) i
R e TS
1°*'n 1 m
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€. *R ...R e, * (X;s.009%X ) =[e, *yxq] Loles *ux 1.
i i I m i 1 i m

Thus, b can be written as

iqeed

b = Z b " m e. *R...Qe, *
ire.ld 1 m
].‘. m

The linear space of all contravariant tensors of rank m on ym

is called the m-fold tensor product v+ of V*,

Let a group of transformations G, represented by matrices

g = (gij) act on V,

nxn
n
g:e > Xg. €.
roogo1°sros
The induced action of G on V* is given by

PR N . *
g - e1 _ E q1r er *

where g-.l =q = (qir)’ and {ei*}igl is, as above, the dual basis to

nxn
{ej}jzl' Then G can be extended to a group of transformations onVQm:
@m
T (g)a=ar=Xa, .. ge. R..Qge .
" m " "m

It can easily be verified that Tgm(g) is a representation of G on

Vam. The representation TQm(g) is called the m-fold tensor product

of g.

From the definition of Tam(g) we deduce that the quantities

a,. S 1< Fyseen < n, that determine the tensor a, transtorm
'I.oo m

according to the law

r, . = z . . a
a g g
J]-.Jm r"o.rm J‘]rlo.l erm r].'rm L]
. . &m
when a is transformed into T (g)a.
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Similarly, G can be extended to a group of transformations

on V*Qm:
iq..l
T(b =b' =2 bl M ge *@...8ge*,
1 1
1 m
( RO )
= I £ b " 7q g. e* ®,..@e*
Syo<%n 11 1S9« TS Sy © m
so that
Sy4.5 i i
b " mo_ s b l..m o Qs .
i]"‘m 1°1°* 'm™m

Mixed tensors of covariant rank p and contravariant rank m
can be formed by considering the tensor product of a covariant

tensor p and a contravariant tensor of rank m.

Under the induced action of the group G above, the components

i, i
b_]...m

3o of a mixed tensor transform according to the law:
'|.‘ p

eesl rieeol
m 1 m

;
1
br. . = b 9. ;s Q. g;
Jyeed Sq..S Fylqee P 1 73:57004G
1°*Yp Fpeer 1 p 171 mm 171 Jpsp
S]"Sp

REPRESENTATIONS OF THE FULL LINEAR GROUP GL(n,C)

The full linear group GL (n,L) consists of all invertible square
matrices of rank n, whose entries are complex numbers. The full

linear group GL(n,R) of real matrices is defined similarly.

The tensor representations of GL(n,C) can be decomposed in
a manner closely related to that of the group Sn of all permutations

of the set {1,...,n}. The representations of Sn are completely
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reducible. Indeed, the same is true for any finite group.

The irreducible non-equivalent representations of Sn are in a
one to one correspondence with the conjugacy classes in Sn. Given

an element t in Sn’ its conjugacy class T 1is the set

-1
T=1{s € Sn; sts = 11,

Two conjugacy classes T] and T2 are either identical or their inter-

section is empty.

There is a one to one correspondence between sets of non-
i i Y i = = =
negative integers, {x],Az,...,xn} with M= e A and

A1 +A2 S +An = n, and conjugacy classes in Sn. Every set

{A],...,An} as defined above is called a partition of n.

The irreducible representations of Sn can be obtained by means

of a graphical method due originally to?young and later modified by

Von Neumann. The theory is rather complicated but the main results

are easy to state, as we now pass on to describe.

Let {A],...An} be a partition of n. A frame is an arrange-
ment of n squares in rows, so that there are An squares in the top

row, 12 in the row below and so on until the bottom row that

.C.A].ll

contains An squares
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DEFINITION 1. YOUNG TABLEAUX

A Young tableaux is.obtained by filling in the squares of the
frame corresponding to the partition {A],...,An} with the numbers

],..i,n.

DEFINITION 2, STANDARD TABLEAUX

A tableaux is called a standard tableaux if the digits‘in each
row increase from left to right and the digits in each column inc-

rease from top to bottom.

THEOREM 3.1

(a) There is a one to one correspondence between frames and
irreducible representations of Sn. Different frames determine dif-
ferent irreducible representations, and representations correspond-

ing to the same frame are equivalent.

(b) The dimension f of an irreducible representation corres-
ponding to the frame {Aj} is equal to the number of standard tableaux

T],...,Tf of this frame.

A maximal set of non-equivalent irreducible representations of

Sn is called a fundamental set of irreducible representations.

Given a reducible representation: of Sn » then it reduces com-
pletely into irreducible components. The number of times an irreduc-
ible representation appears in a reducible representation is called

its multiplicity.

For the full linear group GL(n,C) it is not true that every
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representation decomposes. However, it can be proved that the rep-

§om

resentation fam(g) on V7, as defined in Section 2, decomposes. We

now pass on to describe how this occurs.

Let Sm be the group of permutations of the digits {1,2,...,m}.
By T(s), s € Sm, we mean the representation of Sm on VGZm defined by

T(s)w = w _](1) R...0 W _](m).
s s

Let {S(]),..., S(P)} be a fundamental set of non-equivaleft irred-

ucible representations of Sy- Then T(s) decomposes, say,
(s) = 2,5 a0 apS(P), (1.3.1)

where a., i = 1,2,...,p is the multiplicity of s(1) 4n T(s).

THEOREM: 3.2

& can be

The tensor representation T@m(g) of GL(n,C) onV
de.composed into a direct sum of irreducible representations T(i)(g)

i=1,2,...4P. More precisely,

@m, (1) (P) |
(g) =byT"'(g) ®...0 b, T(g). (1.3.2)

where bi is the dimension of the irreducible component 5(1)\1n (I.3.1)

T

and the dimension of the irreducible component T(1) in (I1.3.2) is the
multiplicity a, of the irreducible component 1) in (1.3.1), for

i=1, ceey P.

The decomposition (1.3.2) is essentially unique, that is, the
irreducible components T(i) occurring in (I.3.2) and their multi-
plicities are uniquely determined. Also, (I.3.2) carries over to
any subgroup of GL. However, it is not true that the irreducible

components T(w)in (I.3.2) are always irreducible when restricted to
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representations of subgroups of GL.

The subspacesof V&m that transform according to some irreducible

component of fw(g)aneca11ed a symmetry classes of tensors.
LIE GROUPS AND THEIR LIE ALGEBRAS

Let K denote either the field € of the complex numbers or the

field R of real numbers. By K" we denote the m-fold cartesian product

of K.

DEFINITION 1. Let N be an open connected neighbourhood of

0= (0,...,0) € K", Let G be a set of matrices.

At) = Altps... t) = (3;5(t), tEN,
~ nxn
such that the mapping t -+ A(t) of N into G is one to one. The group

G is called an m-dimensional local linear Lie group if G satisfies

the following properties.

(a) The entries aij(t) . 1<1,j<n, are analytic functions of the

parameters t],...,tm.

(b) The matrices E%T A(t) . i=1, 2, ..., m are linearly indepen-

dent,

(c) There is some neighbourhood N’ of (0,...,0) € K™ contained in

N, such that given t, t’ in N’ there is an element t” in N such that

A(L)A(LT) = A(t").

DEFINITION 2, An analytic manifold X of dimension n 1is a Haus-
dorffspace, such that there is a family of open sets {{Ua; o € A}

that covers X; and & family of mappings {fa$ o € 4}, such that
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fo: Ua > R" is a homeomorphism onto fa(Ua) and, if UanUaZ + O,

then fa1of2'] js analytic.

The pair (fama) is called a coordinate system; fOl is called
the coordinate mapping and, if p € Ua s then x = fa(p) is called

the coordinate of p.

DEFINITION 3, A global Lie group G is an analytic manifold,
endowed with a group structure such that mapping

-.] LY
(9] 992) > 99 s

from G x G onto G, is analytic.

A Tocal linear Lie group that is also a global Lie group in the
sense above is called a global linear Lie group. One can always con-
struct a global linear Lie group é from a local Tinear Lie group G,
The elements of G are all the products of finite sequences of elements

in G,

Let G be a 1inear Lie group defined in N € Km, and Tlet
¢ : t > ¢(t) € N be an analytic function defined in some neighbour-
hood of 0 €-K, such that ¢(0) = (0,...,0). The mapping t = A(¢(t))

is called a curve at A(0) = Im .

nxn

DEFINITION 4, Let A(¢(t)) € G be a curve at Im » the matrix a,

nxn
G ae)) |- 5 2 aGee)) | e
a =g A(e(t)) | = & =——A(s(t)) ¢i(t)
at t=0 j=1 %% s(0) 9T 7" 20
is called a tangent vector at A(O0).
The set {=— A(¢(t)) | =A,3 j=1,...,m is by definition
30 0y
¢(0)
m
linearly independent, so that the set of all matrices I X.A. X €K
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is an m-dimensional linear space.

DEFINITION 5. The linear space L(G) of all matrices

m
a = I XAA., x. € K is called the Lie algebra of G.

j=1 49”73
THEOREM 4.1 If a and B are in L(G), then (a,B] = aB - Ba € L(G).

The expression [a,B] is called the Lie bracket or commutator.

DEFINITION 6. A representation T of a linear Lie group G on a

space V is a representation of G in the sense of section 1 with the
further requirement that given any matrix realization of T(A), A € G,
the entries Tij(A) be analytic.

DEFINITION 7. Let T be a representation of the linear Lie group G

on V by matrices (T(A)). Given an element a € L(G), the infinite-

simal operator ; on V is defined by

a = g TIMD)),

where A(t) is an analytic curve in G with tangent vector a at A(0).
The operators 2 form a Lie algebra homeomorphic to L(G).
DEFINITION 8. A representation of a Lie algebra G on a linear

space V is a map p.

pt G - GL(V)

such that

p (Aa+uB) “ap(a)+up(B),

p([a,Bl) [p(a)sp(B)]
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for any A, u € K and a,B € G.
We now describe the connection between the representations

of the Lie group G and the representations of its Lie algebra

L(G).

Let G be a connected Lie group and let L(G) be its Lie algebra.

Every element A in G can be written as

A = exp ay eXp a, ... €Xp a.s

© aJ ) . . .
where exp a = I = and the matrices ass 1= 1y... r are in a

. J.
J=0
suitable neighbourhood w of the zero matrix 0 in L(G).

If p(a) i1s a representation of L(G) on a linear space V, then

a representation T(A), A € G of G is uniquely defined by
T(A) = exp p(a]) ces  EXP p(ar)

REPRESENTATIONS OF THE ORTHOGONAL GROUPS

The usual realization of the complex orthogonal group 0(n,C)

is the group of complex matrices g = (gi-) such that
nxA
t
g-g= ggt = I

where In is the identity matrix of rank n and gt denotes the trans-

pose of g.

The group 0(n,L) is also realized as the -set of all linear
operators g on a linear space Y, where a nondegenerate bilinear form
(- , =) is defined on V x V, such that (gxsgy) = (x,y) for all x,y

in V. There always exists a basis in V such that, with respect to

this basis, the matrices (gij) of orthogonal transformations g
nxn




satisfy
t
(g'ij) K
XN nxn
where K = ﬁin
il
In
7z
and
/
K =
e
O
\
if n s odd.

O.o'
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if n is even,

I
n-1
2
O
n-1_n-1
_?'*7?',

In this realization the Lie algebra o(n) of 0(n), which is the

same as that of SO(n), the set of orthogonal matrices with det g = 1,

consists of all n x n complex matrices Q such that

Qtk+KkQ= 0

nxn

The dimension of o(n) with n even is 2(%)2 - g-and, if n is odd

2(%1) + (%Y. A basis for o(2m) is given by

€5k "% +m, j+m,

i + mk ~ % + m,J

ejk+m

where €

Tk, 4+ m

is one and all other entries are zero.

j]k =y eees M

s#k ,

is the 2m x 2m matrix whose entry in the column r and row s
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If we label the top row and column of every element in O(zm +1)

as zero, then a basis for 0(2m + 1) is given by

ejk - ek+m, j+m j’k = ]9239..,"1

ko ~ 0,k+m

“€ok  ~ €k+m,0

€iem,k ~ Gkem,

ej,k+m - ek.yj+m J

Let Aj =5 5 ‘ej+m,j+m,j: we gef1ne H_as the aggregate of all
diagonal matrices A(A]’...,Am) = jil Aj Aj

DEFINITION 1

Let C],..., Cm be complex numbers. The linear functional L

defined on Hn by

L(A(A A.Cs

mh) = 'IJJ

9009 m

nm3

J
is called a weight.

Let T be a representation of 0(n) by operators T(Q), Q € 9(n)

on the complex vector space V.

DEFINITION 2. A non-zero vector x in V such that

for all A in H is called a weight vector.
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The weights of a given irreducible representation ot o(n) can

m

be totally ordered in the following manner: a weight L = Aj Cj is
m j=1

greater than a weight L' = Aj Cj' if the first non-zero element
-

J
in the set {C]-C1’, eeey C_ = Cm'}, reading from left to right is

3

positive.
THEOREM 5.1

(a) Two irreducible representations of q(n) with the same

highest weight are equivalent.

(b) The highest weight of an irreducible representation of o(n)

is of the form
Pyag oo # P = L(A(As ceesdrp))s
where Pj is integer for j =1, 2, ..., m, and such that

if n

¥

>P if n

2m + 1

Also, every irreducible representation of 0(n) is determined by one such

sequence.

The sequences (Py, ..., P_) appearing in the theorem above are
1 m

called signatures. The signatures(1, 0

an.

» 1, 0, ..., 0) are written as

THEOREM 5.2

(a) The representations with signature (]r) are irreducible. The
highest weight is (1m) where m = g-if n is even, and m = D%l if n is

odd.
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is contained

(b) The representation of signature (P], cees Pm)

exactly once in the tensor representation

Ok, 5 8K,

&k
1) e (1%) % ...e ™y ™

1 ® (]m> m’

where km =P , k P oy ccos k] - P1 - P2, whenever n is

m* Kn-1 = Pm-1 ™ P

odd. Similarly, if n 1is even, then the representation of signature

(P], N Pm) is contained in the tensor representation
@k ®k @k - ®k @k
M e (19) Z.e ™) ™l a™T, o1y Mg ™y ™

with multiplicity one. Here

1]
0

k =0, k = Pm if Pm = 0,

m+1

k

~
"
-
+
O
=
it

-P

m-1 m?> “m m? =0 if Pm <0

m+1
Since the Lie algebra of SO(n,R) is a real form of the complex
Lie algebra of O(n,C), then there is a one to one correspondence between

the representations of SO(n,R)and SO(n,C).

L

6. REPRESENTATIONS OF THE PROPER LORENTZ GROUP

We begin this section with some factsabout the special linear group

SL(2,C) of all matrices g of the form
- [ ) b }
g =
c d s
where a, b, ¢, d are complex numbers and det g = 1, because this group 1is

important for the representations of the Lorentz group.
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The Lie algebra of SL(2,0) is the 3 dimensional space of all

2 x 2 complex matrices a,

Let 2n be a non-negative integer, by PZn(Z) we mean the 2n+l

-~

dimensional linear space of all polynomials

where cj, j=1,2, ... 2n are complex numbers.

The set of all operators T(g), g € SL(2,C) defined on P, (Z)
by

aZ + c

[T(g)f1 (2) = (b7 + 0)*" TS

is an irreducible representation of SL(2,C) on Pon:

This representation shall be denoted throughout this section

by oY),

u
The tensor product of two irreducible representations D( ),
(W)
D(V); D(%%JD=D(“’V) can be completely reduced into a direct sum of

irreducible representations,

D(»U:V) = D(U) @D(V) = U;VA [ D(w)

w=l U=Vl

This expression is the so-called Clebsch-Gordon series of
p™) @ p{V),
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DEFINITION 1. The full or homogeneous Lorentz group L(4) is the

group of all linear mappings of the real Tinear space R4 that leaves

the form
2
<Xy X> = X177+ Xpo 4 x3 - x4

invariant.

-

The usual matrix realization of L(4) is the group of matrices

g = (gij) such that
4x4

g 1. g = I

with I, = (S'9), where $'J is defined by

4x4
(
1 if  i=j=3
D if i=j=4
L 0 otherwise ,

and gt is the transpose of g.

The inverse,g-] of an element g€ L(4) is given by

g =4 =1(a3)= 1, g
4x4

This relation can also be written as

- JJ (i

q'ij = 954 SIS

DEFINITION 2. The proper Lorentz group L](4) is the subgroup of

L(4) that consists of those elements g € L(4) such that det g = 1

and g4, >,
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The set consisting of all matrices of the form

4 3

[0}
o O o

\ )

where 6 € S0(3), is a subgroup of L](4). We shall identify this
subgroup with SO(3). )

The full Lorentz group L(4) is a linear Lie group, its Lie
algebra is six dimensional. The Lie algebra of L(4) is isomorphic
to the Lie algebra of SL(2,) considered as a six dimensional
real Lie algebra. Therefore the Lie groupsSL(2,L) and L](4)
are locally isomorphic. There is a one to one relationship between
single valued representations of L1(4) and representations T of
SL(2,€) such that T(-1,) = T(1,) is the identity operator. Here I,

is the identity element in SL(2,().

Therefore, to find the analytic irreducible representations
of L](4) we compute the analytic irreducible representations T of
SL(2,C) considered as a real Lie group and then we single out those

that satisfy T(-IZ) = T(Iz).

(us

In particular, the representations D v) determine a single

valued representations of L](4) if and only if y + v is an integer.

THEOREM 6.1

Let V be a four dimensional real space. Let v%n be the n-fold

tensor product of V. The representation
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4
(ga) . = I g. . . a. -
1]0'1n j -j _ 1]..1n, J]‘.'J J]'OOJn
- Yn=1
on Van is equivalent to (D(é’i))an. Every irreducible component of

@n
(D(%’é)) is equivalent to an irreducible single valued representation
of L](4), and every single valued irreducible representation of L](4)

can be so obtained.

VECTOR INVARIANTS

In this section we state some well-known definitions and facts

about vector invariants of the rotation and Lorentz group.

DEFINITION 1 Let G be a group of transformations on a set X. A relative

invariant of G of weight X 1is a mapping f: X >R such that

flgz) = X(g) f(a),
for all g € G and X € X.

A relative invariant whose weight X is constant on G is called

-

an absolute invariant.

A situation that holds in most important cases is that every
invariant is expressible in terms of a finite number of them. That
is, there is a finite, complete table,of basic invariants of G

{¢1,-.. wn} such that every invariant f(x) can be expressed as

fz) = F(¥(x)s sty ().

In the case with X =R" and G = S0(n) a complete table of basic
invariantsconsists of the inner product (z,y) = x1y] + +xnyn and

the determinant of n vectors
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- ] 2 n
[x-‘.-.xn] - x] ?‘l ° x-l
l x] 3'32 .. xn
n n n
DEFINITION: 2 An homogeneous form of degree r of n vectors

x1..x“ is an expression of type

x " "m
X
f( 1""m) .z ar]..r LI
n
where r1+...+rm =r,
THEOREM: 7.1 Every invariant form for SO(r) of a number of vectors

x]..xm in R" can be expressed as a sum of a function F((xr-;rs))

of the inner products and terms of the form
[,y‘lg' s e 0y yn] X F*(xlgo.-gx,m)

where the vectors Yi» .-y, are selected from Fr1,...;rm} and

F*(C”rj”s)) depends only on the inner products Gnr;vs)).

Terms of the form [y],..., yn]x F*((xr,xs)) appear if and only

if m=>=n.

In the case of the Lorentz group a complete table of basic
invariants consists of mixed products [z ,U] = ;t]ui of a covariant
vector & = @x],...;r4) and a contravariant u =1(u},...,u4). The form
<z,y> = Z xiyi Sii and determinants [u1...u4] of contravariant
vectors1;;d determinants [x]...dﬁ] of covariant vectors $1,...,m4.

The product of a determinant with covariant vectors and a deter-

minant with contravariant vectors is equal to a determinant whose

entries are mixed products of covariant and contravariant vectors,

that is



[U]oooU4][x:‘ oo--x4] = '[:U-ng]] o0 [?]’x4]

I[U4,x]l .. [U4,x4]

THEOREM 7.2 Every invariant form for the proper Lorentz group
L](4) of a number of covariant vectors Zyses.sZ, and a number of con-
travariant vectors y], ...,yp can be expressed as a linear combina-
tion of products of the elements in its complete table of basic

invariants.



CHAPTER 11
APPROPRIATE FUNCTIONAL EQUATIONS AND THEIR FORMS
INTRODUCTION

In this chapter we study linear transformations, on linear
spaces AOR") of functions on Rn, of a type that J.L.B. Cooper

[4], [5] has termed appropriate representations of groups.

We restrict ourselves to transformations in which the operator
acting on R" is affine in a sense which we define below. Since our
ultimate aim is to study appropriate representations of specific

groups, further restrictions appear naturally.

After reducing these transformations into‘two canonical forms,
we undertake the study of functional equations for linear opera-
tors T on spaces of functions that intertwine between appropriate
representations of groups. These equations are split into a system
of functional equations. One of these equations asserts that the

linear operators T are translation invariant.

In Section 3 we include results about translation invariant

operators due to J.L.B. Cooper, yet unpublished.

Section 1: APPROPRIATE REPRESENTATIONS

[y

DEFINITION 1.1.

Let AGR") be a Tinear space of functions on R" with values on a
Tinear space E, such that A(R") separates the points of R". A linear
transformation W on AGR") to itself is called an appropriate trans-

formation if for each z inR" and f in A(Rn) the value of Wf(x)
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depends exclusively on the value of f at some point in Rn, say Vz,
or,(as in the case of space of functions defined only up to sets of
measure zero) if a similar statement is true in the limit for funct-

ionals on A(Rn) whose support tend to zx.

Equivalently, W is an appropriate transformation, if there is

for each z € R" a linear .map
Qz) : AR") - AR")
and a map VR" > R" such that
Wf(z) = Q(x) f(Vx)
Change of variable is an example of this.
DEFINITION 1.2. Let A@Rn) be a linear space of functions defined on

R" with values in a linear space E such that AGR") separates the

points of R". Let G be a group.
A set of appropriate transformations of the form

W(g) f(x) = Qz,g) f(V(g)x)

is called an appropriate representation of the group ¢ on AOR") if,

(i) W(g]gz) = W(g])W(gZ), W(e) = I, where 9199 €EG , e is the

identity element in G and I is the identity transformation on E,

(11) V{gyg)z = V(g,) [V(g)al » for gy.g, € G and = ER".

(i11) Q(x,g) is, for every x € R" and g € G , a linear operator

on E.
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DEFINITION 1.3. Let W(g) and W*(g) be appropriate representations
of a group G acting on the spaces AOR") and B(Rn) respectively. An
operator T from AOR") to BGR") is said to obey an appropriate function-

al equation if, for every f(x) in A(Rn), we have that
[TW(g)f(x)] (u) = WX(g) [ Tf(x)] (u) (I1.2.1)
We shall, for brevity, sometimes write this equation as
TW(g) = W*(g)T,

and in this case we shall also say that T intertwines with the rep-

resentations W(g) and W*(g).

The study of linear transformations obeying specific functional
equations goes back to M. PLANCHEREL [17]. This author studied the
properties of the solutions of the functional equation in the linear

operator T,
[(TFez)l (y) = o' [TR@) (a7'y),
for all « > 0, where f € L2(O,w).
Plancherel called these operators, Watson transforms.

A more systematic study of this subject has been undertaken by
H. Kober uih], 12} and J.L.B. Cooper [4] ,[3]. The first of these
authors has studied pairs of functional equations aiming at finding
relations between the solutions of each individual equation. These
pairs of functional equations include almost all the familiar integral

transforms of functions of one variable.

Kober has also characterized concrete examples of transforms

that obey one or more functional equations. In particular, character-
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-

jzations of the Fourier transform appear in [12], theorems 6 and 6'.

The first of these is due to J. L. B. Cooper.

Some single functional equations characterize almost uniquely the
operator involved. However, in generalypairs of equations are needed,
since very often single functional equations are satisfied by more

than one transform. For instance, the Weyl fractional integral,
+ - (y -1
(1& f=) (v) =T () | (y0)* flz)de

wherer (a) stands for the Gamma function, and a convolution transform
(oo

[Cf(x)] (y) = glx-y) f(x)dzx,

=00

satisfy the functional equation

[Tf(x+)l (y) = [Tf(z)] (y +o).

The problem of Tinear operators intertwining between representations
of the group of translations of the real line is dealt with by J.L.B.
Cooper in [4?] Under suitable hypothesis these operators fall into four

canonical forms, of which the most important are

1]

1) [Tf(z+h)I(y) = [Tf(2)1(Y+ h) ,y, h €ER,

2) [Tf(a+h) (y) = "N [Te(2) ()

1t

with h ER and y in some interval ECR.

The study of necessary conditions for there to exist. a non-zero
solution of the equation (1) is discussed in [4]. The corresponding

problem for higher dimensions is discussed in [g].

DEFINITION 1.4. Let G and # be groups. We shall denote the elements
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of ¢ as g; and those of # by hy. let g+ vg be a homomorphism of G
into the group of automorphisms of #. Define the product of ordered

pairs (g,h), g € G, h € H by the formula

(g1:h1)(gp5h7) = (g1975 vgy(h,)-h.).

It is easy to verify that the set G x ¥ of all ordered pairs (g,h)
becomes a group with respect to the group operation defined above.
This group is called the semidirect product of the groups. The identity
element in G x B is (e,e’) where e and e’ are the identity elements in G
and H respectively. The inverse of the element (g,h) is given by

g, v T (h 7M.

Every element (g,h) can be factorized as

1

(g>h) = (esh) (gse’) = (gse’) (e,vg™ (h)).

We shall, for brevity, write g for the pair (g,h); g for the
pair (g,e') and h for the pair (e,h), wherever no misunderstanding

arises,

Let us consider ¢ to be a group of linear transformations from
R" onto R" and # to be the group of translations of R". By consider-
ing the natural action of the group G on Rn, namely g+ vg = g , we
get the semidirect product Gﬁ(n) whose realization as a group of trans-

formations on R" is defined by
(gsh)x = gz + h.

It is easy to verify that this realization conforms with the group

structure of Gﬁ(n).
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- -

THE FORMS OF SOME APPROPRIATE REPRESENTATIONS
In this section we shall find the form of appropriate represent-
ations of semidirect products Gﬁ(n) as defined above under rather

general hypotheses set upon the group G.

We consider appropriate representations of the group Gﬁ(n) on a
space A(Rn) of functions on R" with values in a vector space E, where
AaRn) separates the points ofIRn,of the form (11.2.2) [W(E)f](x) =
Q(=,5)f(V(g)x), = ER", g€ @M(n) with the additional hypo-thesis that
the multiplier Q(x,g), and V{g)x are continuous in 5 and z. We assume

further that the operator V(g) on R" is affine, that is

V(g)z=A(g)= + B(g),
where A(;)jis a linear operator on R" into R" and B(E) is an element
inR", for every E € dﬁ(n). This hypothesis stems from the fact that

this is the case in many important applications.

The following observation will further restrict the forms of
V(E). Let us consider the semidirect product E+(n) of the proper

rotation group SO(n) and the group of translation t(n) on R", that is
+
E'(n) = SO0(n) x t(n).
The elements 5 of E+(n) are ordered pairs 5 = (g,h), g € S0(n),
h € t(n); the group action is defined by
5x= (g,h) 2 = gx + h.

Let g = (g,0) be an element in SO(n). Continuity of V(g)x
implies that V(g)x must be uniformly bounded over all g € SO(n)
over any bounded region of x. We deduce from the definition of

V(g)z that )
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gz = Mlgle + = Alg)B(g)
1=

and this expression is bounded over any bounded region of x provided

n . .
that A"(g) 1is uniformly bounded in n ; whence ”A(g)” < 1 for any
g € S0(n), and thus also I1A” (o)1 < 1.

We deduce that A(g) is, for every g, an isometry, so that

(A(g)(zty)s A(g)(zty)) = (zty,zty),

for any g in S0(n) and z,y in R". Since A(g) is Tinear we have that

(A(g)z>A(g)y) = (=z»Y).

Therefore A(g) is an element in SO(n) for every g in SO(n).

From condition (ii) in definition 1.2 of the previous section we

deduce that
Algy9,) = Algp)A(gy)s
for all 91297 in SO(n), that is, the mapping T: SO(n) -~ SO(n) defined by
Tl) = Ag™)
is an endomorphism of SO(n).

There are two cases to be considered: (a) T is an automorphism,
(b) the kernel of T is non-trivial. In either case we shall assume that

n= 3.

In case (a) we have that T(g) is an irreducible unitary represen-
tation of SO(n). We recall that the natural action of SO(n) onR" is
irreducible and has signature (1,0,...,0). We claim that this is

the signature of T(g), and consequently T(g) is equivalent to SO(n).
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In fact, the dimension (or degree),N(pI,...,pm) of an irreduc-

ible representation of S0(2m) with sjgnatuke (p],...,pm) is given by

n
N(pysoop) = LSI<KSn (252 ) (2544 )
‘ 9000y m ]_I O- © ) o 9
0<j<k<n (zj zk)(zj+z N

where Qj = pj +m-Jj and 13 =m-j. A similar formula gives the
dimensions of the irreducible representations of SO(2m + 1): (See
Boerner [2j p.266 or Miller [16] p.362).

We see by simple inspection of this that, if the signature

(p],...,pm) of the representation T(g) is different from (1,0,...,0),

[+1)

then N(p],...,pm) > 2m. This contradicts the fact that T(g) is

representation of dimension 2m. A similar proof follows if n = 2m + 1,

Therefore, the representation T(g) is equivalent to SO(n), that
is

-1
T(g) = BgB

for some matrix B. It is straightforward to check that B is an ortho-
gonal matrix. If B is in SO(n) then after a rotation of axes we can
take T(g) = g. If B is an orthogonal matrix not in SO(n) and n is odd,
then B = -Iﬁ 5 for some fixed element E in SO(n). We see that this case
reduces to the one above. If, on the other hand, n is even, then B is
of the form (ErEEErs)’ where g = (er) in a fixed element in SO(n) and
ErA= 1fori<r<n - 1, E. = ~1. Thus B is a change of coordinates

n
even if not orientation preserving.

Therefore, if T(g) is an automorphism, then under a rotation of

axis (proper or improper) we can take A(g) = g-].
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In order to examine the case (b), let us begin by recalling that
for n> 3, n# 4, the Lie algebras of the complex groups SO(n) are simple
(see Miller [16] pQ392), that is, they do not contain any proper ideals.
This implies that the Lie algebras of the real groups SO(n), n=> 3, n # 4,

are simple (see Hausner and Schwartz [18] Corollary 13 p.99).

A Lie group G is locally simple, that is, G does not contain any
proper normal local Lie subgroup, if and only if its Lie algebra is simple,

(see Miller [1§] th.9. 14 p.394).

From these remarks and the hypothesis that the kernel of T(g) is

non-trivial, we deduce that, for n> 3, n # 4,

T(g) = 1,
for all g in SO(n).
-1

We shall therefore consider only the cases when A(g) =g and

A(g) = I respectively.

The forms that B(g) can attain are found in the following:
LEMMA 1 Let V(g), g € SO(n), be the set of operators on R" defined by
V(g)z = A(g)x + B(g), = €R", g € SO(n),

and such that
Vigi9,) = V{g,)V(gy) V(1) = T .
Also, Tet V(g)x be continuous {n g and x .

If either A(g) = g™' or A(g) = I,, for all g € SO(n), then B(g) = 0.

Proof: If A(g) = In’ then the expression
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VigMz = AMg)z + 2 Al(g) B(g)

becomes
V(gMx = =z + n B(g),
so that B(g) must be zero in order that V(g)x be uniformly bounded
over any bounded region of x.
Let us now consider the case with A(g) = g—]. To begin with we

notice that if'g] = (47,0) and 52 = (g5,0) then

-1
V(gy.g0)z = (g9195) =+ Blgq9,)

V(g,)V(gy)=

V(g,)lgy e + Blgy)]

-1 -1 -1
=g, 97 = tgp, Bl(gy) +Blgy)

b}
so that

B(g]gz) = 92—.l B(g]) + B(gz)-

It can now be easily proved by induction that

-

-1 - -1
B(g]...gs) = gg -ee9p B(g]) t g, 1..sg3 B(gz) +o..4

+g.7" Blge_y) +Blgy) . (11.2.2)
Since B(1,0) = B(I) = 0 , then (I1.2.2) gives, with g, =g,

. nxn nxn nxn
g,=gandg =1 for s >3,
nxn
=1, -1
B(I) =g 'B(g ') + B(g),

B(g) = g 'B(g") (11.2.3)
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Every rotation g € SO(n) can be expressed as a product of rota-

tions g. ,(6) of the . =, ) plane through an angle ¢ in the (x.,x, )
Jsk Js7k 3™k

plane and such that the rotation that takes place ey = (O0seceslsen 0)

J
to the vector e, = (0,...,1,...,0) is assumed positive. (See Vilenkin
k
[29] theorem 1, p.438). Let us consider the case when gj’k(e) is
g],z(e;, the rotation ot the (x],xz) plane which leaves invariant the

subspaces with coordinates (x3,...,xn), all other cases reduce to this

by a change of axis.

The expression (I11.2.2) with

gys-e2dg = 972(0)

implies that Br (g],z(e))is zero for r > 2, where B.(g), r = 1425000sN
are the coordinates of the vector B(g), otherwise B(g) would not be
bounded. Thus, the problem is reduced to that of examining the forms

of

3(91,2(5)) = (B_(g|92(3))s BZ (9]:2(6)))'

In terms of the complex plane g],z(e) is the rotation & that
takes z € € into e’ Z, V(8) takes Z dinto e 187 4 B(8).

t

ja

e 5 g, = e'® in (11.2.2) we obtain

1"

Setting g

B(atg) = e 1@ B(g) + B(a) = e 'BB(a) + B(8),

so that

e-18_] e-1a_]
for some constant K and o, 8 # 2 mnI, m =0, 1, ... The expression

Bla) = K(e™1%-7)



-30-
holds for any a, since B(2mn) = 0 form =0, 1,... We now deduce
from (11.2.3) above that

K(e-ia—1)= -K eia(eia-l).
This equality is true if and only if K = 0; hence B(g],z(O)) = 0.

Finally, we deduce from (II.2.2) that B(g) is zero for any

g € SO(n). The Lemma is now proved.

The approprigte representations of the Euclidean groups on some
linear spaces of functions are important for the applications and so
are those of groups that contain Euclidean groups as subgroups; which

we, now, are about to study.

Therefore, we shall restrict ourselves to examining appropriate

representations of groups Gﬁ(n) = Gx1(n) in the following cases:

Vig) =g, g6s (11.2.4)
Vig) = I , géc (11.2.5)
nxn

We begin with examining the case (II.2.4). 1In the first place
we prove a result concerning the multiplier Q(x;g), z €R", 5 € dﬁ(n)

and draw some functional relations involving the operator’V.

LEMMA 2. Let W(E)f(x) = Q(x,E)f(V(E)x) be an appropriate represen-
tation of éﬁ(n) on a space AORn) where
(1) AGRn) is a linear space of functions defined onIRn~into a linear

space E, which separates the points of R".

-

(i) Q(x,g) and V(E)x are continuous in x and 5, with V(E)x =

Az +B(3) and V(g)z = V(g.0)z =g '=.
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(a) For any z in R" and g6 Gﬁkn), Q(z,g) is invertible, Q(x,(e,0))

is the identity operator on E for all x and
=271 2 Vo, &
Qz,g) ' = QV(g)x, g )

(b) For any % € t(n) and any g € G we have that

for all z in R".

Proof: The operator Q(zx,(e,0)) coincides with W(e,0); hence Q(x,e)

is the identity operator on E for every zx.

By definition we have that

~~. P~ P~

W(gi9,)f(z) = Qz,999,) F (V(g79,)2)
= W(g) [W(g,)f(a)
= W(gq) [Qzyg,) F(V(g,)x)]
= Qzygy) QV(g)magp) T (Vigp)V(gy)=),
so that

Qzsg49,) = Qzygq) Q (V(gy)as gy)

holds for every x in R" and 919 in GM(n). This expressidn with

~ ~ -

g1 = 5’ gp = g gives

Qa,9) QV(EIzF ) = Qza(e20),

so that Q(x,E) is invertible for any x € R" and 5 € Gﬁ(n) and

Uzsg) ' = QV@)eag ).
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Also, setting x = 0 in the same expression, we see that

0(0,979,) = Q(0,g7) (053,),

this is to say, Q(O,E) is a representation of Gﬁ(n) on E as 5 ranges

over Gﬁ(n).

Since every element 5 € Gﬁ(n) can be factorized as

~

g = (es7)(g50) = (g50) (esg 'B)s

it follows from V(g,g,) = V(g,) V(g;) that

V(g) = V(g ) V(g)
= V(g n)g”!
and that
V(g) = V(g) V()
- g,
thus

g V() = V(g A)ig
for every g€ Gﬁ(n) and allz € R". This in turn can be written as

V(R) gz = V(g H)z . (11.2.6)

LEMMA 3. Let the hypothesis of Lemma 2 hold.
Then,

(a) for every g in G and % inR" we have that

B(gh) = gB(#)
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and
Ahlg = ghg™'h),
(b) V(h) B(k) = V(k) B(h) = B(h +k)
for all h, k inR",

(c) for every set {hi}i21 of vectors in R" we have that

Proof: The proof follows from the expression I1.2.6 found in the pre-

vious lemma, as we show:

V(h)gz = A(h)gz + B(h)
= gV(g W
= gAlg Mz + gB(g7'h).
Hence
gBlg™'h) = B(h)
and
A(hlg = ghlg™'h).
Also, V(h)0 = A(h)0 + B(h) = B(h),
V(hy + h,)0 = B(hy + h,)

V(hy) V(h,)0

V(h,) B(h,)
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|
b )
—
=
Tl
A

B(hy) + B(hy)
B(hy) + B(h,);

therefore,

<
—~
o
-—
+
20
~N
i
"

A(hy + hy)z + B(hy + hy)

= V(hy) [A(hg)= + B(hy)]

= A(hy)A(hy) =+ A(h)B(h,) + B(hy)
= A(hy)A(hy)> + V(hy)B(h,)

= A(hj)A(hy)= + B(h, + hy)s

hence A(hy) A(hy) = A(hy + hy) = A(hy) A(hy).

It now follows by induction that

We have thus seen that the operators A(h) and B(h) appearing in

V(E) satisfy the functional equations

[ (a) B(gh) =g B(h)
m m
(b) A( X hy) = 1 A(h;)
i=1 " i=1
(c) A(hy) B(hy) + B(hy) = B{h, + h,)
| () Ag = gA(g )

(11.2.7)

The forms that A(h) and B(h) admit will be found under hypotheses
placed upon the group G, which we deem to be general enough. In partic-

ular, some of the most important groups which appear in theoretical

physics fulfill these hypotheses.
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THEOREM 2.1, Let G be a group of transformations acting irreducibly

onR", n> 4, Let us denote the orthogonal complement of any set X in

R" by Xl. If, for each vector ey in .an orthogonal basis {ei}.n1, the

set

G, = {g €G; ge, = e}

1=

acts irreducibly on {ekTL, then the only solutions to the system of

functional equations (II.2.7) are

A(h) = I , B(h) =Ch
nxn

for all h € Rn, where C is an arbitrary real constant and 1 1is the n-th

rank identity matrix.

nxn

Proof: For the proof we consider the matrix realization of all opera-

tors involved, induced by the orthogonal basis {ei}121'

Given a fixed index k, we deduce from the expression
-1
A(h)g = gA(g 'h),
by replacing h = xe, and g € Gk’ that
Are g = gh(de,),

so that

Af(xe)g’' = g' A'(xe.)s

(11.2.7) (d),

where A'(Aek) and g' are the matrices obtained from A(Aek) and g by

removing the row and column k. On account of this expression and the

hypothesis that Gk acts irreducibly on {ek}l we deduce that for each




k there is a real function u'k(x) such that

AT(ne,) = u' 1 :
(e = v k(xzn-1)x(k-1)

In turn, this and the hypothesis that n> 4 imply that A(Aen)

itself is diagonal.

Therefore, A(x) = A(xiei) is diagonal for every x & R".

=

i=]

We now deduce from (II1.2.7) (d) that

Algh) = A(h)

for every g € G and every h € R"; whence A(h) is, for every h € R",

a multiple of the identity; that is

-]

nxn

where a(h) is some real continuous function.

n
Therefore, A(h) = 1 a(hiei I
i=1 nxn
n
(e
= e I
nxn’

for every h € Rn, where a:;, i =1, 2, ..., n are constants.

-i’

If the constants s, i=1,2,...,n are not all zero, then we
deduce from the expression for A(h) above and the fact of being in-

variant under the action of G that the subspace of R" whose elements
n

satisfy the equation = “ihi =0, h € R" is invariant under G.
i=1

This, however, contradicts the definition of G.



~46-

Hence, A(h) = I for all h 6 R".
nxn

We now deduce from (I11.2.7) (c) that
B(hy + hy) = B(hq) + B(h,)

for h],h2 € Rn, and since B is continuous it must be linear. That

is, there is some square matrix B0 of rank n such that

Thus, the expression B(gh) = gB(h) becomes
Bog = 89>

whence B0 =C I and B(h)= Ch for all h €R" where C is some real
nxn
constant., The theorem is now proved.

We now pass on to examine the forms of the appropriate represent-

ation W(E) in the case when.V(g)x = g-]x + Cg—]h. First of all, we

~

see that by a change in the scale V(g) can be written as

~ ~1 =13
Viglz = g z-g 'h
whenever C # 0. Let us now see how this expression affects the rep-

resentation W(Z).
In the proof of Lemma 2 we saw that
Qzsg1g,) = Qasgy) AV(gy)es )

for all z € R" and a11‘§];§2 € GM(n), then setting z = 0, g, = (I,~h,)

52 = (I,h,) in this expression we obtain

Q(0, hz = h]) = Q(0, 'h]) Q(h],hz)



-47-

and, by virtue of Q(x,g) being invertible for every z € R" and every

7 6 M(n) we have that

1

Q(hyshy) = Q(0,-hy)”'Q(0,hy-hy).

This factorization of Q(x,h) allows us to simplify the action of W(h)

as follows.
Let us consider the space of all functions of the form
f(z) = Q(0,~x) f (x)

where f(x) € AR"). Let us define ﬁ(h) on the space of functions %(@)

by
W(h) F(z) = Q(0,-z) W(MIQ ' (0s-z) F (x)]
= Q(0-z) Q(zsh) f (z-h)

](o,-x) iQﬁU,h-x) f{x-h)

= {0, -z) 0"
= %(x-h)‘
= t(h) % (x).

Thus,

A -
w(h) W(g) f(x)

W) Flz)

(1) 1Q(x.9) Fg™ )

Qz-hsg) T (g7 =g ).

Similarly,

NG Flz) = W(g) < (g h)F(a)
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Putting these results together we see that

Q(x-h,g) = Q(x,9),

that is Q(x,g) is independent of x. Thus Q(x,g) = Q(g) is some

representation of G on the space E of values of f(x). .

We see thus that the appropriate representation W(é) f(x) =

Qx,g) f (g-]x - g_]h) can be reduced to the form
W@) f (x) = Qg) f (g % - g"h)  (IT..2.8)
where Q(g) is some representation of G on E.

REMARKS

(1) In the next chapter we shall study appropriate functional equations
where the group GM(n) will be taken to be the Euclidean and Poincaré
groups. In this respect we point out that the rotation groups

SO(n), n > 4, and the Lorentz group satisfy the hypotheses of theorem 1
above. It can also be noticed that the proof of this theorem relies
heavily on the condition that n > 4. Furthermore, in the case of S0(2)
the system (I1.2.7) admits solutions different from those given by

theorem 1.

To prove this statement we begin by noticing that the system of

functional equations

" A(gh)g = gA(h)

A(hy+h,) = A(hy)A(h,)

e ——— 1
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where g 6 S0(2), h],h2 6 H22 and A(0) = 1 admits the unique solution
2x2
A(h) = 1 for all h.
For, setting g = ~I in the first of these equations we obtain
2x2
A{-h) = A(h).

In turn the second equation gives

A(2h)

A(h)A(h)

A(h)A(-h)

A(0)

= 1 ,
2x2

for all h € DQZ. We deduce, as in the proof of theorem 1, that B(h)

is Tinear and sincegB(h) = B(gh), then B(h) must be of the form

a -8
B(h) = {s a}h

where o« and g are real constants.

(2) In the case of SO(3) we proceed as follows. Let us define the

function F(h,x,y) by

F(h,x,y) = (A(H)x,y),

where h, x € RS, then

(A(gh)gx,gy)
(gA(h)x,gy)
(A(h)x,y)
F(h,x,y).

F(gh,gx,gy)




-50-

It can be easily deduced from theorem 1.7.1 that F(h,x,y) must have the form

F(hox,y)=a (]l h|[) (x,y) + BCI[ h{l) [hox,y] + (][ ([} (x,h)(y,h)
where, as in section 7 of Chapter I, I}ux,yj stands for the determinant who-
se entries are the coordinates of the vectors h,x,y.

Since F(-h,h,y) = F(h,h,y), then A(-h)h = A(h)h; so that

A.(h) A(-h)h = A(h)A(h)h,

A(0)h = A(2h)h

2h

A(2h)2h

This is to say A(h) = h, for all h ¢ R° set hyLh, h Ly, then

(AChy#h)h,y) = a(ll hy+hy][) (hyy) + bCI| hy#h]] ,y)

+

c( [l hy+h]l ) (hyth,h) (hy+h,y)

b(||h1+hI|) Bﬁ’h’XJ + c(]|h1+h||)

+

C(l‘h1+h||)(h,h)(h1:Y)

(AChy) hsy)
b(llh, 1) Thy.hay] -

Thus, b(|[ hy+h([) [hyshuy] + ¢ (llhp+h|l) (hih) (hy,y)

= b([] hy 1) [hyshoy]. (1)

By taking h; L y in this formula we get b([| hy+h[|} [h;,h,y] =
= (|l hy1l) [hy» hsy]s so that b([| hy+h[]) = b(]l h ) and by passing

to the limit as h1 tends to zero we obtain

b([[ hl) = b(ll o]l )

for all h e RS.
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From formula (1) above and the fact that b(|| h|l ) is constant we get
c(fl h|[])= 0. Finally,

F(h,h,y)

(A(h)h,y)
a(ll hll') (h,y)
= (h:Y)s

so that ((a(]l || ) -1) h,y) = 0, for all y ¢ R3 , that is a{f/ h]) =1,

for all h € R and consequently A(h) = I, any h ¢ RS.

| Therefore, A(h) = I and this in turn implies that B(h) = ch, for all
h in R3 , With ¢ some real constant. A similar result follows by solving

the same functiénal'equation when g € S0(2), h ¢ RZ .

(3) The solutions of the single functional equation

B(gh) = gB(h)

where g ranges over a group G of linear transformations from R" to R"
and h € R" can be quite varied. For instance, let us assume that there
is some real function of h, say F(h), which is invariant under G, that
is F(gh) = F(h) for all g 6 Gand all h € R". Then the function defi-

ned on R" with values on R" defined by

B(h) = F(h).h

satisfies B(gh) = gB(h) for all g € G and all h € R",

The following Lemma provides a solution to a system of functional
equations in which the equation B(gh) = gB(h) appears, with g € S0(n),

n >3. We shall find application to this Lemma later on.

LEMMA 4. Let F(x) = (Fl(x),....,Fn(x)) be a function defined on R" .

n >3 with values in BQn such that,

(a) Fon) = 0F(x). (8]} x F(x) =0



for all g 6 SO(n) and all z 6 R",

Then F(x) = 0 for all = € R,

Proof: Let us write e, = (0s voes 1y oo. 0). We deduce from (b) that
‘ r
Fr(xer) =0 forall x€ERandr=1, 2, ..., n.

If, on the other hand, ¢ € SO(n) leaves e fixed, that 1§, 6 ey = &

then it follows from (a) that
F(xey) = BF(xey),

so that

where g ' is the rotation in SO(n-1) obtained from g by removing the

row and column one. -

Hence Fr(ke]) =0.2<r<nand, since F(xe]) = 0, we see that

F(eq) = 0 for all X ER.
Finally, given z € R" there are 86 SO(n) and A € R such that
6 A e] =X ,
so that

F(z) = 6F(de;) = 0.

REMARK: The example with F(x) = (-xz,x]) shows that Lemma 4 is not

true for IR2.
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We leave here the study of the case with V(g) = gf] and pass on

to examine the case when V(g) =1 .
nxn

The hypotheses that we shall place upon the group G in this case
are to be'different from those laid down in theorem 1. Nevertheless,
some of the groups which are of outstanding importance in mathematics
and in physics fulfill the hypotheses of theorem 1 and those of theorem

2 below.

.

We begin with finding the relations linking the operators A(h)
and B(h). 1In this respect let us recall that every element

3 = (g,h) € GM(n) can be factorized as

~

7 = (e,h) (550) = (g,0) (e,g™'h),

then

<
0
S’
8
u
=
©Q
g
=
>
A
8

= A(h)z + B(h),

V(g™

<
Q

Sr®
8
un

)V (g)z
= V(g-]h)x
= Mg Tz + B(g™'h)
so that
A(g"th) = A(h), B(h) = B(g ),

or equivalently

Algh) = A(h), B(h) = B(gh),
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for every g €6 and every h € R".

The expressions,

A(h] + h2)

and

A(hy)B(h,) + B(h;) = B(hy + h,),

where hi € Rn, i=1, 2, follow here, too.

Therefore, the operators A(h) and B(h) appearing in the operator

~

V(g) satisfy the system of functional equations

r

(a) A(gh)

H
p-)
—
o0
~—

(b) A(0) = 1
1 (c) B{gh) = B(h) (11.2.9)

(d) A(hy + h,) = A(hq)A(h,)

( (e) A(hy) B (hy) + B(hy) = B(hy + hy).

THEOREM 2.2,

Let ¢ be a group of linear transformations acting irreducibly
on R". If for some non-zero vector v in R" there is an element g in G

such that
gv = =V,
then the system of simultaneous functional equations (11.2.9) admits

the unique solution

A(h) = 1, B(h) =0
nxn

for all h in R".
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_ Proof: With g and v as in the hypotheses, we deduce from the equation

(IT.2.9) (a) that
A(av) = A(-av)
for any » €R.

Let H be the set in R" of those vectors such that if h € 7 and

X ER, then there is some constant kx such that

A(rh) = A(K,v).

.

The set # is manifestly not empty. It is also an invariant linear

subspace of R".

In fact, let h h, € H, then

1 72

A(rhy +uhy) = A(Ahy) A (uh,)

Ak, v) A (k V)

= A(kx4-uv)’

for any real constants A,u; whence # = R".
We also notice that, if A(h) = A(Av), then A(-h) = A(-Av), so that
A(h) = A(=h)

for any h € R".

Therefore,
A(0) = A(h)A(-h) = A(2h),
so that
A(h) = T ,
nxn

for all h € R,



-55-
This fact and the equation (I1I1.2.9) (e) imply that B(h) is

linear in h,

Let (bij) be the matrix of B in some basis inR". The equation

nxn
(I11.2.9) (e) can be written as §bkjgji = bki’ 1<k, i < n, where

g = (gij) € G. If B is non zero, then there is some index j such that
the subspace of R" whose elements, h = (hy,...hp), satisfy the

expression I bjihi = 0 is obviously invariant. This, however, contra-
i

dicts the hypothesis that g leaves no subspace invariant. :
Hence B(h) = 0 for all h € R".

Particular instances of groups that obey the hypothesis of theorem2.2

are the rotation groups and the Lorentz group.

REFARK:

Generally speaking if G does not act irreducibly on R" then the
system (I1.2.9) may admit several solutions. For instance, suppose that
every element in some nontrivial subspace X of RN is left fixed under

the action of G and that the restriction of all the elements of G to the
orthogonal complement of X is invariant. Then the orthogonal projection

My () of R" on X satisfies
HX(gx) = HX(ac), g €G, z €R",

Therefore, A(h) = I and B(h) = nx(h) is yet another solution of
. nxn -
(I1.2.9).

To end this section we wish to point out that, on the hypotheses of

theorem 2.2, the appropriate representation

W(g) f (z) = Qz;g) T (V(g)x),
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with V(g)z = V(g,v)x = x attains the form

W(g) f (x) = Q(z»g) f (x).

3. THE FORMS OF LINEAR TRANSLATION INVARIANT OPERATORS

As we saw in the previous section, the appropriate representation

of GM(n) = Gx T(n)

W(g) f (z) = Qzsg) T (V(g)x),
with V(g)z = g-]x - g-]h can be reduced under suitable hypétheses to

the canonical form (1I1.2.8).
W(g) f (z) = Qg) f (g7 ag M),

where Q(g) is some representation of G on the range space of the functions

in the space A(R").

The condition that an operator T intertwines between appropriate

representations of type (II.2.8) becomes
f (g z-g ' -
{TtQ(g) f (g 'z-g M)} (u) =

= Q*(g){(T[f(=)1} (g 'u-g~'h) (11.3.1)

An operator T satisfies (II.3.1) if énd only if T satisfies the

system of simultaneous functionalzequations

[T fz-h)] (u) =[Tfa) (u-h) (a)
[TQ(g) f (g™ ')l (u) = Q(@)[ TF(x)] (¢ ') (b)
(11.3.2)

We shall therefore study first the equation (I1I1.3.2) (a) under suitable
hypotheses and afterwards we shall specialise to the solutions of (a)

that also satisfy (I11.3.2) (b) in the specific case when g is SO(n) and
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the group of Lorentz. The latter case will be discussed in the next

chapter.

For brevity we shall sometimes write the equation (I1.3.2) (a)

as
Tr(h) =t(h) T,
and say that T is translation invariant.

Translation invariant operators are an important class of opera-
tors which occurs in Fourier analysis and in the theory of Partial
Differential Equations among other branches of mathematics. They are
also important in Theoretical Physics and considerable attention has

been paid to their study.

In particular, Schwartz [18] p.197, has proved that if
T: @—rﬁ' is translation invariant, where O is the vector space of all
infinitely differentiable complex functions with compact support in Rr",
and D' is the vector space of distributions on D, then there exists a

distribution S such that

T(¢) = S * ¢,

for a1l ¢ € . Here, as usual, S * ¢ denotes the convolution product.
It is also proved in the same treatise that T also commutes with deri-
vations and that these two properties of T are equivalent (see Schwartz
[1@] p.197). A rather more detailed account of these results is present-

ed in EDWARDS 7] p.332.

Also, L. HORMANDER [23] has given what appears to be an independent
proof of these results of Schwartz's and has applied it to finding the

forms of linear translation invariant operators acting on Lp spaces of
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Lebesque summable functions.

This author, in the same paper, examines the problem of finding
necessary conditions for the existence of translation invariant oper-

ators. We shall comment on these conditions later on.

The more general problem of operators intertwining between appro-
priate representations of the group of translations is discussed by
J. L. B. COOPER in E{] for the real line and in [5] for higher dimen-
sions. The latter paper deals, in particular, with the problem of
Tinear bounded translation invariant operators acting on Lp (Rn,u)
spaces, where u is a Radon measure, thereby generalizing the aforesaid

result of HBrmander's.

The study of translation invariant operators on Lp ORn,u) spaces
is not only a sound problem in itself, but the case of spaces with
"weights" appears quite naturally, as we saw in section 11.2 when we
reduced the general form of appropriate representations of the group

of translations to its canonical form
Wh) f (x) = f(xz - h).

The results found in Cooper [7] concerning the forms of trans-

lation invariant operators have been further improved by the same author

by weakening the conditions imposed on the function spaces upon which

the operators act. These developments are the content of this section,
1) RADON MEASURES

Let us denote, as usual, by COCORn) the space of all real valued
continuous functions with compact support in R", endowed with the topo-
Togy of the uniform convergence on compact sets. A positive Radon

measure p is a linear functional u on COC(R”) such that



if ¢(x) = 0 for all =.

. ~Cantinuous
A

Radon measures are characterized as follows. inear functional

on COCGR"ais a positive Radon measure if and only if for every com-

pact set K in R" there is some positive constant my such that
<up><m gl
for every ¢ whose support is contained in K.

In fact, the condition is obviously sufficient. On the other
hand, if K is a compact set in R" we can always find a function ¢ in

COC(Rn) such that w(x) = 1 if z € K and y(z) = 0 for all z, then
o(x) < llgh, v(z),
thus
<up> < ol o,y >
= my el
A general Radon measure is a sum
w=(ug - ) + 1 (ug - )

where Wi i=1, 2, 3, 4 are positive Radon measure.

Definition 3.2

A Schwartz space J is a space of infinitely differentiable
functions in which é7== ch is continuously embedded, on which Di

is a continuous operator for any i and for any ¢,




T(-tei)d - ¢
£ > Dy¢

in the topology of Jas t - 0.

Definition 3.3

We shall say that a space A(R") of functions (or equivalence
classes of functions) on R" has the o-property or ts an g-space
if there is Schwartz space embedded in A.

-

Let B(Rn) be any linear topological function space of functions

on R", If for every f € B,

t(-tei) f - f
£

tends to a Timit in the topology of B as t tends to zero, we write
this Timit as Dif. We say that f is in-¢ (B) if D*f exists in B for

every sequence o of nonnegative integers.

Examples of a-spaces are the Lp(Rn,u) spaces where p= 1 and u

is a positive Radon measure.

Definition 3.4

The space B, as defined above, is said to obey the g-condition
or to be a g-space if there is an a in R" aﬁd an integer m such that
for each function class ind (B) there is a member f of the class f
such that f is continuous in a neighbourhood of a and %(a) -+ 0 as

D* f » 0 whenever |a| < m.

If B is a normed space then B is a B-space if and only if there

is a constant ¢ such that

| f(a) | <cz n0°f
|o]<m




ho-
REMARK: It has been proved by J. L. B. Cooper that Lp spaces are
g-spaces for suitable Radon measures. Else where we: prove a simi-—

Tar result for Orlicz spaces. . - .

THECREM 3.1 (J. L. B. Cooper). Let A be an a-space with the Schwartz-
space J continuously embedded in A; let B be a g-space. Let T be a

continuous Tinear map of A to B such that for each h and each ¢ in

-

(Tr(h)e(z))(u) = t(h) [Te(x)] (u).

Then there is a distribution t 1’nf7’such that for all u in R" and ¢

in J
(To(x)) (u) =<ty (u)g>=(t*o) (u)
where ¢(x) = ¢(-z) for all .

Proof. We can assume without loss of generality that the point a in

the definition of the g-rondition is 0.

For any coordinate vector e; and real t,

r(-tEiztb N Di¢ as t -~ 0

in the topoiogy of A(Rn), because it does so in D:and T and these

spaces are continuously embedded in A. Since

R IGIEOE

- sted) = Ty (re(a))(u),

then the right hand side of this expression converges and so that

Di”’ exists in the sense of B.

It now follows by iteration that
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0% = D°T¢

for any finite sequence of -interges a; whence T¢ is in-éf(B) and
so by hypothesis (T?¢(x))(u) is continuous in some neighbourhood
of 0, and such that f}(x)(O) + 0 as ¢ » 0, thus there is an element

s in 'such that

(To())(0) = < S(z), ¢(x) >

~
< t(x), ¢(x) > .

~

Since 1(-y) (Te(x))(0) is in the class of t(-u) T$ =
Tt(-u)g for any uand is continuous in a neighbourhood of 0, then
it follows that (fb(x))(u) is everywhere continuous; thus, by

identifying functions with their equivalence class we see that

[To(x)] (u) T (=u) [Te(x)](0)

T [1(-u) ¢ (=)} (0)

< t{z), T (ue(x) >

(t > ¢)(u .

1f T is dense in A then we can extend T to all A by continuity.



CHAPTER II1I

OPERATORS INTERTWINING WITH REPRESENTATIONS OF THE EUCLIDEAN AND
POINCARE GROUPS. HOMOTHETIC INVARIANCE. DIFFERENTIAL OPERATORS

INTRODUCTION

In this chapter we study the solutions of the functional equation
[T flx=h))(U) = [Tf(x)] (u-h)
that also satisfy the equation

[T0(g)F (g7 ') (u) = Q*(g) [TF(z)) (g u)-

We examine separately the cases when Q(g) and Q*(g) are single valued

representations of the rotation groups and the proper Lorentz group.

We also study appropriate representations of the group of homo-
thetics of R", on suitable function spaces. We thereafter examine

the solutions of the appropriate functional equation

]x'g_]h)](u) =

[T Q(g)f(g~
A% -1, -1
= Q*(g)[ Tf(z)l (g 'u-g 'h),
that satisfy the functional equation
[TF(Ax)] (U) = A [Tf(z)] (Au),
that is the additional condition of homothetic invariance.

Let us recall that the Euclidean group E+(n) is defined to be
the semidirect product (Def. 1.4, Ch.II) SO(n) x t(n), of the




-

-65-
special orthogonal group SO(n) and the group t(n) of translations

on R".

By the Poincarelgroup we mean the semidirect product

]

L](4) x T(4), where L (4) is the proper Lorentz group.

REDUCTION OF THE FUNCTIONAL EQUATION
- - , - -1
M0 )fe eg Th) (u) = Q*lg) TF(z) @ ug ')
- Let A®R") and BR") be Tinear function spaces whose elements
take values in linear spaces E and F respectively. In this chapter
G will mean either the rotation groups SO(n) or the group of Lorentz.

We shall, however, make a clear distinction whenever necessary.

Let T:A(Rn) »»B(Rn) be a linear operator, then T can be expres-

sed as an array of transformations (Tij) by the formula

(Tf) IT. . f.

1 j'IJJ

If AR") and B(R") satisfy the hypothesis of theorem (II.3.1),
that is, A@R") is ana -space in which a Schwartz spacef7 is contin-
uously embedded and BGR") is a B-space, and if T satisfies the

equation

Tf(z-h)(¥) = Tf(x)(Y)

for every f inJ, then we have from theorem (I1I.3.1) that

Tijfj(x)(U) = '(tij * fj) (u)

J tij(u-x)fj(x)dx.

This is to say, T can be expressed as an array of distributions

(tj5) in T
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Let us now assume that T also satisfies the equation (11.3.2)(b),

that is,
[T Fl™"aN () = QXN TFN (g™ w)s
then 5y writing
QeI = % Ql0)s

and

(05 Jw);= 2 Q% @ g,

S

with v in E and w in F, the condition (11.3.2) (b) can be written as

. M
-

=T Q55(0) F5(07 e () =

S22 Qo) T (@) @ W) . (11.1.1)

Now, take f in  such that its components are § fk with k fixed

ki
and replace it in (IIl.1.1), we get

ET Gy (9) fl ) (W)

-1
= ;EQ*rs(g) Tsk fl&) (g u)

so that

? Yl Jtri (u-z) fy(g ‘=) d= =

. -1
- 2o () J tey (97 u-z)f, (z)dz .

By means of a change of variable the latter expression becomes



_—
2 056) J t (9 u2))f (2)dz =
= 2 Q*rs @) tsk (n—x) fk(x)dx’
whence
i.: Q'ik(g) tyi (go) = z Q*Y‘S(g) tsk(x)
We have thus proved.
THEOREM 1.1. Let A(R") be an a-space of functions defined on R" with '
values in a vector space E in which a Schwartz spacef7'is continuously
embedded. Let T be a translation invariant continuous operator from
A(Rn) to a g-space BOR”) satisfying (II1.1.1). Then T can be expressed
as an array of distributions (tij) inj" such that for any :qin G ’
? Qi (g) tri (gz) = ESQ*Y‘S(Q) to (=) (111.1.2) .

We recall that here G is either SO(n) or, in the case of'R4, G

can also be the Lorentz group.

OPERATORS INTERTWINING WITH REPRESENTATIONS OF THE EUCLIDEAN GROUP E+(n)

In this section we examine the functional equation (III.1.2) on
the assumption that G is the rotation group SO(n). Consequently Q(é)
and Q*(g¢" becomesrepresentations of SO(n) on E and F respectively. We

assume further that Q(;) and Q*(y) are single valued representations.

If Q(g) and Q*(@y ) are not irreducible, then, as we saw in Chapter
II, the spaces E and F split into direct sums of invariant irreducible

subspaces.
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Let E;CE be one such invariant irreducible subspace, and let

fif"‘fi be the coordinate functions of f € AORn) corresponding
p
to Ei° Then, the restriction TV of T to Ei take the function

f. = (f.

3 i "”fi ) into, say, the invariant irreducible spaces Fj

and Fk in F. The operator e T defined by
J
<nFj ™) <f1-<x>>(u>=n,:j (7" £ (x))(u)

where Il is the projection of F on F;»intertwines with the irred-
J . .
ucible components Qi(g) and 0™ (g) of Q(g) and 0¥ (g) on E; and F,

respectively.

Therefore, we can restrict ourselves to examine the case when
both Q{g) and Q*(g) are irreducible. Every irreducible single valued
representation of the rotation group is equivalent to an irreducible
component of some tensor representation (see Theorem T1.5.2), that

is, we can suppose that the indices i,j in (II..1.2) are multiindices
=y, J = Jdq...0y
with

1< ir’is <n.

\

The matrices Q(g) and Q*(g) are Kronecker products of the matrix

g'of the rotation,

Q50) = 815 = 003, i, (111.2.1)

with a similar formula for Q*rs(g)‘ ,
Replacing (II1.2.1) in (III.1.2):
z Q-ik(g) tf’"i (gx) = EQYJS* (g} tSk'(x)
i S

we obtain

= e r———p—y "



. XiM=1'g"|..."M’ Koo oKy Fpeaalys §poendy (g2) =
n
:1'f'SN=] Ir ety SqeeeSy ts]“‘sN, kyeeoky (2)
(I11.2.2)
Here we have writter gi]...JM’ k]...kM for gi1kl gizkz_'og_
TKpe

Sometimes we shall, for brevity, write (111.2.2) as

L g ; _ y
;0 ik try (g=) = § grstsk(x) .

Notice that (III.1.2) can be written as

trp‘(gx) = z Ik Irs top(2).

z
kK s

A similar formula can be ottainecd for (111.2.2).

If Q(g) = Q*(g) = g» g & SO(n), n> 4, then the functional

equation (III1.2.2) cén be solved by standard methods.

In fact, it can be easily checked that T(x) = (tij(x)) satis-

fies the functional equations

T(gz)g = gT(x)

n

x. T . (x) =0, k =1,2,...5n,
r=1 " rkl )

then prcceeding as in the procf of Lemma 4, Crapter II,we car prove

that
T(z) = aj(ial) n>I<n +ay(lladl) (o)
nxn
where a;(lal), 1 = 1,2 are functions (or distributions)which depend

only on the norm || ard are consequently invariant under the action
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of SO(n).
However, trying to apply this method to tensors of higher degree

is ertirely hopeless. We shall instead rely on a result of Chapter

1 Sec.4f

Before we proceed @ny further, let us introduce some abbreviatiors
in crder to simplify the focrmulas trat are to appear.
(a) The tensor trye.orys 1]...iM(:) will be written as tiﬁ"'ip(x),
P=M+ N,

(b) By Tiwewy W shall mean z. ..,

PP b

o
(c) 1n accordence with (a) above we shall sormetimes write

(S- - . :6. .
]'Ioaoip, ]P+l..o12P 1].-01P [}

(d) Let A, = {ay,...53,} be a set of n distinct objects anc let us
write C = {1,..,n} . We write Anr(r<§n) for the set of all subsets
of A, that conta%n r distinct elemerts. We shall write the elemerts
of Anr as a. a: , and sometimes, in accordance with (b) above,

.| -3 I ]
] Tr

simply as ai]...ir. The set Cnr is defined similarly.

Given ar element ¢ = ji"‘jr in Cnr, the correspondence

is well defined. This will also be written as

c(ay... = ageecas .
(ay...a,) | aJ] aJr
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(e) Given ar element ¢ = j].u.jr in C'r, we write c’ for tle

n

ccmplement of ¢ in Cn.

(f) Let o be a permutation of the r natural numbers j],...,jr and

let ¢ = j]...jr be an element in Cnr, then we write

O(C(a]cnoaﬁ)) = ao(j])--oao(jn) .

We now go on to find the forms of the tensors tr]...rN,i].o.iM(x)

appearing in (I111.2.2)

Let yl..., yP be p vectors inR". It is a simple matter to

- 1 P n 1 P
verify trat the form G(z, ¥ seeey ) = L y y

. t." seej (x)
1]...1P=]

1]-.- iP 'I P

is invariant wher x,yl ..’yP are transformed into gz , gy] gyp,

g € s0(n), tnat is
P)

G(xg’ys]o- ..Yp ).

:
G(gx sg¥seeesgy

It follows from theorem (I1.7.1) that G is the sum of a function of the
inner prcducts, say F((zsy"), (yk,ys)), and expressions of the form
[u],é.,un]f(x,yl...,yp) where the vectors Ul...;un are chosen amcng the
elements of the set huyl...,yp} and the functions f(x,yl...,yp) depend
or. the inrer products (x,yk), (y",y®) alone. We recall that the terms

in determinants occur only when P> n - 1,

k

L]

1
Since G(x,y,...,yp) is linear in every y we decduce that the

norms_uyku cannot occur. We have 21so that

G(.’x:,)\'y,]...,)\yp) = AP G(xy],-..,yp)Q

r k.s \
whence F((xsy'), (¥,¥°)) is an homogenevus polynomial in the inner

k

products anc no vector y appears in the same term in two different
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inner products. Ar ertirely similar argument holds fcr the functions

Fi(z ), (YY),

We notice further that, since G is homogeneous of degree one in
every individual yk, if a vector yk appeers in the determineént of an
expression cf the form [u's..u" 1 F((x>y" ), (y¥y®)), then it cannot appear

in the factor f((x,yr)(yﬁys).

Let us ncw eramine the cortributions to G(x,yl...,yp) arising from

the terms that cortain inner productsonly, that is, from the form

F((zad )s (yy®))-

Accerding to the remarks made above as to the forms of F((x,yk),(yﬁys))
we see that this is the sum of expressiors of the followinc forms. We

begin with the expressior

ay (Il ) (x,y1)...(x;yp) where a,(lidl) is a functior (or
distribution) whick depends only on the rorm lixl, The following terms
are obtained by replacing pairs ¢f inner products (x!yr), (x,yk) in
the previous term by the inner product (yCyk). We carry on with this
prccess until we get terws with at most one inner product (x!yr), say,

or noite at all., This depends on whether p is odd or even.

We thus cenclude that the contribution of the form F((x,yr),

i i
'locc P
the help of the previous abbreviations as Fi ; (z) =
- "'o‘o P

(YKYS)) to ti]...ip(x)’ which we write F, . (x), can be written with

K

Iz % L oa, (hall)s ,
cy iy L e ete (1 i)

p-2k 1. 7P) ges,, 1 1...'p (111.2.3)

k=0 cECP

where K = P/2, if P is even, and K = E%l_, if p is odd, here 52k is the

set of permutatiors of the cet of the elements appearing in c'(il...ip).
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We deduce that the non zero terms in Fi ; (x), apart from
']c‘. p
the term aO("x")xi j » are those where the subindices in
]'-- p
8 . i appear repeated in pairs.
e (i) TPPEATTER P

3 (z) of all the terms in G(x,y]...yp)
'Icoo p
whose determinants contain x 1is found similarly and it can be written

The contribution to ti

as
D . Vrs N (111.2.4)
ig cac 1 Mg clig-.-ip) To € (1y...1)
. : is in (I111.2.3).
where Fc'(11.--1p)(x) as is in (I11.2.3)

These terms can appear if and only if p>n - 1.

Similarly, the contributions of the terms where determinants

containing only vectors yk appear can be written as

z Fooe
CGCS ec(i]...ip) c (1]...1p)(x) (I11.2.5)

. () 1is

Putting all these results together we see that ti 3
]n.o p

a linear combination of expressions of type (II11.2.3), (III.2.4)

and (I111.2.5).

3. OPERATORS INTERTWINING WITH REPRESENTATIONS OF THE POINCARE GROUP

The study of the equation
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=z
S
when g € L1(4) is exactly as the case when g £ SO(n), as dealt with
in the previous sections. More precisely, we take Q(g) and Q*(g)
to be single valued irreducible representations of the proper Lorentz
group.
According to theorem (I.b6.1), any irreducible, single valued,

finite dimensioral representatior ot the prcper Lorent:z group.L1(4),

is equivalert to an irreducible ccmponent of some tenscr representatiors.

Under these hypotheses, the expressior (IIl.1.2) becomes

4
. t : .
g ; -
? LFERRRI'E k]"'kM Pieeelys Tqeeniylgzx) =

t

= g
S, N1 Ty eeetys SyeeaSy Sqeen Sy kpeuiky () (111.3.1)
where g = (gj-) is a proper Lorentz transformation and g5 — K
J 1..0 m’ l.uum
= g: 94x4
1|k].., 1m"'km'

Llet q = (qkr) be the inverse to g = (gij)’VJe recall that

4x4 4x4
1 ki ik
z q . = S ;Zg.q =S
321 kr9ri FRRRRIN
where Ski is the metric tensor defined by
( .
1 if k=1=<3
K= A1 if k=i= 4
{ 0 otherwise

The expresssion (I11.3.1) cen now be written as



x 9. . t
1l°'°1N’ Pyee.ly r]...rN, kl°" M

we see that t, . . (x) is contravariant in the subindices
LETER TV R P
j]..,jM and covariant in the subindices i]...iN.

In order to simplify the notatior, we shall write contravariant

vectors as Zl... ZN and covariant vectors as y]... yM. .
L] L] H] 3
] N 1 M) =
It can be checked that the form G(x, Z'...7 y ... y
1
= . L . . z . Z_| ._ZN y] yM t. . . . (x),

1]-.-1N Jl...JM 'l‘ N 1]... JM .‘l-oo.‘Ns J'loo-JM

is invariant when x, Z ves ZN, y'... yM are transformed into gz,ng...,
] b s ] 3

gZN, gy1...,gyM, where g stands for Lorentz trarsfecrmations.
s

1 N T oM

We deduce from theorem (I.7.2) that G(z, Z Z AR ) is a

function of the mixed products {Zi yj] = I Z1 yJ the form°<¢ yJ> =

. k ik " JiJ, 3
z S x yJ, <y1,yJ> and of determinarnts [7 , ' 4], [x]y ]y ?y 3) s
J
[y ] ooy 4]. Also, all the remarks put forward in the previous section
abouit the Tinearity and homogeneity of the forr G(x]y] ...yP), hold for

the form G(x]Z]’...’ZN, y]’...yM).

Therefore, G(x]Z]... ZN, y]...yM) is a linear combination of proc-
1 ]

ucts of the invariart forms listed above, such that Zi and every y1
enters in every of thece products only once.
Let us begin by finding the contributions to t. .. . (x)
] 1“...1N’JIOOOJM
arising from those terms of G(x] ...2 s Y ...yM) thet do not ccntain

any term where mixed products [ 21,y3] appear. These contributiors can

be analysed as prodicts of tensors arising from products of contresvariant
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LI i

determinants {Z '...Z '} and mixed products [z,Z'] on the one hand, anc

tensors arising from prcducts of covariant determinants ard forms of type

<,x,yJ >, <yi,y3> on the other.

Thus, we begin with the term

[ x, Z]].-. [.’L‘,ZN]
which contributes to some terms of t, . . . with the factor
T]...]N, JI...JM
3eein(2) *
Hi..eodiplx) = 2 X
1 N 1]"".‘N'

The subsequent factors are obtained by replacing in the factor aktove fotr
1;
mixed prcducts, sayl x,Z “1, j = 1...4, by the corresponding cortravariant

determinants

S

2 i 4
¢ 2.2 713 4
Lk, KpeeekgTky Tk, Thy TRy

These contributes the term

1

H: .
Tyeesdy

() =(:e§ 4ec(i|...i4)xc.(i

\ 1°°°

= LA Sy “0*(i i)
CEC, elTyeeedy) o U0yeeely

where ¢, ¢! and CN4 are as in the previous section.

By recurrence we find the terms that cortain 2,3,... symbols

e . so that
'1.-.14,

In every of these expressions, factors of type a(<x,x> ) may appear.
The: factors of type H? ; () with k > 0 appear if and only if
‘I-o- N
N=4k +r, 0 <r <3,
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The factors, which the products of covariant determinants

is i ky Kk, 37 3, 3 3
4 vee 4 2 3 4
iyt e vWoylyly
kY, Yy Yk

ky---kg Y 4

and formrs <c,yd>, <y‘,y3> coritribute to the terms of t. c3 . (2)s
1’,-0.1N,\]'I..-JM
are obtained in a similar ménner as we did in the previous sectiorn, with

factors of type a(Hxﬂ) ard &,
J] J

. . . replacec by factors of type
'l ..1 Il J].nOJ

r respectively.

i
a(<z,2>) and 5 17TT T

We thus obtain factors of type

[ag Bl

S(C (3 - -dy))
F. . (.‘1’:) = (<.’L‘,.’ZI >)S ’

Z a
J]...JM

keo

L X s .
k=0 QGC{:"Zk C(J]..-JM) ]

W here K = %-1f M is even, and K = mil if K is odd;

0 3 (37 -dyy)
E: : (.’II) = I I € z, Fo.,. : (.’2) s
J]...JM j C€C3 JO C (J.!'..JM)
0 M
1 cliy...dy) ()
E () = T 4] M7 F.
J'loo J ¢ C?[‘ C'I(J'I o-JM)

Here we ute the same notation as in Section IIl.2. p.79,80

i i
Terms with repeated symbols € .. 4 are obtained by iteration of

terms of type EO . and E! . 5 such as
J‘loooJM J‘o-OJM

I I

¢ (Jqee.d
cECﬁ ! M

and so on,

Putting these results together we deduce that the ccntributions

to the terms of t. . . . (x), arising frcm terms of G(x,Z]... ZN
1]...1N’ Jlo--JM b E] s
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yl,..yM) that do not ccntain mixed products | 21,yJ], are linear com-

binations of procucts of the following type.

0 0 0 0 !
H o FLoeee: (x)s HG . E; . H: . E; . ()
1]oou1N J-I JM 1]-.01N J']-OUJM, 1'Iouu1N J]...JM

and products of the form H? j with iterates of factors of type EO

.l 'IG.BN

and E', and terms of type

3 .
H: . Fig.. dg(x).
Tyeosiy ] M

The coritributions to t; (z)rarising from terms of

] ].--1N’ j]-.-jM

Gg ,Z]... N Y oueo yM) where mixed procucts [Zi

,yJ] appear, is obtained

by corsidering linear combinations of terms of type

° eo.i j ° . JrSq-l...JrM

where G, cee: 3z s is of the type described atove.

HOMOGENEOUS DISTRIBUTIONS. OUIFFERENTIAL OPERATORS.

Let us recell that by AGR") we denote a space of functions on R"
with values in a linear spzce b, such that AﬂRn) separates the points

of E.

Let R'x R" be the semidirect prcduct of the multiplicative group
R' of the positive real numbers ard R", This is to say,IR+ x R" consists
of pairs (x,h), 2 €jR+, h € R" and the multiplicetion of pairs is defined

by
(Al,hl)(xz,hz) = (Ayhodqhy + h,).

The action of'R+ xR" as a group of trensformations on R" is defined by



-78-
(Ah) : 2 > Xz +h, z ER".

This definition is consistent with the group operation in Rt x R".

We shall sometimes write » for (i,0) and h for (1,h).

We now pass on to consider appropriate representations of RY xR"

ohA(]}{n) of the form
W(A,h)f(x) = Q(A,h,x) f (v(Ash)x).
On account of the results of Chapter II we define W(1,h) = W(h) by
W(h) f (z) =c(h)f(x)
= f(x= h).
Since (Msh) = (1sh) (A,0) = (A0) (1,4 'h), then

Wi h) f () = W)W F(2)

W(h) QA z)f(V(A)z)

Q(Asx=h)f(V(A)(x=h)

(WA Th) f(z)

W(2) F(z=2"Th)

Q(A,x)f(V(A)x-A-1h).
Thus,

QA ,z=h) F(V(A) (z-h) = Q(A,z) f (V(A)z=2"'h).

From this expression and the hypothesis that A(R") separates the

points of E we decuce thet
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V(A)(az=h) = V(A)z-x h°

so that v(a) = 2

Trerefore, Q(A,z=h) = Q(A,h); that is, Q(X,z) is indep-

endent of x, ard since it is multiplicative we must have trat
Q(r) = a¥ (111.4.1)

for some ® .,

Hence,

w(M)F(z) = A V).
This expression can be written as

wir) f (x) = AV f(Az) (111.4.2)

Let the hypotheses of thecrem | Section 1 of the precent chapter
hold. Let T be an operator as defined in this theorem. We shall now

examine the forms of T under the further hypothesis that T obeys
[TF(ax)) ) = AW [TH(2)] (Hw (I11.4.3)

The expressior (111.4.3) holds if and cnly if for every distrib-
ution t_. ,
ai

J ti W-z)¢(rx)dz = oV tai(xu-x)¢(x)dx.

This ceén be written as

-~

(" u=2) () e ]ty (usa)e(a)ds

1]
>

oi
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1 =1 -1 _.n

;ﬁ-J taq (A Tu=) x)e(x)dr = tai(qu)¢(x)dx,
; =1, _yHiD _ .

so that t.- (» 'x) =) tai(x), or equivalently

-u-n

t,s () =2 ty: (@) (111.4.4)

We have thus prcved
THEOREM 4.1

Let T = (t,;) be an operator as defined in theorem (III:T.I).

Let the hypotheses of this theorem hold. If T obeys

[T f0x)) (w) = A" [Tf(z)] (W) (111.4.3),
then
-u-n
t () = ATVt (=),

We saw in section III.2 that the study of the appropriate functional

equation
[TQ(g)f(g %) 1(y) = Q*(g) [TF(x) 1 (¢ u)

where Q(g) ard Q*(g) are single valued . representations of SO(n), can
be reduced to the cese when Q(g) and Q*(g) are irreducible represent-

ations, and in this case T = (tq;) Obeys the formuia

n :
T gsi . t . . (g7) =
11-iM=1 REAE Ky« -ky RSO AN R
n
= Z
S] LK ] OSN__:]

t :
GrqeaaTys SpeeaSy Syl Sy Kyeenky(@)

Further, in the previous section we saw that the nonzero distrib-

utior. that transform according to this formila are linear combinations

[T ——
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of distributions c¢f the fom

. ofx)) (u) = | alladl) z;  z; ¢(zu)de (111.4.5)
1eoeip Tyeavi,

where a(lldl) is a function (or distribution) which depends only on
is
the norm | il anéYconsequently rotation invariant.

Since the distribution appearing in (II1.4.5) is homogeneous of

.

degree -u-n ((III.4.4)), then we must have that
a(laad )" =A™ aqial),
so that
alixzll) = 27" a(a) (I11.4.6)
Homogeneous distributions have been ertensively studied by
I. M. Gel'fand and G.E. Shilov [8] . In particular, these authors

have prcved (}'8 ] p.80) that an homogcneous distribution f(z) such

that
f(az) = 2" f(x)
where n is some positive integer, is of the form
f(x) = ce !+ Cl G(n-])(x).
For a definitior of the distribution x " we refer to [10) p.51.

If the degree of homogeneity of f(x)is not a negative integer,
then no distribution concentratedat 0 appears in f(x) (see 8] p.81).
More precisely, f(x) is a distribution concentrated on the complement

of {03.
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In the present cese the distribution a(llzll) in (I11.4.6) becomes
afladl) = €Il @0 ¢ a(Hr=1) gy,

=) gy i

provided that -u-n-r is a negetive integer, Where )

an homogeneous distribution concentrated at x=0 and rotation invariarnt.

Rotation invariant distributions concentrated at the origin have

beer studied by P. D. Methee [#5] , who has also studied Lorentz invar-

n-1 °
iant distribution corcentrated at the vertex of the _2] x12_mn2 =0
1:

cone. A more detailed account of these resuits appears in J.Challifour

[31, p.144 and 153,

Methée has proved that a rotation invariant distribution a(ll=l)

concentrated at the origin is of the form

M p
a(ladl) = £ ag b~ §(x),
p=p F M
n 32 n
where A, = I ——= I D-2.
AR I I
J
H p
Let us now examine the operator arising frem I ap 8, s(x).
P=0
To begin with we recall that the distribution Anpa(x) is homo-
M .
geneous of degree -n-2P, Thus I Arxi x. ap AP 8(Ax) =-
‘ P=0 -l...'lr n
M
= I, . A n=ZP+r aPA Pé(x)
P=O *Ica. 1r n
M .
= A" o i 2P a Anp §()
p=0 I° r
M
= ATHTN 5o x, Anp &(x),

so that

- —_—
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M p

E z, ap A 8(x).

M —y-

P:O 1‘[009 1r n P 0 '] o e 1!‘

and since homogeneous distributions of different degree of homcgeneity
are linearly independert, we deduce that, in crder that 5(V+n+r-])0|dl)

be different from zero, we miist have thet for some 0< P< M,
2p = Y+ 2r (111.4.7)
If this is ithe case, then the distribution

M

Pzéxi1"'x1r ap Anp 8 {(x) reduces to
u+2r
a or xTi...xir A, 2 s (x) (I11.4.8)

v

We shall now find a more compact form for this distribution. We
recall that the action of (I11.4.8) is given by

. utlr
(ap 2i,...5 2 8(z)efx)) (u) =

u .
- ap[xh..”?ir Yo T 8)é e

The Taylor series of ¢(x-u) cen be written as
Jpd(u) ,
P v ),

thus

ut2r
x - =
J f].'. i n 2 &(z)¢(z-u) dx

42r M Ipd; -
])u+2rl 5(z) A, Ko B0t 2R e o) ax
k Ezo 1yt=n * ]
where X = . Ty T X ]"'xn "




-84-
For N large enough the term arising from En (x,u) is zero, so

that the expression above becomes
"

J‘~
5 (_])n g D ${u

5
n=C |3l=n 3- =)

ard thke inner intecral car be written as

This expression is different frcm zero if ard only if 2ng= igtigs

-y 1
S=1,2,...n end in this case its value is (k+€)' (’+2r)£, so that
1+‘J [ 2
(X)!
u+2r
& 8(x), z. ¢(x-u) dr =
n Tqe0.7d
1 r
" n k+j): ,utlr Djﬁjul
= (1) 2 “rar, (7o) T
n=C IJ"—'-n (—-23‘):

and cince 2|P|= p+2r = |k} + |j] = r + |3|, thet is |j] = w4 r, the

expressior above tecomes

p+2r, . .
(_])u+r 5 GTT_’)'(k+3). Dﬂg(u)

l3l=ur 3 (K3 \

In particular, if k = 0, then r = 0 ard j = 2g for scme n tuple

B = (31..3n), thus the expression above becomes

% :
A, ¢(u).

In order to finc¢ the solutions of
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T 1Q(g)f(g 'w-g Th)] Y(u) =
Q*(g) [T f(=)] (g 'u=g"'h) (11.3.1)

with Q(g) and Q*(g) irreducible cincle valued reprecentations of the

proper Lorentz group, that also satisfy
[T f(z)] () =AY [ T f=)] (2u) (111.4.3),
we prcceed exactly es we cdid in the previous case in this section.

In the present case the ncn-zero terms of T, as fcund in Section 2,
are of the form
a(<xax>)x1- X: »
]u.o' 1
r
where a(<x,x>) is & Lorentz invariart distribution whick is romogereotis

of decree -u-4-r, thst is

-p=4-r

a(<xx A>) = 2 a(<z,2>),

and by ar. agreement similar to that of the rotation invariant homagereous

distributions cdealt with et the beginning of this section, we finc thet

a(<e>) = |<e,a| Ty TR (6 oy,

E(p+4+r-])(<$ﬁﬁ>)

' Gel'fand an¢ Shilov (82} p.251 have proved that
decomposes intc a sum of a distribution concentrated at the vertex of the
cone <z,2> = 0 anc a distribution concentrated o the surface of this cone

with the vertey removed.

A Lorentz invariart distribution a(<z,2>) concentrated et the vertex
M ,
of the core <x,» > =0 is of the form I ap EPG(m) (Challifour [8]
P=20

p.153) where,
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3 4 ..
_ 3~ 3 11 2
D=1 —5—— = 5Dy
i=1 axi 3:1:4 i=1]

It is now easy to see that the action of the differential operator

arising from the distribution a(<x,z>) can be formally obtained from that
2 iin2

of the previous case, by replacing Di by S''D i
Therefore n42r
Tivunn R 5 (x)¢(z-u)dx
(u+2Y‘)| . % .
- &l 7 ol
[3]=utr (=)0 '
where k] k2 k3 k4 ok
Liesels =X X X X = X,
i i
1 r
i 319 3pdp 33333, 3,
2 - B2 22 (33 A4
_ji J;
with the prescription that if ji = 0, then é?"'?‘z 1, we also recall

that j = 2r for some n-tuple r = (r]--¢¥h) of non negative integers.

If k = 0, then the formula above becomes
D & s - 300
z ¥ S DJ]¢(U) = E;- ¢(u).
ME" (g)-
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