NOTAS DE MATEMATICA

Nº 45

A NOTE ON SPECTRAL AND PRESPECTRAL OPERATORS

BY

T.V. PANCHAPAGESAN

DEPARTAMENTO DE MATEMATICA
FACULTAD DE CIENCIAS
UNIVERSIDAD DE LOS ANDES
MERIDA - VENEZUELA
1981

A NOTE ON SPECTRAL AND PRESPECTRAL OPERATORS

BY

T.V. PANCHAPAGESAN

ABSTRACT. Results known for spectral and prespectral operators in weakly complete Banach spaces are extended to Banach spaces with Bessaga-Pelczyński property.

1. PRELIMINARIES. In this note by a Banach space we mean a non-zero complex Banach space. Because of varying terminology in literature, we give the following definition.

DEFINITION 1.1. Let Σ be a σ -algebra of subsets of a non-empty set S and X a Banach space. If Γ is a total set of X^* , the dual of X, and E(.) is a Boolean homomorphism of Σ on a Boolean algebra (B.A.) of projections on X, we say that E(.) is a spectral measure of class (Σ , Γ) when $E(\Sigma)$ is norm bounded in the Banach algebra B(X) of all bounded operators in X and when X^* E(.) X is countably additive on Σ , for each X E X and X^* E X.

^{*}Supported by C.D.C.H. projects C-80-149,150 of the Universidad de los Andes, Mérida, Venezuela.

AMS subject classification-1979-47 B40-spectral operators, decomposable operators etc.

When E(.) is a spectral measure of class (Σ, X^*) , by Orlicz-Pettis' theorem, E(.) is countably additive on Σ in the strong operator topology and in this case E(.) is called a spectral measure on Σ .

An operator T ϵ B(X) is called a prespectral operator of class Γ if there is a spectral measure E(.) of class (Σ_p, Γ) where Γ is total in X* and Σ_p is the σ -algebra of all Borel sets in (), such that for each δ in Σ_p , E(δ) T = T E(δ) and the spectrum of T restricted to E(δ)X is contained in the closure of δ . Then E(.) is called a resolution of the identity of class Γ for T.

A prespectral operator T of class X* is called a spectral operator. In this case, T has a unique resolution of the identity.

DEFINITION 1.2. A Banach space X is said to have Bessaga-Pelczyński (B-P) property if every weakly un conditionally convergent series in X is strongly un conditionally convergent.

LEMMA 1.3. Let Ω be a compact T_2 space and X a Banach space with B-P property. Then every bounded linear trans - formation $T: C(\Omega) \to X$ is weakly compact, where $C(\Omega)$ is the Banach algebra of all complex continuous functions on Ω .

PROOF. By theorem 5 of Bessaga and Pelczyński [1], the hypothesis on X is equivalent to the fact that X does not contain

an isomorphic copy of c_0 . Now the lemma follows from Theorem 15, p. 160 of Diestel and Uhl [2].

2. MAIN RESULTS. In what follows X will denote a complex Banach space with B-P property. Since a weakly complete Banach space has B-P property (See[1]) all the results in this section hold for weakly complete Banach spaces also.

THEOREM 2.1. Let A be an algebra of operators in X and let it be the image under a continuous homomorphism ϕ of the Banach algebra $C(\Omega)$ of all complex functions on a compact Huasdorff space Ω . Then there exists a uniquely determined spectral measure E(.) in X on the Borel sets of Ω , for which

$$\phi(f) = \int_{\Omega} f(\lambda) E(d\lambda), f \in C(\Omega).$$

<u>PROOF.</u> For a fixed x ϵ X, consider the map T_x : $C(\Omega) \to X$, defined by $T_x f = \phi(f) x$. Since T_x is a continuous linear transformation and X has B-P property, by Lemma 1.3 we have that T_x is weakly compact. Now following the same argument as in the proof of Theorem 2.5 of Chapter XVII of Dunford and Schwartz [4], the present theorem is established.

We use the terms 'complete' and 'g-complete' B.A of projec - tions on X in the sense of Definition 3.1 of Chapter XVII of Dunford and Schwartz [4].

LEMMA 2.2. A strongly closed bounded Boolean algebra of projections in X is complete.

PROOF. The proof of Lemma 3.5 of Chapter XVII of Dunford and Schwartz [4] holds here, except that we appeal to Theorem 2.1. above, in stead of Theorem 2.5 of Chapter XVII of [4].

THEOREM 2.3. A bounded B.A. of projections on X is complete if and only if it is strongly closed.

PROOF. The theorem follows from Lemma 2.2.above and from Co-rollary 3.7 of Chapter XVII of [4].

COROLLARY 2.4. Every bounded B.A. of projections B on X can be embedded in a σ -complete B.A. of projections on X, contained in \overline{B}^S (the closure in the strong operator topology).

<u>PROOF.</u> When B is norm bounded by a finite positive number M, then it is easily verified that \overline{B}^S is a B.A. of projections and that $||E|| \leq M$, $E \in \overline{B}^S$. Now the corollary follows from Theorem 2.3.

The above corollary leads to the following interesting result about prespectral operators.

THEOREM 2.5. Every prespectral operator T on X is a spectral operator.

PROOF. Let T be a prespectral operator of class Γ on X,

with E(.) a resolution of the identity of class Γ . Then by Definition 1.1 and by Corollary 2.4 there exists a σ -complete B.A. B of projections on X, which contains the range of E(.) on Σ_p . If $\{\delta_n\}$ is a sequence of mutually disjoint sets in Σ_p , then $\mathbf{F}_n = \sum\limits_{k=1}^n \mathrm{E}(\delta_k)$ is in B and $\{\mathbf{F}_n\}$ is a non-decreasing sequence of projections in B. Therefore, by Lemma 3.4 of Chapter XVII of [4], for each $\mathbf{x} \in \mathbf{X}$

$$\lim_{n} F_{n} x = (\bigvee_{1}^{\infty} F_{n}) x .$$

In other words,

(1)
$$(\bigvee_{1}^{\infty} F_n) x = \lim_{n \to \infty} \sum_{1}^{n} E(\delta_k) x, \quad x \in X.$$

But, $x^* E(.)x$ is countably additive for each $x \in X$ and $x^* \in \Gamma$ and therefore from (1), we have

(2)
$$\mathbf{x}^* (\overset{\circ}{\mathbf{V}} \mathbf{F}_n) \mathbf{x} = \overset{\circ}{\underset{k=1}{\sum}} \mathbf{x}^* \mathbf{E} (\delta_k) \mathbf{x} = \mathbf{x}^* \mathbf{E} (\overset{\circ}{\mathbf{V}} \delta_k) \mathbf{x}$$

 $\mathbf{x} \in \mathbf{X}, \mathbf{x}^* \in \Gamma$

Because Γ is total, (1) and (2) give that

(3)
$$(\bigvee_{1}^{\infty} \mathbf{F}_{n}) \mathbf{x} = \mathbf{E}(\bigvee_{1}^{\infty} \delta_{k}) \mathbf{x}, \quad \mathbf{x} \in \mathbf{X}.$$

From (1) and (3) it follows that $E(\cdot, \cdot)$ is countably additive in the strong operator topology. Hence T is spectral.

THEOREM 2.6. Let T_1 and T_2 be two commuting spectral operators on X, with $E_1(.)$ and $E_2(.)$ as their respective resolutions of the identity and S_1 and S_2 as their respective scalar parts. If the B.A. of projections B determined by $E_1(.)$ and $E_2(.)$ is bounded, then $T_1 + T_2$ and $T_1 T_2$ are spectral with $S_1 + S_2$ and $S_1 S_2$ as their respective scalar parts and $G_1(.)$ and $G_2(.)$ as their respective resolutions of the identity, where

$$G_1^{(\delta)} x = \int E_2^{(\delta-\lambda)} E_1^{(d\lambda)} x,$$

$$G_2^{(\delta)} x = \int E_2^{(\delta/\lambda)} E_1^{(d\lambda)} x$$

for each $\boldsymbol{x}~\epsilon~\boldsymbol{X}$ and $\boldsymbol{\delta}~\epsilon~\boldsymbol{\Sigma}_{\boldsymbol{p}}$.

<u>PROOF.</u> Let $T_1 = S_1 + N_1$ and $T_2 = S_2 + N_2$ be the canonical de compositions of T_1 and T_2 . Then by the generalized Fugledes theorem (Corollary 3.7, Chapter XV of [4]) S_1, S_2 , N_1 and N_2 commute with each other and hence $N_1 + N_2$ and $N_1 S_2 + N_2 S_1 + N_1 N_2$ are quasi-nilpotent. Now the theorem follows from Theorem 4.5 of Chapter XV of [4], Corollary 2.4 above and Theorem 10 of Panchapagesan [5].

REMARK 1. In view of Theorems 2.1 and 2.3 and Corollary 2.4, Theorems 6.10, 6.12, 6.14, 6.21 and 6.22 and note 6.15 of Dowson [3] and Corollaries 2.12, 2.13 and 2.14 and Theorems 3.18, 3.19 and 3.20 and Corollary 3.28 of Chapter XVII

of Dunford and Schwartz [4], which are known to be true for weakly complete Banach spaces, continue to be valid for Banach spaces with B-P property.

It is also possible to extend the theorems of Characterisations of spectral operators in weakly complete Banach
spaces to operators in Banach spaces with B-P property. To
this end we need the following theorem.

THEOREM 2.7. Let E(.): R \rightarrow B(X) be a Boolean homomorphism of the algebra of sets R on a B.A. of projections on X and let E(.) be countably additive in the strong operator topology on R, in the sense that whenever $\{\delta_n\}$ is a pairwise disjoint sequence of members of R with $\bigcup_{1}^{\infty} \delta_n \in R$, then

$$E(\bigcup_{1}^{\infty} \delta_n) x = \sum_{1}^{\infty} E(\delta_n) x, x \in X.$$

Then a necessary and sufficient condition that E(.) can be extended uniquely to a spectral measure E(.) on S(R), the σ -algebra generated by R, is that the range of E(.) is norm bounded in B(X).

<u>PROOF.</u> If such an extension $\overline{E}(.)$ on S(R) exists, then as in the second part of the proof of Corollary 3.10 of Chapter XVII of [4] we see that $\overline{E}(S(R))$ is a σ -complete B.A. of projections on X and hence is norm bounded by Lemma 3.3 of Chapter XVII of [4]. Conversely, if E(R) is norm bounded in

B(X), then E(R) is a bounded B.A. of projections on X. Hence from Theorem 8 of Panchapagesan [5] and Corollary 2.4 above, the sufficiency of the condition follows.

REMARK 2. As a consequence of the above Theorem, Theorems 3.14, 4.5, 5.2 and 5.15 of Chapter XVI of Dunford and Schwartz [4], which are known true for weakly complete Banach spaces, continue to be valid for Banach spaces with B-P property.

REFERENCES

- C. Bessaga and A. Pelczyński, On bases and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151-164.
- J. Diestel and J.J. Uhl, Vector measures, Amer. Math. Soc. Survey 15 (1977).
- H.R. Dowson, Spectral theory of linear operators, Academic Press, New York, (1978).
- 4. N. Dunford and J.T. Schwartz, Linear operators, Part
 III, Spectral operators, Interscience, New York (1971).
- T.V. Panchapagesan, Extension of spectral measures,
 Illinois J. Math. 16 (1972), 130-142.

DEPARTAMENTO DE MATEMATICA
FACULTAD DE CIENCIAS
UNIVERSIDAD DE LOS ANDES
MERIDA, VENEZUELA