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"ON THE NUMBER OF REMAINDERS IN EUCLIDEAN DOMAINS"

RAJ K. MARKANDA

INTRODUCTION: The purpose of this note is to discuss

two classes of euclidean domains, namely: those in which
the number of remainders is always finite and those 1in
which the number is always infinite. It is well known
that in the polynomial ring k[x], over any field k,
the remainder is always unique and that in the ring of
integers 2 one always gets exactly two remainders
Indeed, these rings are characterized by these properties
as shown by Jodeit [2] and Galovich [1]. In Theorem 2.1

we show that in the ring of integers of the complex eu-

‘clidean quadratic fields Q(v-d), the number of remainders

-

is less than or equal to 4. As a corollary to Tﬂéorem.2.3,
we show that the number of remainders is always infinite
in the ring of integers of any euclidean field different
from the fields of Theorem 2.1. We connect this result
with the existence of an infinite number of solutions of

a certain type of diophantine equations. In section 3, we
show that one always gets an infinite number of remainders
in any ring of fractions of a euclidean domain with respect

to a non-trivial multiplicative subset.

Let A be a domain with a multiplicative function

b: A > {0} U N. Let K be the guotient field of A. Then



¢ can be extended to K by setting ¢, ( % ) = i(g;
for all % in K with a,b in A and a # 0. We set

¢1(0) = ¢(0) = 0. The following is a well known result:

LEMA 2.1. The domain A 1is euclidean with respect to
¢ 1if and only if given % in K there exists q in A

such that ¢, (%—q) <1.

We use this to prove the following.

THEOREM 2.1. Let A be the ring of integers of the

euclidean complex field ©(v=d). Then the maximum num-

ber of remainders in the euclidean algorithm of A is 4.

PROOF. Case (i) A = % [/=d] and d = 1 or 2. Then A

is euclidean for the multiplicative function ¢ (mn V=d)=

= m2 + dn2. Let a,b be in A with b # 0 and such
that b dues not divide a. Then, by lemma 2.1, there

exists g in A such that

o;(p-a) <1.
Set

(l) ss e o @ C=%-q=s+t V—-d

Then ¢l(s+t y/-4) = 52 + t2d <1 and bc = r is

a remainder in the division of a by b. Let ry be

any other remainder in the division of a by b 1I.e.



there exists qq in A such that
a = bql + ry
with ¢(rl) < ¢(b). Set
(2) ..... c, = ;% = % - q;
From (1) and (2) we get .
c, = (g - ql) + C
=(q—ql)+s+t/—d.
= (x + 8) + (y + t) /-4
where g-q; = x +y Y-@ is in 32 |/-4d].
Then ¢l(Cl) < 1 implies that
(3) ..... . (x+s)2+d(y+t)2<l

There are only 4 possible solutions of (3) with x and

vy in Z , for example, if

s >0

the only possible solutions are

0; x =90, y=1; x =

-1,

y:

follows from this observation.

Case (ii) A = Z [l,

proof is similar to case (i).

.1_+_2£_-_§] w

ith 4d

and t < 0 then

x=0, y=0; x=-1,

1. Now the result

3, 7 or 11. The
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Theorem 2.2. Let A be a euclidean domain with respect

to

unit

(i

(i1)

1)

¢

such that ¢(a) = ¢(ua) for every a in A and every

u of A.

Let r be a remainder in a division by an element
b# 0of A. Let u be a unit of A such 1 =u
(mod b). Then ur is also a remainder in a division

by b. .

Let a,b be in A, b # 0 and such that a and b are
relatively primes. Let u be a unit of A and r be
a remainder in a division of a by b. Then ur is al
so a remainder in the division of a by b if and anly

if 1 = u (mod b).

PROOF: Let a,q be in A such that

a=bg+r

with ¢(r) < ¢ (b). Let u be a unit of A such that

1

U =bc. For some ¢C in A. Then r - ur = bc and

ol}
il

bg + r

Il

bg + bc + ru

bg + bec + ru

b(g + ¢) + ru

with ¢(ur) = ¢(xr) < ¢ (b).

Thus ur is also a remainder in a division by b.



(2) The if part follows from part (i). Now suppose
that

a=>bg+r

and a bg + ur

With ¢(xr) = ¢(ur) < ¢(b) .

Since r = a(mod b), r is prime to b and from

(l1-u) r =2 0(mod b), it follows that 1 = u(mod b).

COROLLARY 2.1. ILet A be a euclidean domain with res-

pect to a multiplicative algorithm ¢. Let a,b be in A
with b # 0 and so that b does not divide a. Let
g.c.d. (a,b) = d. Set a = ald, b=bld and let u be:

a unit of A and r be a remainder in the division of

a by b. Then ur is also a remainder in the division of

a by b if and only if 1 u (mod bl).
PROOF: Similar to part (2) of Theorem 2.2.

Now we give sufficient conditions for the existence of

an infinite number remainders.

THEOREM 2.3. Let A be a euclideaﬁ domain such that A%,

the group of units of A, is infinite and Aéﬂ) is finite
for all b # 0 in A. Then the number of remainders in

the division algorithm of A 1is always infinite.

PROOF: The set { u € A*: u = 1 (mod b)}
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*
= Kernel of the group homomorphism A* - ( {% is

infinite and whence the result follows from Theorem 2.2,

(1) .

COROLLARY 2.2. Let A be a euclidean ring of integers

of a number field such that the number of units of A is
infinite (this is always true except for the 5 cases of
Theorem 2.1). Then one always gets an infinite number

of remainders in A. In particular, one always gets an

infinite number of remainders in A if

(i) a=2¢g [/d] for 4 = 2,3,6,7,11,19

(1i) A

z [1, 1;/3] for 4 = 5,13,17,21,29,33,37,41,57,73
PROOF: Recall that for b # 0 in A,

# (A/.,) = norm (b)

Ab
and now apply Theorem 2.3.

COROLLARY 2.3. Let r > 2 be any integer. Let a and b

be any two integers such that r does not divide a + b /d

1 +/d
2

(mod 4). Then

or a + b.

according as d = 2,3 (mod 4) or 4 =1

(1) for d = 2,3,6,7,11,19
the diophantine equation

(4) .... (rx + a)2 - d(ry + b)2 = k



has an infinite number of solutions for some k in

Z such that |k| < 2 .

(ii) for 4 = 5,13,17,21,29,33,37,41,57,73

the diophantine equation
2 2
5 ..... (r(2x + y) - (2a+b))" - 4d (y + b)” = 4k

has an infinite number of solutions for some "k in Z
with |k| < 2.
Conversely, existence of solutions of (4) or (5) for any

r > 2, a,b in Z such that r does not divide a + b v/d

or a + b l—%—ig implies that 2 [/a] or z[1, - ; £ ]

is euclidean for the norm function.

PROOF: Existence of a solution of (4) or (5) is equiva-

lent to the euclideaness of Z [/a] or % [l,-lﬁ;iéi] .

Now the solutions of (4) are just the remainders in the
division of a + b /d by r and hence (4) has an infini-
te number of solutions by corollary 2.2. Similarly one

can reason for (5).

NOTE 2.1. (i) 1If the number of remaindrs in a euclidean

domain A 1is always infinite then necessarily A* is

infinite. To show this let P be a prime of A such

that remainders in any division by P are always units.
2 -

Now consider the division of P2+1bY¢>. Then P"+1 = u

(mod P) for an infinite number of units u of A.
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(ii) Let a =4+ 3./2 and b = 3. Then r; =1 and
r, = 4 + 3./2 are two remainders in the division of a

by b but r is not a unit in 2 [/7Z].
l/r2

Let B be a euclidean domain euclidean for the function
¢ such that ¢(a) + ¢(b) < ¢ (ab) for all a,b in B with
ab # 0. Let S be a multiplicatively closed saturated
subset of B such that S contains atleast oné prime

p of B. Then the ring A = {s"ta: s ¢ S, a € B} of
fractions of B with respect to S 1is euclidean for the
function ¢' defined as follows: write any x in A as

X = % a with s,t in S and a in B such that a is prime
to all elements of S. Set ¢'(x) = ¢(a). Notice that

a is uniquely determined upto units in B as it is a uni-

que factorisation domain.

THEOREM 3.1. The ring A 1is euclidean for algorithm ¢~

and one always gets an infinite number of remainders.

PROOF. Let x,y be in A with y # 0 such that y does not
s

divide x. We can write x = % a and y = El b for some
1
s,t, sl,t1 in S and a,b in B prime to all elements of

S. Let m > 0 be any integer. Then p™ and b are in

B and thus there exist q%l and r;l in B such that

m - - -
pa-—qmb4-rm

with r& # 0 and ¢(r;) < ¢(b).



Thus

. - sa _ t, sap Sy b N s

Eoptst oty t p"
=d, ¥+ r,
~ t. sqg” sr”
1 m m

where q = ——— , r_ =

m pm s, t m ¢ pm
and ¢7(r ) < ¢ (rp) < ¢(b) = ¢”(y). Thus A is eucli-

dean for ¢~.

Now we show that for a given m > 0 there exists n >m

such that r. # rn and thus the number of remainders in

A 1is always infinite. Suppose that r, = I for all
sr” sr”

n > m. Then ——% = ——% i.e r; = pn mr& for all n > m
tp tp

But then

¢(x7) + (n-m)¢(p) < 6" "x7) = ¢(rj) < ¢(b) for all n>m

which is a contradiction as ¢(b) is finite. 1In fact we
have proved that if m is the least integer such that

m ¢(p) > ¢(b) then {rkm } is an infinite set of

0 k>0

distinct remainder in a division of a by b.
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