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ON VECTOR LATTICE-VALUED MEASURES-~T

T.V. PANCHAPAGESAN AND SHIVAPPA VEERAPPA PALLED

INTRODUCTION: 1In [16] Wright attempts to characterise a weakly

og-distributive vector lattice V as one for which each V-valued
Baire measure on a compact Hausdorff space is reqular. But, there
is an error in the proof of this Theorem N in [;6] sincé he
tacitly assumes on pp.79-80 [16] that
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However K there is no hypothesis in Theorem N of Wright Euﬂ to
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demand \v/ z mOr te be finite and to lie in \/EHZ] since
n=1 r=1 -

{or} need not bhe psair-uvise disjoint. Consequently it remains

v valued Bailre measure on a compact Hausdorff

unsettled whether s
space is regular, whoo Voo is weallly o-distributive.

Also Wright attempts to characterise in [18] a weakly (o0,°)-
—-distributive vector lattice V as one for which each V-valued
Baire measure on a compact Hausdorff space can he extended to a
regular G—valuéd Borel measure. Put, again his proof of Lemmna 2.1.
in [18] is incorrect, as he tacitly assumes at the end of p. 280
DBJ that the sequence {L%} is increasing. But this need not
happen, though {Bn} is an increasing sequence., Thus, it remains
unsettled whether a V-valued Baire measure on a compact Hausdorff
space can be extended to a regular c—valued Borel measure, when

V is weakly (o, »)-distributive.



Following a method different from that of Wrignt we study iﬁ
[11] the regular Borel and weakly Borel extensions of a V\U{ =}
-valued Baire measure M, on a locally compact Hausdorff space
T, when vV is weakly (o0, ®)-distributive. There we introduceinﬁﬂl
growth conditions on “o such as ' po being dominated ' or \uo
being strongly dominated’and prove that every V-valued dominated
Baire measure M, ona compact Hausdorff space is reguléf when
V is weakly o-distritutive; every VW{«}- valued strongly dominated
Baire measure B, onoa locally compact Hausdorff space T extends

N
uniquely to regular VU{«}-valued Borel and weakly Borel measures

on T , when V is weakly (0, »)-distributive.

In Ell], by employv ng the theory of V-valued contents and the

theory of vector lattice valued outer measures we also prove that

a V-valued finiie e peasure I, on T 1is dominated if and only
if it is stiongly wominot=d, when V 1is weakly (0, »)-distributive.
Thus the pre: .. [ .iper prepares the background for [1]], the

background being the study of vector lattice-valued outer measures

and the carathéodory extension of vector lattice-valued measures .

Besides providing & .ow tool to tackle the problem of regular Borel
extension of V-valued Baire measures, the study here is interesting
in itself as it unifies the Carathéodory extension procedure in Liw
known special cases of numerical and spectral measures in Banach

spaces [10]. Here we assume that V is weakly (o,«)-distributive



and prove that a bounded V-valued or a VU{strict.«x}-valued (See
Definitions 4.3 and 4.9) measure WU on a ring R of sets admits

the Carathéodory extension.

However, in this connection we may recall here the work of
Fremlin [3], Mathes [8]and Wright [16,17] in the extension problem
of V-valued measures. They have proved that the weaker hypothesis
of weak o-distributivity of the vector lattice V w0u1d.itself
ensure the solution of the extension problem of V-valued measures.
But the extended measure in their work is not required to be defined
and countably subadditive on H{(R), the hereditary o-ring generated
by R , as is required in the Carathéodory extension procedure .
Thus it is not known whether the Carathéodory extension is still
possible when V 1is just weakly o-distributive and not veakly (0,®) -~
~distributive.

In §1, we give the basic definitons and known results from
El4,15,16,]8], whicr are needad in the sequel. In §2, the notion
of an cuter measure is extended to vector latticesvalued set functions

and some basic results of such oyuter measures are obtaind.

As a prelimicary to the Carathéodory extension procedure of
vector lattice-valued measures, we develop in §3 the theory of
induced vector lattice-valued inner measures. In §4, we introduce
the notion of ViJ{strict.x»}-valued measures. Any bounded V-valued
measure is V{U{strict.»}-valued. An extended real valued measure is

VU{strict.w}-valued, when V=R . We prove that when V is weakly



(0, ©)~distributive, every VU{strict.x}-valued measure on a rind
(R admits the Carathéodory extension. The classical Carathéodory
extension of extended real valued measures follows as a particular
case of this theorem. §5 is devoted to the study of measurable
covers and cuter regularity of VU{strict.»}-valued measures to
obtain the o-ring of all u*—measurable sets as the comple‘tion of
S((R), the o-ring generated by R . The last section deals with
applications to positive operator valued measures in Banach spaces
and the Carathéodory extension theorem of Do} for spectral measures

in Banach spaces is obtained as a particular case of the general

situation studied in §4 .

1. PRELIMINARIES. Thioughout this paper V will denote a boundedly

o~complete vector lattice with 3 its Dedekind completion.

V+= x € V: x > 0O}, We adjoin an okject + « not in V  and extend
the partial ordering and addition operation of V to VU{»} in
the obvious way. The supremum of any unbounded oollection of elements

. + Nt
in V or V 1is taken to be o .

DEFINITION 1.1. A V{J{x}-valued measure is a map u: R~> VU{x},

where @ is a ring of subsets of a set T such tlat

(i) wu(E) > 0 for E in R ;

(ii) wu() =0,
o *® n

(1ii) w(J E))= \/ I u(E.,) , where {E,} is a sequence of
1 n=1l i=1 + ‘ 1

[+
pairwise disjoint sets in R with \.}Ei e R.
1



For each positive element h in V, let

V[h] = {bev : -rh < Db < rh for some positive r & #}
where /K denotes the real line.

THEOREM 1.2. (Stone-Krein-Kakutani-Yosida) There exists a compact

Hausdorff space S such that V[h] is vector lattice isomophic to
C(S), the algebra of all real valued continous functions Qn S.When

V is boundedly compleie (o-complete) then so is V[h], V[h] is a
Banach space in the orer unit norm, the isomorphism is also
isometric and C(S) is a Stone algebrea (o-Stone algebra) in the
sense that S is extremal iy disconnected (S is totally disconnected
with the property that th  closure of every countable union of clopen

subsets of S is open)

For details one mav refer to Falison [5] andVulikh [13].
We shai!. use the e Stone . oobra and o-Stone algebra in the

above sense.

From the result: of Wright [18] one ~an define a weakly (o, «)-
-distributive vector Jattice as buclow.
DEFINITION 1.3.. A ¢ ione algebra C(E) is said to be weakly (o, ®)-

~distributive if and only if each meagre subset of 5 is nowhere dense.
Consequently, a boundedly o-complete vector lattice V dis said to be
weakly (o, w)-distributive if for h > 0 in V, V[h] is weakly (o, «)-
distributive,

PROPOSITION 1.4. A boundedly o-complete vector lattice V 1is weakly

"~
(g, ©)-distributive if and only if V is so.




2. Vector lattice-valued outer measures, The notion of
an outer measure is extended here to V-valued set functions and

some basic results of such V-valued outer measures are obtained.

We gefer to Halmos [4] for definitions of (i) ring of sets
(ii) o-ring of sets (iii) hereditary o-ring of sets(iv) algelra
or field of sets (V) S(&), the oc-ring generated by a ring R of
sets and (vi) H(®R), the hereditary o-ring generated by a ring

6& of sets.

DEFINITION 2.1. A set function u* on a hereditary o-ring H is

called a VU{=}-valied cuter measure if it satisfies the following

conditions:
A . . . . +
(1) its range is cor’:ined in V \J{x}

*
(ii) it is monotone (i.e. u (E) > u* (F) if E 2 F, E and FeH);

. oo . [¢8] n S \
(iii) it is countably suvadditive {i.e. p*( v ]:n) < \/ row k),
1 n=1 i=1

E. e H, i = 1,2...)3

(iv) w @) =0 .

DEFINITION 2.2. TLet u* be a VU {>}-valued outer measure cn a

hereditary o-ring H, M“* be the collaction of all sets E in HE

for which
* " *
U oAy = u" (ANE) + p (ANE)

*
holds for every A in H. The members of MU* are called p -

~-measurable sets,.



REMARK., A set E in H is in Mu* if and only if
u*(2) > u*(AME) + p" (ANE)
for every A in H,

DEFINITION 2.3. A V\J{»}-valued measure u on a o0-ring S is

said to be complete if whenever E € S and u(E)=0, then every
')
suhset F of E 1is in S. .

LEMMA 2.4. Let u* he a VAJ{x}-valued ocuter measure on a hereditary

g-ring H. Then Mu* is a ring and u* is finitely additive on

Mu* . Further, for A € Hand E,F € MU* with Ef\F = ¢ we have

W (aEUR) = v ane + u* (ANF) . (1)

PROOF, The proof is sirilar to that of T heorem A, §ll of Halmos

[4] -

LFMMA 2.5. Under the hypothesgis »f Lemma 2.4, MU* is a o-ring.

If A € B and if {F“) is a disjoint segquence of sets in Mu* with
i

0 n ’
v@ane) = N/ @ owr aNE) . (2)
n=1 i=1

[+ o]
\JE = E, then
1 n ;

Consequently, every set of outer measure zero belongs to MU* and

. 'S .
the set function S defined for E in Mu* by u(z) = p*(E) is

a complete V \J{x}-valued measure on M, .

- PROOF. To prove (2) observe that by equation (1) of Lemma 2.4, for

each n, we have

[ e e

n
W AN EY = W (ANE))
1 i=1

¢ et A A bt st

el et e e



n
for every A in H and that \J By € Mu* . Hence for each n,
i=1

n n

W) = ut AN CUED)) T\ JE)
i=1 ~ i=1

> who(anE) + et (2N UE) .

1 i=1

™3

i

Now taking the supremum on both sides of the above inequality as

.

n varies from lto«, we obtain

[e0]

*© n
a2 Vo wranE) +ut @\ UE)
n=1 i=1 i=1

so that

W a) z W AUV ED)) + i@\ UE)
i . i=1

as u* is countably subadditive. Replacing A by ANE in the above

inequality, we obtain (2). The rest of the lemma follows on simtlar
lines as the numerical analogues in Theorems A,B and C, § 11 of
Halmos [41.

3.- The inne: woasure H,. induced by a V \J{x)-valued neasure
Y. In this section == a preliminary to the Carathéodory extensiocn

procedure of vector lattice-valued measures, we develop the tneory
of vector lattice-vilued inner neasures induced by vector lattice -

-valued measures.

We fix the following notaticns an the sequel, G{ is a ring of
Subsets of a set X, p is a VUU{x|-valued measure on (R where V is
[¢3]
a boundedly o-complete vector lattice and R ={E €X: E= \{E Ee®R 1.
n

We say that u(E) < » or u(E) is finite if u(E) e V.



LEMA3.1. Let p be a V \J{=}-valued measure on R . If {En}

is an increasing (decreasing) sequence of sets in R with

[es]
C}En £ G{ (r\En e R and u(En) < » for some n) then
1 1

WVE) = W) G (s) =AuE)).

PROQOF. The statement for increasing seguence is an easy consequence
of the countable additivity of p . In the decreasing case the

result follows from Lemma 3.1. of Wright [14] and Theorem III.2.2

of vulikh [13] .

[2¢] [e 2]
LEMMA 3.2. Let A be in cRG with a = \J E = UFn, where {En}
1 1

and {Fn} are increasing soquences of members of Q . Then

VuiE) = VuE)
1 1
if p is a vUi{w}-valued measure on (& .

© 0
=T 3
PROOF. Let A “nml}r . Then {An:k}nzland {An'k}k:l are

increasing sequences of members of (R with their unién Fk and En
respectively. Hence by Lemma 3.1.
[ oo
w(E ) = y wlay yd and wFD) = N ow@ ). (3)
k=1 n=1
Thus
R o
u(E ) =
Y ouE) =V Voua a0 )

n=1l x=1
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Tf A4 p(En) = h £ V, then trte equation (4) implies
n=1

that h > u(An k) for every n,k. Since V 1is boundedly
, [o0]
o-complete, this implies \/ u(An k) exists in V for each Kk
n=1 .

and hence by Threorem I.6.1. of Vulikh[l3]

AV (A ) = Vv WV ua ) .
k=1 n=1 n,k n=1 k=1 n, Kk
This eguality and (3) imply that \y/ u(En) = ‘\/ u(Fk) .
n=1 k=1
1T£ ;2{ u(En) = o , then necessarily gzgu(Fk) = o lest the

[ o]

above argument will iqply that \\/ u(En) < ® , a contradiction.
n=1

This proves the lemma.

Tre ..bove lemnma nermits us to make the following definition.

DEFINITION 3.3. ¢ 7~ be in @R, and u be a ViHx}-valued

measure on the ring 6{ . Then the inner measure u, induced bhv

y 1s defined on GQU Ly

be(s) = W(E)
1

where {En} is an increasing sequence of members of R with \JI%:A.
’ 1

[ee]
Note that if 2 is in (RO , Ly definition of R, , &= \UT ,

Y 'r
n o
\UF. , we see that A = \JE_ and {E_} is
) 1 n n

F € R. Taking I i
i=1

n n
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an increasing sequence ¢f memkers of dz . Thus u, has 6{0 &

as its domain.

LEMMA 3.4. u,|@R = u . Further u, is finitely additive,monotone

and V' \J{»}-valued on R, -

PROOF. The first statement follow: from the definition o 1y,
and Lemma 3.2. The monotoneity’anz tlie non-negativeness Hf  the

range of 1y, are evide:t. We shal'l ncw prove the finite additivity
of wu, .

o

[o0]
Let A,B be in R” with AfN:=¢ . If A = UEn and B= UFn'
’ 1 1

where {En} and {Fn} are increasing sequences of memkers of ® , then

obvictisly by Definition 3.3

W, (A\UB) = :j; u (FE_UF),

If either u,(a) = « =2~ y, (B) = «» , then by monotoneity of u, ,
p, (AYE) = « = u_(A) + . (B). Se let u, (A) and u,(B) be finite.
Let u,(A) + u,(B) = h ¢V .

Then V[hJ is boundedly o-complate and V[h] = C(S), a
g~Stone algebra by Theorem 1.2. Then as p 1is additive on 6? and

as Enr\Frl = ¢ for n=1,2,...3

e (AVB) = }/u(EnUFn) = \l/(u(En) +u(F)) < ho.
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Thus u, (AUB) € v[h] = C(S). Let us identify Vv[h] with C(S).

By the dual result of Lemma ¥ of Wright fi@] and by the fact
that finite union of o-meagre sets is o-meagre, tlere exists a

o-meagre subset M of S such that for s € £\ M

e (AUB) (s) sup {u(E)) + u(F )} (s)

n .

= lim {u(En) + u(Fn)} (s)

= lim u(En)(s) + lim U(Fn)(S)
n n

= sup u(En) (s) + sup u(F ) (s)
n n n

= u, (B) (s) + u,(B) (s),

Since W, (2UB), 1, (A)gu, (1) are in C(S) and differ on a

meagre subset of 5, 1, (AUB) = 1, (&) + u,(B) by Theorem 3.4,

c hapter 6 of Kelley [55] . Thus u, is additive on OQO and hence

finitely additive on Glo by finite induction.

LEMMA 3.5. If'{An} is an increasing sequence of memrers in 620

with \}AL = A, then A € Gz and
1 B a

My (A) =VU*(A ) .

i thar

RN S B

L A i it B 10, A MBS el N

Bt el it

T
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[e o}
PROOF. For each n, let Ao = \U £ ., {E ,}° keing an
—_——— n g n,J n,J._
j=1 =1
n
increasing sequence of members of 62 . If En = \_} IH i
i,j=1 7'

then BnQ.A and {B_} is, an increasing sequence of
memhers of ?R. with R = \UB. . Hence A 1is in d{ .
ll’l g

Now, by Definition 3.3. and Lemma 3.4, we have

He (B) =V u(B) < NV, (a) < u,(a) .
1 1

LFMMA 3.6 My 1s countably subadditive on dicy .

PROOF. Let {An} be a sequence of memhers of 610 with their

o0
o

union A. Let An = ~_1En,J , where {En’j}j=1 is an increasing
n
sequence of members in 6{ . Let B_. =\ E. .. Then B_ ¢ 6{
n ir3=1 i,] n
and {Bn} is an increasing sequence with
\ljf‘,n = Ll,'t".n = A .
Hence A 1is in d?c).
Then
o o n
ue (@) = VM) = Vel g ;)
1 n=1 i,j=1 '
o) n n
=V I u(UE )
n=1 i=1 j=1 -
o n
=V I @),
n=1 i=}
@ L n
Hence 1y, ( \)An) < Ioouk(ay) .
1 n=1 i=1

SN ek e S

AT A, R

ik

5 L AL T R e K b i LR R
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4.~ Carathéodory extension of vector lattice-valued
measures. In this section we prove mainly that the Carathéodory
extension procedure is valid for bounded V-valued and suitahly
restricted V{{~}-valued measures on a ringa of subsets of X,
when V is a weakly (g »)-distributive vector lattice. The
classical cdpathéodory extension of extended real valued measures

follows as aparticular case of this result.

dlwill denote a ring of sets, and S(&{) (H@R)) will he

thte o-ring (hereditary 0-ring) generated hy GR in the secquel.

DEFINITION 4.1. Let p ke a V{{x}-valued measure on ® and ¥,
on 620 be the inner mcasure induced by 1y . The set function J

on H(®) induced ky u is defined by

W) = NGEF) 2 2 €F e R
9
»N
\%

for A e H(R), vheie is the Dedekind completion of V.

LEMMA 4.2, TIf u is a Vi \Hxl-valued measure on d{ , then u 1is

Ay
a V \J{w}-valued set function on F{QR). u*!G{O = and w* is
monotone,

PROQOF. The first statement follows from Lemma 3.4 and Definition

4.1. The restriction of u* to dle- coincides with u, by monotoneitv

of u, . Monotoneity of u* is obvicus from Definition 4.1.

DEFINITION 4.3. A V~valued measure U on d{ is said to be hounded

+ )
if there exists a h € V such that p(E)< h for every F :unG{.

Then we say U 1is bounded by h.
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Note that a V-valued measure U on an algebra & of

subsets of a set X 1s necessarily bounded, by u(X).

LEMM2 4.4, Let uyu Lke a bkounded V-valued measure on (R , with

p(E) < b for all E GR . Then ui(F) < h for all F E&G .
Consequently, p*(A) < h for all A e B(R), where u* is the

set function on H(@®) induced by u .

.

0
PROOF, If F e&o , then F = liEn , {En} an .increasing sequence

of members of Q . Thus y (F) =Vu (En)i h. The last part follows
1

from the firs part and Definition 4.1.

LEMMA 4.5. (Countable subadditivity lemma) If V is a weakly

(0, ) -distributive vector lattice and if p* is the set function
\

-induced by a V\J{=}-valued measure u on the ring R of sets\‘;_ then

™o

when u*(UAi) £ V , where Ai ¢ H(&), 1 = 1,2, ccccee
i=1

PROOF. If the right hand side of (5) is infinity, trivially

* N
1p(zzxi)—hle:v.

s

inequality (5) hLolds. Hence let \/
n=1 i

By hypothesis that u™( \J A;) € V and by Definition 4.1,
i=1

n [~}
there exists an FO £ &J such thrat p.,;(FO) e V and i\_}lAi E.FO. Let

u*(Fo) = h2. Let h = Plv h, in V . Tken as V 1is weakly (0,o)-
A »
~distributive, V'and V [h] are weakly (o, »)-distributive by Proposition

n
1.4. and Definition 1.3. Further, by Theorem 1.2, V [bJ= ¢(s), a
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weakly (o, «)-distributive Stone algebra. In the proof we chall

~
hereafter identify V [h]with c(s).

From Definition 4.1.,

u () = ls{u*(l?): A, &€F e®R ). (6)

For 2, QF e®_, FAT e R and u, (FOF ) < u, ().

Hence  u*(a;) < /”\{u*(Fr\FO) : A,CF e®R !
v
< I“\{u* (F) : A, &F e(RO}
v
= u ()

1

by (6). Thus for each i,

wWe(a,) = /:‘{“*(FnFo) : ALQF eaj}
e i C
¢

= Nin,®) : 2 ¢cFre®. , F GV} (6)
0 L = 0] (o]

L

so that u*(Aj) is realized as the infimum of a decreasing net of

N
elements in \/@Q] = C{8) , for i=1.,2,..... « Fence oy Lemma 1.1.

of Wright [P#], there exists a meagre set Mi S S such that

W¥(a;) (s) = inf (U, (F) (s) = A, QF e®, ., F GQF_}

union of meagre sets is meagre, M = \J My is meagre and for s € S\M

for s € S \.Mi . This holds for i= 1,2,.....Since countakle
=1

oo

1
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and for 1 =1,2,....,
u*(a;) (s) = inf {u,(F) (s): A;j€F e R, . FEF_} .

A . '
Since V [hT= C(S) is weakly (0 «)-distributive, by Cefinition 1,3
the meagre set M 1is nowhere dense in S , so that S\-bfl' is open
and dense in S. Let s € S\M . Then there exists a clopen

neighbourhood ¥ of £, such that K _c_S\ﬁ . Then the decreasingb

net {u,(Flx, : A, & FeR, . FCF_} descends pointiisi - on the

compact set S to u*(.l\i))(K where Xy is the c’haracteristic"func!:ion'

of K and hence by Dini® Theorem the convergence is uniform., Hence
given € > 0, for each positive integer.i, there exists an Fi € ad'

FOQ Fi 2 Ai so that u*(Fi) € C(S) such that
*
€ -
MO(A) X + éi 2 Ha (Fy)xp .

Eence

so that
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e 3

u*(Ai) < h, \/
1 n=1 i

s N/
n=1

M3

u*(Ai) € C(S) and hence by the

i 1

dual result of Corollary on p.109 of Wright [14] »

(V/

n=1 1i

™3

*
(A xg = n\:u Eout(ax,) -

1 i=1

Using this in inequality (7), we have

) n o0 n
(N & A Ix, + e > I p*(F.)x
n=1 i=1 17K ::{(i=l i Xx)
®© n
>V G CUF D x) (8)
n=1 1

n
is finitely sukadditive by Lemma 3.6. Since \YF

as My o
n n

U, (\JF.) < ue (F ) so that u*(LJIfi) € C(S). Also by Lemma 3.5.
i=1 i=1

e oo ’ w0
(\JF.) = \/ ' !gJE‘) < u*(b ) and hence p, ((JF.) € C(S).
i=1 * n=1 i=1 i=1 *t

Again by the dual result of Corollary on p.10S of Wright [l{]

o0 [ee] n
Wi (MJF )X (V u (JF )X
1 i=1

n=1

. n
V (u, \!F Yxp) -

n=1
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Using this equality in (8), we obtain

(V

n=1 1

it ™3

*
B (A )X, + € > u  (\JF,)x
1 i K i=ll K

jv

o]
*
u (}ilAi)xK .

Since € 1is arbitrary, the above inequality implies that

(V

n=1 i

M3

* *
WEADIX 2 (.E?Ai)xx .
1 i=1

Specialising this inequality at sg,

( W e s) 2 wr(\Jay (sy) .

<:8
fl m3

fl
et

n i=1
*
lu (Ai)

[+]
Since sy is arbitrary in the dense set S\M and since \/
n=1 i

Hes

and p*( UA.) are in 7(8), the above inequality implies that
i=1

i)

-] n (<)
VoL owta) 2z e (\Ua
1

n=1 i=1 i=

A
in C(sS} and hence in V .

This completes the proof of the 1l emma.

DEFINITION 4.6. Of {gn} is a sequénce of functions in a Stone

QQ
algebra C(S), we say that V8n= © if there exists no g e C(S)
n=1



[va)

such that g > gn for every n. VWe say that \/grl is strictly
n=1

infinity (strict.« in notation) if for eact non-null clopen
jee]

subset K of £ WV (gnxy) = », wrere Xg denotes thte craracteristic
n=1 :

function of VF.

We ohserve that the supremum of any unhounded sequence

of non-negative constant functions in C(S) is strict « in the above

sense .

DEFINITION 4.7. 1let C(8) he a Stone algebra. A C(S)\J{=}-valued

measure p on (R of sets is said to te strictly infinity C(S) -
~-valued (C(8)\J (strict.=)-valued in notation) if for each increasing

seguence {Fn} of sets in @ witkh p(En) e C(8) and {u(En)} not

rounded abkove, ‘v/u(E%) = gtrict.o, in thre sense of Definition 4.6.
1 )

If u is a. extended real valued measure on (R then okserve

that Y 1is strictly infinity valued.

LEMI12 4.8, If i is a C(SMfstrict.«}-valued measure on a ring (R

of sets, where C(S) is a weakly (0, «»)-distributive Stone algelra ,

*
the set function yu induced by u 1is countably subadditive on
E(R).

o0
PROOF. Let {Ai} be a sequence of sets in H (R), with AZ\u’Ai .
1

If u*(A) is finite, then by Lemma 4.5,

n
TREC SRR VAR I A VO I

faw)
=

3




21—

© n
Thus it suffices to prove that if p*(a)= », then V b} u*(Ai) = o ,
n=1 i=1
) n
If possible, let \{ izl u*(A;) = hy € C(S) when u*(a) = = .
n: =

Since
*
W) = N\ ® A eF e®R )
c(s)
+ * . . . . . ~
and since u*(a;) is finite, thepe exists G, ¢ R, such that

Ai SGi and p*(Gi) € C(S). As discussed in the beginning of the

proof of Lemma 4.5, it can be shown that for i =1,2,....

wra) = NP 3, &Fre®, . F oyl

c(8)

so that each memker in the infimum collection is in C{(S). Hence
by Lemma 1.1. of Wright flﬂ there exists a meagre set Mi E S

such that for s ¢ S\Mi

(A (s) = dinf {u,(F) (s) : A, EF ¢ QO,FSGi},

Hence ™ = UMi is meagre and for s € S\ M and for
‘ i=1
i=1,2,...
* - 3 .
u (Ai) (s) inf {p,(F) (s) : AiC_.F ed{o, FSGi},
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et s, € S\M . Then there is a cloven reightrourhood ¥ of £,
such that kK & S\NM . Ey an argument similar to the derivation
of inequality (7), given € > 0, there exist sets F, € 6{0 with
A, QF, S G, such that

*

£
WA X, 7 2w (FyX

4 5 X
and hence
S n o n
Vo o*a)x) +e 2N (2 He () Xy
n=1 i=] n=1 i=1
>N e (U FOx) -
n=1 i

By the same argument as in the derivation of inequality (8) we

have
o n oo n
(N 7w )y, + \/(u* UFPIx,) - (9
n=1 i~ n=1 i=1
o] o n [e]
By Lemma 3.5., 1, (UJF ) = N 1y (\J'P ) . but JF_ D 2
n n -
1 n=1 i=1 1
(e )
and since p*(a) = » , by Definition 4.1., lu.(\JFn) = o
n 1 0o
Let U F,. =L . Then I ¢ §  and hence let 1. = \JF_ .,
i=1 n n o n i=1 n,J
where {E }m is an increasina sequence of memhers of xR .
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n
Then Bn = U Ei § is an increasing sequence of sets in @ ,
i3=1 >

with \lJBn= \lJLn= \lJFn . Thus

o oC

\1/ My (B))

8
i
=
*
C
o)
I

Since {Bi} is an increasing sequence of sets in @& . Since

e [R =0, \Vu(B) = .
1

n n
wB ) =u(\Jr ) < u(UL) .
i3=1 3 i=1
= u, (L)
n
= u*(UFl)
1
n
< Z u*(Fi) e C(8)
1

since each 1, (F;) ¢ C(S). Thus {p } is an increasing sequence
of sets in&'with u(Bp) e C(S) and {H(Bn)}aO is not bounded atove.

1
This implies by the hypothesis on u that

n.___vl(u (Bn)XI() = ©o.
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But n
MR )X, S gl %}Fi)xK

so that

(o] n oo
(, (VDFIx,) 2 VB )x,) = ».
n=1 * i=1 1 K 1 n oK

-

This contradicts inequality (9) and hence the lemma.

DEFINITION 4.9, Let u be a V\J{»}-valued measure on a ring R

of sets. We say that u is V WU{strict.x}-valued on (R, if there
exists an h € V' such that p is VvV [h] U{strict.=}-valued and

that for E ¢ R with u(E) € Vv, u(E) is in v[h] .

REMARK, Any bounded V-valued measure § oOn da is vacuously

VUU{strict.»}-valued on R .

THEOREM 4.10. (Outer measure theorem) Let V bke a weakly (o, «)-

-distributive vecior 'z*tice and let 1 ke a VUf{strict.x}-valued
measure on a ring (R of subsets of a set X. Then the set funct: n
p* on H(R) induced by u is a v \J {#}-valued outer measu:¢ G
H(R) and is an extension of uw . If u is bhounded by h, then

u*(A) < h for all A e H (R) .

PROOF, 1In view of Lemmas4.2. 3.4. and 4.4., it suffices to chow

that p* is countably subadditive. But by hypotlesis, there exists

an hle V+ such that ¢ is V [hJLJ{strict.w}—valued and V [h}] is a
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weakly (o,=)-distrikutive Stone algebra. Then by Lemma 4.8 u*
is countably subadditive on H(®R). Thus if {A;} is a sequence

‘o"”f!'_,,‘s,.ets in H(R), then

o [e¢] n co n
u* (\J A) < N I p*(l\i) =N I u*(Ai)
i=1 - n=] i=1 n=1 i=1
oy ¢

A

so that p* is a VWU{wx}-valued outer measure on H(®R) .

DEFINITION 4.11. When the set function u* induced by u bhecomes
a“jj;V U{?»}—valued outer measure on H(®R), p* will b:evc’_"alled the

‘outer measure induced by u.

LEMMA 4.12. Let u ‘o a ViJ{strict.v}-valued measure on a ring

d{ of subsets of a set X and vy be a weakly (o, ®«)-distributive

vector lattice. Then the set function u* induced by u 1is a

”~

V. He}l-valued outer measure on (M) and M « 1is a o-ring containing
A W

s(a ), the o-ring generated Ly R .

~

PROQF. p* is a Vvl {w}-valued outer measure on H(®) hy Theorem
4,10, and M % is a o-ring by Lemma 2.5. Thus the lemma follows

Cif ;We prove that R € M,

For this, let E e® and A ¢ H(@®). Then

w*(a) = lu, (™ : 2 &€F ¢ R )

A
\'4

il
> =

(L, {(FAE)U(F\E)}, A€ F c R}, (10)

<
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since Ee@ and F ¢ R, . FMAE and F\FE are in ® , and

hence by Lemma 3.4., (10) can be rewritten as

p¥(A) = A {u, (FAVE) + u, (FNE) : AQF e R}
v
2 A (FAB): A GFe®R_} + .
v
A {u, (FNE): A gF e R}, (11)
\Y

But by definition of u* .

A tu (FNE): ACF e R _} 2" ANE)
v

and
A (i, (FNE):a €F ¢ ® ) 2w (AN E),
v

Using these inequalities in (11) we obtain

pra) > u* @A NE) + 0¥ @aNE .
Since u* is subadditive, the reverse inequality holds and E ¢ MU*

Thus R C Mu* .

This completes the proof of the lemma.

REMARK, The notion of a o-finite V\{x}-valued measure can
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be introduced here and it can he shown that in Lemma: 4.12, u* is

o-finite if u 1is o-finite.

LEMMA 4.13. ILet p be a VUf{strict. »}-valued measure on ® and

let V be a weakly (o, »)-distrihutive vector lattice. Then the outer
measure u* induced by p is a complete V \UJ{x}-valued measure

on M“* extending M to Mu* and S((R). If u is bounded by h

i

in V then 1 u* | g (R) is further V-valued and bounded by h.

The extension [ = u* [§(®R) of u to S(CR) is unique when 1y is
o-finite.

PROOF. By Theorem 4.10 aad Lemma 2.5, u* is a complete VU{=}-
~valued measure on MU* . The uniqueness of the extension § of
U  to S(d{), when uy 1s bounded, or when p is o-finite follows

from an argument analogous to the numerical case (proof of Theorem

-

A, %13 of ialmos (4 }}due to the availability of Lemma 3.1. When

*

W 1is bounded by b in V., p* and §I are bounded by h, by Theoremli, 1.

Finally, we have to prove that the range of u* on 5(01)15

contained in V if ;1 is bounded by . Let ¢ be the collection of

all sets A in M“* , for which u* (a) e v . R € "k . In view of

theorem R, §6 of Halmos [{], it suffices to show that 1% is a
monotone class. Since u 1is bounded by h, u*(2) < h for everv

Ao M x by Theorem 4.10. Let {En} be a monotone equence of sets in

I

A

* .
Then as p  1is a V-valued measure on MU* , by Lemma 3.1.
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p* (WE) =V u*(E) (if {E_} is increasing)
T 1 n n
and
u* (MA\E) = A u*(E_ ) (if {E_} is decreasing),
p D 1 n n

Consequently, as V 1is boundedly o-complete and 0 < u*(lj:n)f_hg v
oo ' o]

for all n, we obtain that ™ (\J En) € V and p ((\En) € V. Thus B
1 1

is a monotone class and hence p* is V-valued on S(R) .

Thus in the foregoing lemmas of this section we have proved

the following theorem.

THEOREM 4.14. (Carathéodory extension theorem) Let u be a

VU{strict.»}-valued measure on a ring a of subsets of a set X
and let V  be a weaklv (0, »w)-distributive vector lattice, with

& its Dedekird completion. Then u* , the set functiocn induced by
U is a \/}U{w}-—valueu‘ cuter measura and Mu* is a v-ring contuining
3(6{). Further, p* is a complete \/}U{m}—valued measure on MU*
and the restriction 1 of pu* to §IR) is a \;u{oo}-valued measure
ex tending u th((R). If uw is further o-finite on R, so is p*
on H(R) and § = u” !s (R) is & o-finite \,}U{w}-vaxlued measure
extending uniquely u to S(G{). If py 1is a V-valued measure
bounded by h on (R, then @ = p ]5 (R) 1is a V-valued measurc

extending uniquely u to S(&) and is also hounded by h.
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REMARK. Since “\ is a weakly (0, »)-distributive Stone algebra
C(S), where S 1is a singleton with discrete topolegy and since
any extended real valued measure 1is l'R U{strict.OO}—Valued, the
above theorem includes the classical caratbhéodory extension

theorem of numerical measures as a particular case.

.

5.- Completion and outer regularity of vector lattice-
- valued measures. '‘throughout this section V will denote a

weakly (o, »)-distributive vector lattice.

Let u be a VU{ }-valued measure on a o-ring s . If
~

S: {EVUN: E€ S, N & subset of a set in s of p-measure zerol

r~ ~ - ~
then s is a o-ring. If u is defined on § by u (EUN)=u(E),

L4

(and . . . o~ i
then p 1is a complete VWU {x}-valued measure on § . u 1is called
o~
the completion of u and © i called the completion of S
In this scection we obtairn a sufficient condition to obtain
Lo ™ ] o
Mu* as S(Ry whe > u is a o-finite V\U{strict.»}-valued measure

on a ring R of subsets of a set X. This result can ke comparcd

with the numerical analogue.

DEFINITION 5.1, Lct u be a VMVistrict.v}-valued measure on

a ring a, of subsets of a set X, where V is a weakly (0, ©)-
~-distributive vector lattice and let u* be the outer measure on

H{®R.) induced by u , 'hen u is said to bhe outer regular, if for
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each set E in H(R ), ttere is a set. F in §(R) such that

(1) EQF ;

nd (ii) if G e S (R) with G EF NE, then ¥ (G) = 0

no(F)

i

(iii) w*(E)

whepe 1§ = u*[ S (R)

A set F in % (R) satisfying conditions (i) and(ii)

above is called a measurable cover of E .

THEOREM 5.2. Let V be a weakly (o, «)-distributive vector

lattice satisfying the countable chain condition. If uy 1is a
o-finite V \U{strict.=’-valued measure on a ring ® of subsets of

a set X, then y 1is outer regular.

PROOF. By hypothesis —-hepre is an h € V such that up(E) ¢ V[h]
if E e@,and H(E) « « and pu 1is \A/[h]U(strict.OO)—valued. Let
Ae H (R) .

Case 1. Let ' (A) < o . Then clearlv from the definition
ot u* it follows that p*(a) € }[}J = V[}'IJ since \A/= V as V
satisfis the countahle chain condition. Also the finiteness of

u*(A) implies that there is a set Bo in m‘o with

2B, u(B) eV [n].

I'4
Then as in the derivation of (6) we have

() = Mu,(B): A gD eao . B GBI,

v[n]
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As V satisfies the countable chain condition by Theorem

v 1.2.1 of Vulikh [13]’

* - 1. .
B¥(A) A Luer): 2eB e R, B g BJ, (12)
v [h]
n
Let F = if:\lBi . Then F_ 2A, F ¢ Ro , {F_ } is a decreasing
sequence and u*(F)l) u*(Fn) < u*(BO) < o« , for each n. Let F= {\Fn.
: 1

Then F ¢ 5 (R) av? FQ A. By Lemma 3.1 and by the monotoneity of

*

VR
WR(A) < wT(F) = 0 (F) = A B(F ) < A uu(B) = u¥(a),
1 : 1
Thus

H(F) = u™(A) < p’ %) =51 (FG) =1 (F) -3 (G) , and bhenc.

fE{3) = 0. Thus 1 ‘¢ a measurablae cover of A.
Case 2. Lt p*{A) = o, Since W 1is o-finite on & , by the
B * . o . - .
remark under Lengus .17, U is o-tinite on H{MR). i'ence thero
exists a sequence {Ai} of sets in H(R) with
(e o]
) * . -
AQUAi,u (Aj) < o for 1 9= 1,2, ...,
1 .
Therefore bty case 1, there exists a measurahle cover Fi 1 Sw
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for each A,. Let F = W F, . Then F ¢ S (R) and u* (F) = =,

If G e §(R) with G & F\A, then

G(\Fi e SI®R) and GNF, Q F,NAECF \ A

=] i

o]

[o o] [oe] n
so that H(GNF;) = 0. Then (c) = i(UGAF,) </ I H(GAF,)=0.
1 =

Thus F is a measurable cover of A and u(F) = u*(A) = o

This completes the proof of the theorem.

PROPOSITION 5.3. Let V Dbe a weakly (o, »)-distributive vector

lattice. If u is a Vyl{strict. «»}-valued measure on f{ with u*

its induced cuter measvre on H(®R ), then the following hcld.

(i) If E € H(R) with Fl and F2 as measurable covers then

ﬂ(E‘1 &HF,) =0

(ii) If wp is ouyter r.gular, then p*(E) = p(F) for every measurable
cover F of L.
(iii) Further if VvV satisfies the countable chain conditior and M

is g-finite, thon
u*(E) = § (F) for every measurable cover ¥ of E.

PROOF. (i) follows by an argument similar to the numeric: 1 anlogue
in Halmos Eﬂ. (ii) follows from (i) and (iii) fol ows fraom

Theorem 5.4 and (ii) of the present proposition.
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We state and prove the following main theorem of this section.

THEOREM 5.4. Let V ke a weakly (o, »)-distributive vector lattice

and p a o -finite VU{strict. «}-valued measure on a ring G{ of

subsets of & set X. If u* is the outer measure induced by u and
*
if W 1is outer regular, then M“* = S(QR) and y on MU* is the

completion of i - on SIR). whers p = p*| g (R) .

.

"~~~
PFOOF. Clearly S(d{)(: M“* since p* 1is complete on MU* . It s

P ~ ~ . ,
easy to check that p* I S(R) =0, where "0 is the completion of
N
E on S(d{). Thus it suffices to show that Mu* C S(®R). Since by

hypothesis u 1s outer regular, and u* is o0-finite, the proof of
this 1s similar to the numerical analogue in Halmos {4]and hence

we cmit details.

COROLLARY 5.6, If ¢ is o o-firdite VvVWstrict. o) vilued mcasure
on a ring R of subsets ot 2 set » and if V12 a4 weakly (0, ©)-
~distributive vector iattice satisfyiog the ccuntable chain condition

. e~ N
then u is outer ragular, NU* = §{(R) and pu~ on M]* is the compiotion

of u on S(R), wier. n o= u* | ().

PROOF. By Theorem 5.2 u 1s cuter regular., Now the _orollasy follows

from the above theorem.

REMARK. The corresponding analogue of thealove corc|lary for a o-finite
extended real valued measure u on R 1s a consequence of the fact
that ﬂ{ is a weakly (0, ®)-distributive vector lattice satisfving the

countable chain condition and that isRUI strict. «}l-valued.



6. Some applications to positive operator valued measures
in Banach spaces. The notion of positive operator valued measures
(PO-measures in abbreviation) in Banach spaces has been introduced by
us in [12]. 1In this section we give the Carathéodory extension of
bounded PO-measures in Banach spaces as a particular case of Theorem
L.1l4 and consequently the Carathéodory extension of spectral measures

in [10] is obtained as a corollary. Also we generalize here Theorem

B of [10] to PO-measures when the Banach space is separable.

Before dealing with the applications, we give some definitions

and results from [12] to make this section self-contained.

DEFINTITION 6.1 Let ) be a ring of subsets of a set T. Let P(.)

be a map: ( + W, where W is a W%(|].|])-algebra of operators on a

Banach space X. (See [9] for definition of w*(1 .]]) -algebras) . Then

P(.) is called a socitive oper .t valued measure (albvivat~ad =g

X e - . : R
PO-measur«) on 1t the rvange i P{.) 18 con*talined in H{W)  (the set
of all real scalar t, ¢ operat. s i W with spectrum cortained  in

the set of non-negative reals), csatisfving the { .1lowing ~ouditions:

(1) P(p) = ¢ ;

) n
(11) PCY o0.) = = lim £ P(o.) x, for each x ¢ *, wine e [a.}
1 . 1 1
1 n 1=1
. .. . . . . . .0
1s a disjoint sequence 0l sels 1n O? . wilh their vriorn n g
Further, the PO-measure P(.) 1is said to be a spectrsa! o auuene
if the range of P(.) is containaed in the set oi 11 projeccicis i

A PO-measure P(.) is said to be bounded if there evisty -

T ¢ H(W)' such that P(d) < T for all o ¢ .



Througtout this section P(.) is a PO-measure with range

in H(W), Wa W (]| .|{|) algebra on X.

PROPOSITION 6.2. A PO-measure P(.) on R isa spectral measure if

and only if P(.) is multiplicative.i.e P(E (\F) = P(E) P(F) for

E, F € 6{ .

.

PROPOSITION 6.3. H(W) is a boundedly complete vector lattice and

P(.) is a PO-measure on R if and only if P(.) is a H(W)-valued
measure in the sense «t Definition 1.1. Further H(W) is hyperstonian

and hence is a weakly (o, «)-distributive Stone algektra.

PROPOSITION €.4., Let 69 be a o-complete B.A of prciections on X
(in the sense of bade [ J). Let W be the algebra generated by 2
in the weark operator topology. Then W 1is a W*(||.||)—algebra
under «+ suitable egrivaleat norm [ Ll on X, If X Qs wolTlv oomplete,

it suffices Lo assume thoo 65 1o a4 Lounded BLA. of projections.

Now we: study the applicaticns of vesults in earlie. coctions

to PO-measures in Barach spaces.

THEQREM 6.5. ( Caputi’odory extension theorem for bounded | o surss)

. . . e
Let P(.) be a bounded rO-measure rn a ring UL of subsets of 2 ser &

With its range contained in H(W).

(i) Then there is a unique bounded PO-measure P (.) on g,(gg) cuch
that P(.) ld{ = P(.). Further, P(.) arises through thc
Cara théodory extension procedure (of §4.).

(ii) P(.) is spectral if and only if P(.) is spectral.
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Consequently, every spectral measure E(.) on & with its
range contained in a J-complete B.A. @ of projeétions on
X is extendakle uniquely to a spectral measure E(.) on S(G{),
the o-ring generated by ® , by the Caprathéodory extension
procedure and the range of E(.) is contained in E?(closure of

® in the strong operator topology).If the Banach space X 1is
weakly complete, it suffices to assume that P is bounded (in

view of Proposition 6.4.).

PROOF. (i) The hypothesis of Theorem 4.14 are satisfied by §
by Proposition 6.3 and hence by Theorem 4.14 there is a unique
hounded H(W)-valued measure P(.) on S(G{), extending P(.).
Further this extensior arises by the C(Carathédory extension
procedure of §4. 2Again, as P(.)is a bounded H(W)-valued measure
on  §(R), P(.) is & bounded PO-measure on § (R) with range in
F{W) by tre first port of proposition 6.3, This proves (i).

(ii) Tt evifices to prove that P(.}) ig spectral if (L) is

spectral. Let P(.) bc spectral. Then P(u) is o projocticn, ror

each © e& . Let (bl = {P(o): ¢ “®}. Then dﬁi ds a R,

projections and ﬁhﬁ£55, the B.A of all projections .. W. Since
W is strongly closed, @r =@® and tence @ is i i ie by Theoren
2.7 of Bade [L] and by the hypothesis that @ i Teconplete, (S

definition of W™ (|| .||) -algebras in [9]). From the definition of
P* and P, (corresponding to u* and u, respectively in §4)it ir ol o
that the ranges of P, (.) and P* (.) are contained in ¢, , as @ is
complete. Thus P* and hence P are projection valved. 1.e. P{.;

is a spectral measure on §(R).
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For proving the last part of the theorem, let WDbe the
weakly closed algekra generated by EF, which is a complete
B.A. of projections by Theorem 2.7 of Bade. [1]. By P roposition
6.4 W is a W (|| .||) ~algebra under a suitable equivalent norm
] .llon X and E(.) is a spectral PO-measure on ® with its range
contained in @S G H(W). Now from (i) and (ii) of the theorem
and from the fact th~-t @F is the collection of all projections

in W, the last part Lf the theorem follows.

RIMARK. The abtove theorem is c¢learly a generalization of Theorem
7 of Berbarian [2] to Ponach spaces when the operators in the range

of the PO-measure ther conmute with each other.

THFROREM 6.6. Tf iv(.) is a bounded P0-measure in a separable Banach

spece XA ined oo oo ity Roof o Gocts of a 80 L, it G rangs
cotitained in Holoo, i (L) ds wt e reounlaor 1r rhe Seosd 0
a4
Definition 5.1. Pl b, Mﬁ+ : ﬁ{gz} aad PY(LY om0 M oa Lo i
f v i
N . ik 4 P K ; - :
completion of P o (&), wheow D) = DO(L) LRy v )
the outer measu: » i:diced by P(.}1).
PROOF. By Proposition 6.3, P(.; is a H(W)-vuai+ - RIS IR F A
{(in the sense of Definition 1.1) and H(W) is a veakle (o o .

~distributive Stone algebra. Since .he latter rart of the tneu.en

follows from the outer regularity of P(.) in view of VTheoyr . 5.4,

it suffices to prove that P(.) is ocuter reqular.
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Since P(.) is a bounded PO-measure, there exists T € H(W)+
such that P(o) < T for every o € ® . TFrom the definition of
partial ordering in H(W) it is clear that || P(o)]| < || T ]|, where
[| sl| = sup [ sx[{, [l.]|] on ¥ being that one occuring in the

=l = 1 . -
definition of the W*(]| .|| )-algebra W.

.«

The outer regularity of P(.) can be proved exactly on the same
lines of the proof of Theorem 5.2, i1f we can show that for each
. - . + . .
decreasing net {1 _} ~f operators in H(lI) which is norm bounded ,

there exists a seausnce {Tn} such that {TD}SQ{TQ} and AT = AT,
n e
in H(W). For this, :2caure of Theorem 3 of [9] . it suffices to

show that a sequenc. {T!vfg {7} exists such that 1lim Tnx-lim T %,
n [e 4

X. But, since ¥ i3 s wable, by following an argument similar to

s,
-~
"

the classical Hilbert . ace case 1t can be shown that on norm bounded

coby ot HOWY the stoon coeritor ooy is metrisable.

Concaedquent]  , as the caaec of PO {5 norm bounded in H{W), the result
follows

REMAFK.  The above Lhoorem generat!iz o Thecrem 6 of [ﬁfﬂ to Fi-me e

in separable Ban.cl ciaces. UWe aleo vermark that the proof o
in [10] is erroncci  « Theorem 5 of ‘umer [7] does nc: ool Ihere
We do not know wheti.y Theorem € o F L/] 1s still valid witnoat the

additional hypothesis of separabiliiy of the Banach space.
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