
G en eral Relativ ity an d G ravi tation , Vol. 29, No. 10, 1997

Ricci Collineations for Type B Warped Space-times

J. Carot ,1 ,2 L. A. N Âu Änez2 ,3 and U. Percoco2 ,4
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We present the general structure of proper Ricci Collineat ions (rc) for

type B warped space-t imes. W ithin this framework, we give a detailed de-

script ion of the m ost general proper rc for spherically symm et ric met rics.

As exam ples, stat ic spherically symm et ric and Friedmann ± Robert son ±

Walker space-t imes are considered.

KEY WORDS : Warped product ; symm et ry propert ies of space-t imes

1. INTRODUCTION

The purpose of this paper is to study Ricci Collineat ions (rc ) for a certain

class of space-t imes, namely type B warped space-t imes and in part icular

spherically symmetric space-t imes. Collineat ions are symmetry propert ies

of space-t imes. Katzin et al. [1] de® ne them as those vector ® elds, X , such

that leave the various relevant geometric quant ities in General Relat ivity

invariant under Lie dragging in their direct ion. The best known examples

of collineat ions are the Killin g vectors (Motion s ), i.e. vectors that satisfy

£ X ga b = 0 . (1)

Other interesting symmetries are de® ned analogously and the more fre-

quent cases of study have been the following.
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Conformal Motions:

£ X ga b = 2sga b . (2)

A� ne Collineat ions:

£ X C
c
a b = 0 . (3)

Curvature Collineat ions:

£ X R
a
bcd = 0 . (4)

Ricci Collineat ions:

£ X Ra b = 0 . (5)

Contracted Ricci Collineat ions:

ga b
£ X Ra b = 0 . (6)

Here £ X stands for the Lie derivat ive operator and the indices a, b, ... run

from 1 to 4.

The well established connect ion between Killin g Vectors and con-

stants of the motion has encouraged the search for general relat ions be-

tween collineat ions and conservat ion laws. Collineat ions, other than Mo-

tions , can be considered as non-Noet herian symmetries and can also be as-

sociated to constants of the motion. A� ne Collin eation s have been shown

to be related to conserved quant ities [2], and this property has been used to

int egrate geodesics of the Robertson± Walker metric [3]. As far as we know,

the ® rst Curvature Collin eation was found by Aichelburg [4] for pp-wave

metrics, and their relat ionships to ® rst integrals of the geodesic equat ions

extensively studied in [1]. Particular types of Ricci and Contracted Ricci

Collin eation s for the Robertson± Walker metric have also been found and

shown to be related to the part icle number conservat ion [5]. Also, consider-

able attention is being paid to the related problem of symmetry inheritance

in General Relat ivity [6]. Collineat ions have been studied in connect ion

with ¯ uid space-t imes [5,7± 9] and some speci® c examples have been given

for the C-metric [10], Robertson± Walker Space-t imes [11], and G Èodel-type

manifolds [12].

It is clear from the above de® nit ions that Motion s are part icular

cases of A� ne Collin eation s , A� ne Collin eation s are part icular cases of

Curvature Collin eation s , and so on. It is therefore possible to construct

an ª inclusion diagramº connect ing these symmetries. One such diagram,

that includes these and other related symmetries, is presented in [1]. A

collineat ion of a given type is said to be proper if it does not belong to

any of the subtypes. Clearly, in solving any collinat ion equat ion, with the

obvious exception of the Killing equation , solut ions representing improper
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collineat ions can be found. Therefore, in order to relate a symmetry to a

part icular conservat ion law, and its corresponding constant of the motion,

the ª propernessº of that collineat ion must be assured. Some computer

algebra tools have been developed to check the properness of Ricci and

other collineat ion vectors are under development [13,14].

We assume that rcs are smooth vector ® elds. Although this is not

necessarily so, by restrict ing ourselves to this case, we ensure that they

form a Lie algebra with the usual bracket operation. Such an algebra

naturally contains that of Special Conformal Killing Vectors (sckv) (see

Ref. 6) which in turn contains that of Homothetic Vector Fields (hvf ) and

therefore the isometry algebra of all Killing Vector Fields (kv).

Regarding the Ricci tensor, we shall consider that it is non-degenerate

(i.e. rank 4) and this in turn ensures that the Lie algebra of rc is ® nit e di-

mensional, its maximal dimension being 10 (9 being forbidden by Fubini’ s

theorem). For further informat ion on issues concerning dimensionalit y and

degenerate Ricci tensor see, for instance, [15] and [17].

The paper is organized as follows: in Section 2 we describe the ba-

sic features of the rc in type B warped space-t imes. Then, in Section 3,

we consider spherically symmetric space-t imes as a part icular case of these,

studying two dist inct cases, namely, static solut ions and Friedmann±

Robertson± Walker space-t imes.

2. TYPE B WARPED SPACE-TIMES

Suppose that (M1 , h1 ) and (M2 , h 2 ) are a pair of pseudo-Riemannian

manifolds, and F is a real valued funct ion on M1 (`warping function’ ).

One can then build a Lorentz manifold, (M, g) by setting M = M1 £ M2

and g = p*
1 h 1 Ä F 2 p*

2 h 2 , where the funct ions p1 and p2 are the canonical

project ions onto the factors of the product . (M, g) is then called a `warped

product manifold’ . If dim M = 4, we say that (M, g) is a `warped space-

time’ and one can classify them according to the respective dimensions of

the factor (sub-)manifolds M1 and M2 . We shall refer the reader to [18]

and references cited therein for a general discussion, restricting ourselves

hereafter to the case dim M1 = dim M2 = 2, namely, warped space-t imes of

the class B . Although all our considerat ions will be local, see [19] for some

remarks on globally warped space-t imes. It can be shown that for type

B warped space-t imes, a coordinat e chart exists (adapted to the manifold

product structure), such that the metric takes the form

ds
2

= hA B (x
D

) dx
A

dx
B

+ F 2
(x

D
) hab (x

c
) dxa dxb , (7)

where the indices A, B , . . . run from 1 to 2 and a, b, . . . from 3 to 4. The

funct ions hA B and hab are the component forms of p *
1 h 1 and p*

2 h 2 in
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the local charts f xA g and f xa g , which are in turn adapted to M1 and M2

respectively. The Ricci tensor of such a space-t ime takes then the following

component form in the above chart :

RA B =
1

2
R1 hA B ±

2

F
F A ;B , (8)

RA a = 0 , (9)

Rab =
1

2
(R2 ± ( F 2

)
A
;A )hab º F hab , (10)

where F = 1
2 (R2 ± ( F 2 )A

;A ) and R1 and R2 are the Ricci scalars associat ed to

the 2-metrics h 1 and h 2 . The semi-colon indicat es, as usual, the covariant

derivat ive with respect to the space-t ime metric.

Let now X be a rc on M , and de® ne its vert ical and horizontal com-

ponent s, X 1 and X 2 , as follows (see Ref. 18) :

X
a
1 º ga b

(p
*
1 h 1 )bd X

d
, X

a
2 º X

a
± X

a
1 . (11)

In the above adapted chart , one readily sees that X A
1 = X A , X a

1 = 0, and

X A
2 = 0, X a

2 = X a .

On account of (8) , (9), (10) and (11) , eq. (5) is now equivalent to

RA B ,D X
D
1 + RA D X

D
1 ,B + RD B X

D
1 ,A = 0, (12)

RA D X
D
1 ,a + F hab X

b
2 ,A = 0, (13)

£ X 2 hab = 2 C hab , (14)

where

C = ±
1

2

F ,D X D
1 + F ,c X

c
2

F
. (15)

Take now p1 Î M1 and consider the manifold ÄM2 º f p1 g £ M2 ~= M2 (see

Ref. 18) . Equat ion (14) is then a statement that X 2 is a Conformal Killing

Vector (ckv) of ( ÄM2 , h 2 ), and therefore it can be re-written as

X 2a/ b + X 2b / a = 2 C hab , (16)

where a stroke denotes the covariant derivat ive associat ed with the metric

h 2 .

Furthermore, it is possible to write [16]

£ X 2 R2ab = ± 2 C a/ b ± (h
mu C m / u )hab , (17)
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where

R2ab =
R2

2
hab (18)

is the Ricci tensor of the metric h 2 . In addit ion, the Conformal Bivector

associat ed to X 2 , i.e.

Fab º X 2a/ b ± X 2b / a , (19)

satis® es

Fab / c =
R2

2
(hac X 2b ± X 2a hb c ) ± C a hb c + C b hac . (20)

Now, from (17) one obtains

C a / b = lhab and l º ±
1
8 (£ X 2 R2 + 2 C R2 ), (21)

and from the Bianchi ident it ies [on ( ÄM2 , h 2 )] for C it readily follows that

l ,c = ±
R2

2
C ,c . (22)

Furthermore, taking a further covariant derivat ive in the above expression,

skewsymmetrising, and equat ing to zero, one has

± ( R2

2 )
,a

= s C ,a (23)

for some function s.

To proceed with our study, it is useful to consider now the following

decomposit ion of ÄM2 ; ÄM2 = H [ K [ C , where H is that open submanifold

of ÄM2 on which C a / b /= 0 (hence l /= 0 and C a C a /= 0 on H ), K is the

int erior of that set of point s for which C a / b = 0, and C is a set with no

interior de® ned by the decomposit ion itself.

We shall ® rst study what happens in K . Since C a / b = 0 there, it

follows that C ,a is either zero on K (in which case X 2 is homothetic), or

else it is a (gradient ) Killing vector (and then X 2 is an sckv) , the Bianchi

ident ities then implying R2 = 0, i.e. h 2 j K is ¯ at. In the latter case (h 2 ¯ at),

one can always choose coordinat es on K , say f x, y g , such that C j K = Ax

(A = constant), and integrat ing out the conformal equat ions (14) for X 2

on K it follows that

X 2 = ( 1
2 A(x2 ± y2 ) ± D y + L) ¶ x + (Axy + Dx + E ) ¶ y , (24)
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where A, D , E and L are constants on K which will, in general, depend on

the chosen p1 Î M1 , and therefore, when considering X 2 on M , one will

have that all of them are functions of the coordinat es set up in M1 . Thus

A = A(xB ), D = D (xB ) , . . . to be determined, along with the vertical

component X 1 of X , from (12) and (13) . In fact , it is easy to see from

(13) that A and D must be constants, say A = A0 and D = D0 , and from

the expression (15) of C with R2 = 0, together with C = A0x, it follows

that E must also be constant (which can be set equal to zero without loss

of generality ) . Then from (12) X A
1 = P A (xB )x + QA (xB ), and therefore

one has, on M \ K and if R2 = 0,

X = (P
A

x + Q
A

) ¶ A + ( A0

2
(x

2
± y

2
) ± D0 y + L) ¶ x

+ (A0xy + D 0x) ¶ y , (25)

C = A0 x, (26)

P , Q and L being functions of the coordinat es f xB g on M1 to be deter-

mined from (12) and (13) .

If C ,a j K = 0, X 2 is an hvf , and therefore [16] £ X 2 R2 = ± 2 C R2 if

R2 /= constant or £ X 2 R2 = 0 if R2 = constant. Hence (15) implies

C = ±
1

2

( F 2 )A
;A D X D

1

( F 2 )A
;A

. (27)

Thus, given a basis of the homothetic algebra of (M2 , h 2 ), say f fI g with

I £ 4, one will have X 2 = C I fI on ( ÄM2 , h 2 ) , the C I being constants

which will in general depend on the chosen p1 Î M1 , and again, when

considering X 2 on M , they will become funct ions of the coordinat es in

M1 , to be determined as before from (12) and (13) . It is worth noticing

that , whenever a proper hvf exist s in ( ÄM2 , h 2 ), say f1 , then (14) implies

that C 1 = C . It will be shown later on that , in all cases but one, the

funct ions C I must in fact be constants (and (13) then implies that X 1 is

just a vector ® eld on M1 ) . Thus we conclude that whenever C ,a = 0, one

has

X = X
A
1 (x

B
, x

c
) ¶ A + C

I
(x

B
)fI , (28)

where C I and X A
1 are functions of their arguments, to be determined from

(12) and (13) , and f fI g with I £ 4 form a basis of the homothetic algebra

of ( ÄM2 , h 2 ).
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Let us next study what happens on H . Notice that (21) can be rewrit-

ten as £ Y hab = 2lhab with Ya = C ,a ; thus, Y is also a ckv of ( ÄM2 , h 2 )

with conformal factor l, and one therefore has [16]

£ Y R2ab = ± 2la / b ± (h
mu

lm / u )hab , (29)

which, on account of (18) and (21) , can be rewritten as

la / b = ± 1
8 (R2 ,a C a + 2lR2 )hab º Shab , (30)

that is, Z such that Za º l ,a is a (gradient ) ckv, collinear with another

ckv, namely Y . It is then immediate to show, taking into account (21) ,

(22) , (23) and (30) , that R2 must be constant [s = 0 in (23) ], (21) then

reading

C a/ b = ±
R2

4
C ha/ b . (31)

The Bianchi ident it ies specialized to C ,a then imply one of the following:

(i) R2 = 0 and C ,a /= 0. One then has the expression (24) for X 2 , etc.

(ii) R2 = constant ( /= 0) and C ,a = 0. X 2 is then an hvf of ( ÄM2 , h 2 ), but

since R2 is constant and non-zero, it must be a kv, i.e. C = 0.

(iii) R2 = 0 and C ,a = 0. X 2 is an hvf of ( ÄM2 , h 2 ), possibly non-Killing.

Notice that whenever C ,a = 0, one gets the same results as when

studying this case in K Ì ÄM2 , i.e. eqs. (27) and (28) hold.

We can roughly summarize the results so far obtained as follows. The

horizontal component X 2 of a rc X is either an hvf of ( ÄM2 , h 2 ) (i.e. C ,a =

0) and X is then given by (28) , or else it is a proper sckv of ( ÄM2 , h 2 ) ( that

is, C ,a /= 0, C a / b = 0), this being possible only when R2 = 0 (i.e. ( ÄM2 , h 2 )

¯ at), and in that case X takes the form given by (24) . In both cases, the

funct ions appearing in (28) and (24) must satisfy (12) and (13) .

We shall next focus our at tention on the X 2 homothetic case, studying

the various cases that may arise in connect ion with the diŒerent structures

and dimensions of the homothetic algebra of ( ÄM2 , h 2 ).

To this end, let Hr be the homothet ic algebra of ( ÄM2 , h2 ), r being

its dimension. Since dim M2 = 2 it follows that r can only be 0, 1, 2, 3 or

4. We shall deal separately with all these cases assuming, for the sake of

simplicity, that h 2 is Riemannian (similar conclusions hold if h 2 is Lorentz).

(i) r = 0. In this case no hvfs exist ( including kvs), and therefore C =

C I = 0, i.e. X 2 = 0 and X = X 1 with X D
1 ,a = 0 as a consequence of

(13) , that is, X is a vector ® eld on M1 which must sat isfy (12) and

(27) with C = 0.
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(ii) r = 1. There are now two cases to be dist inguished, depending on

whether a proper hvf exists or not.

(a) A proper hvf f exist s in ( ÄM2 , h 2 ). It is easy to see that one

can then always choose coordinat es, say x and y, such that the

line element ds2 associat ed with h 2 , and the hvf f read in these

coordinat es

ds
2

= e
2y

(dx
2

+ h
2
(x)dy

2
) and f = ¶ y , (32)

the associat ed Ricci scalar is R2 = ± 2e- 2y h - 1 h 9 9 (a prime denot-

ing derivat ive with respect to x), and (13) then implies

RA D X
D
1 ,x = 0 and RA D X

D
1 ,y = ± F C ,A e

2y
h

2
(x), (33)

which cannot be ful® lled unless (F h 2 (x)) ,x = 0, i.e. h (x) = con-

stant , in which case R2 = 0 and therefore r = 4. Thus, C ,A = 0

( C = constant /= 0) , X D
1 ,a = 0 and then X = X A

1 (xD ) ¶ A + C f

with X 1 satisfying (12) and (27) with C = constant ( /= 0).

(b) No proper hvf exists in ( ÄM2 , h 2 ) , just a kv, say j. It then follows

that C = 0 necessarily, and again coordinat es may be chosen such

that

ds
2

= dx
2

+ h
2
(x)dy

2
and j = ¶ y . (34)

The Ricci scalar is then R2 = ± 2h - 1h 9 9 , and (13) implies, as in

the previous case, (F h 2 (x)) ,x = 0, which in turn can be seen to

imply

( F 2
)

A
;A = 2a (a = constant), (35)

h 9 9 + ah
2

= b (b = constant ). (36)

Performing now the coordinat e change h (x) º z , the above line

element reads

ds
2

=
dz 2

2C + z 2 + 2 log z
+ z

2
dy

2 . (37)

Hence (13) implies X A
1 = P A (xD )y + QA (xD ) and then

X = (P
A

(x
D

)y + Q
A

(x
D

) ) ¶ A + C (x
D

)j, (38)

where P A (xD ) and QA (xD ) must both satisfy (12) separately,

and C (xD ) must be such that RA D P D = ± bC ,A .
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(iii) r = 2. H must then contain at least one proper hvf , since otherwise

(H spanned by two kvs) a third kv would necessarily exist , hence

dim H = 3. Suppose then that a proper hvf , f, exists; the other

vector in the basis of H can always be chosen to be a kv, say j, and

there are two possible, non-isomorphic, Lie algebra structures for H,

namely [j, f] = 0 (abelian) , and [j, f] = j (non abelian) . In the abelian

case, coordinat es may be chosen such that the line element , f and j

read respectively

ds
2

= dx
2

+ x
2
dy

2
, f = x ¶ x , j = ¶ y , (39)

but it then follows that R2 = 0 and therefore two other kvs exist , r

thus being 4. Therefore this case cannot arise.

In the non-abelian case, and again by means of a suitable choice of

coordinat es, one has

ds
2

= dx
2

+ x
2( n - 1) / n

dy
2
, f = nx ¶ x + y ¶ y (n /= 1) , j = ¶ y , (40)

but then (13) implies, as in previous cases, that (F x2 ( n - 1 ) / n ) ,x = 0,

which cannot be satis® ed. Therefore C ,A = C,A = 0 (i.e. C and C

constants) and then X D
1 ,a = 0, and again X = X A

1 (xD ) ¶ A + C f with

X 1 satisfying (12) and (27) with C = constant ( /= 0).

(iv) r = 3 If a proper hvf exists in ( ÄM2 , h 2 ), the associat ed Killing subal-

gebra is then of dimension 2, and therefore a third kv exists locally;

hence dim H = 4 and therefore this case is not possible. If, on the

other hand, no proper hvfs exist , ( ÄM2 , h 2 ) is of constant curvature

and C = 0 necessarily. Let f jJ g , J = 1, 2, 3 be three kvs spanning H.

From (13) it follows that RA D X D
1 ,a = ± F C J

,A jJ a ; diŒerentiat ing with

respect to xb , skewsymmetrising and equat ing to zero, one has

C
J
,A jJ [a,b ] = 0, (41)

that is, either C J
,A = 0 or else ( ÄM2 , h 2 ) contains a gradient kv. From

[20] it is easy to see that the latter is only possible if R2 = 0, but in

that case a proper hvf is always admitted (namely f = x ¶ x in the

coordinat es used in Ref. 20) , and therefore dim H = 4.

(v) r = 4. In this case ( ÄM2 , h 2 ) is ¯ at, the line element and kvs being

those given in [20] and the proper hvf f = xa ¶ a . Proceeding as before,

one can readily see from (13) that X A
1 = M A (xD )x2 + (P A

1 (xD ) cos y+

P A
3 (xD ) sin y)x + QA (xD ). Since C /= 0 and C ,a = 0, it follows that

P A
1 = P A

3 = M A = 0, which in turn imply C ,A = C1
,A = C 2

,A =
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C3
,A = 0, and hence X A

1 ,a = 0, that is, X 1 is a vector ® eld on M1

that has to satisfy (12) and (27) with C = constant ( /= 0) , and X =

X A
1 (xD ) ¶ A + C f + CJ jJ .

Our purpose in the next sections is to apply the results so far obtained

to the case of spherically symmetric space-t imes which are also static, as

well as to Friedmann± Robertson± Walker (frw ) models.

3. SPHERICALLY SYMMETRIC SPACE-TIMES

We next specify the above results to the case of a general spherically

symmetric space-t ime whose metric, in the local chart f x0 ,1 ,2 ,3 = t, r, q , w g
takes the form [20]*

ds
2

= ± e
2u( t ,r )

dt
2

+ e
2l ( t ,r )

dr
2

+ r
2
(d q 2

+ sin
2

wdw
2
). (42)

Comparing the metric (7) with the above (42) , we have f xA = t, r ; xa =

q , w g , F = r ,

hA B (t, r )dx
A

dx
B

= ± e
2u( t ,r )

dt
2

+ e
2l ( t ,r )

dr
2

and

hab dxa dxb = d q 2
+ sin

2
wdw

2 .

Thus the Ricci tensor can be written as

R t t = ±
1

2
R1 e

2u ( t ,r )
+

2u 9

r
e

2( u ( t ,r ) - l ( t ,r ) )
, (43)

R t r =
2

r
Çl, (44)

R r r =
1

2
R1 e

2l
+

2l 9

r
(45)

and

Rab = f 1 ± e
- 2l

[1 + r (u 9 ± l 9 ) ] g hab , (46)

where a dash and a dot indicat e, as usual, part ial derivat ives with respect

to r and t respectively. As above, R1 is the Ricci scalar associat ed with

the 2-dimensional metric hA B , and now 1
2 R2 = 1.

*
Editor ’ s n ote : T his frequent ly used formulation should be explained to non-specialist s

as follows: in metric (42) r represent s the Schwarzschild radial coordinate. ª A general

spherically symm et ric space-t imeº m eans ª a spherically symm et ric space-t ime which

can be writ t en in Schwarzschi ld coordinat es.º It should be noticed that this does not

cover the set of all spherically symmet ric space-t imes.
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According to the preceding discussion, any rc X must be of the form

X = X 1 + C
J

jJ (47)

where f jJ , J = 1, 2, 3 g are the kvs that implement the spherical symmetry,

X 1 = X A ( t, r ) ¶ A and CJ are constants, J = 1, 2, 3, which can be set

equal to zero without loss of generality (since C J jJ is a kv of the space-

time and therefore a trivial rc ). On the other hand, since C = 0 and

( F 2 )A
;A = 2e - 2l [1 + r (u 9 ± l 9 )], (27) implies

f e
- 2l

[1 + r (u 9 ± l 9 ) ] g ,D X
D

= 0 . (48)

Therefore, the proper rcs of a spherically symmetric space-t ime whose

Ricci tensor is non-degenerate, are of the form

X = X
t
( t, r ) ¶ t + X

r
( t, r ) ¶ r (49)

and they must satisfy (48) in addit ion to (12) specialised to the Ricci tensor

component s given by (43) , (44) and (45) .

We shall next present two examples: stat ic spherically symmetric

space-t imes, and frw space-t imes.

3.1. Stat ic spherically symmetric space-times

Let us consider ® rst the case of static spherically symmetric space-

times, described by (42) where the functions v and l appearing in it depend

just on r , ¶ t thus being a kv. For the purpose of this paper it is convenient

to write the component s of the Ricci tensor for this metric as follows [21±

23]

R t t º A (r ), Rr r º B (r ), Rh h º C (r ) and Rw w º sin
2

h Rh h . (46)

Taking now into account the results of the previous section one has

X = X
t
( t, r ) ¶ t + X

r
( t, r ) ¶ r (51)

and the (non-trivial) equat ions arising from (12) , are simply

A 9 (r )X
r

+ 2A (r )X
t
, t = 0, (52)

A(r )X
t
,r + B (r )X

r
, t = 0, (53)

B 9 (r )X
r

+ 2B (r ) X
r
,r = 0, (54)

C 9 (r )X
r

= 0 . (55)
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Equat ion (55) direct ly implies

C 9 (r ) = 0, (56)

since otherwise one would have X r = 0 which would imply, from the

remaining equat ions, X t = constant, thus being a kv and not a proper rc .

A direct integrat ion of eq. (54) gives

X
r

=
K(t)

Ö j B (r ) j
. (57)

Now, subst ituting this result back into eqs. (52) and (53) , diŒerentiat-

ing them with respect to t and r , respectively, and equat ing the crossed

derivat ives of X t , we obtain

K, t t Ö j B (r ) j
A(r )

=
1

2
K( A 9 (r )

A(r ) Ö j B (r ) j ) 9
(58)

and the following two cases arise.

3.1.1. Case I

K, t t ± e k
2 K = 0, k = const , e = ±1. (59)

Therefore

K(t) = { ae k t + be - k t e = + 1

a sin kt + bcos kt e = ± 1

|
|
|
| (60)

and

2e k
2 Ö j B (r ) j

A (r )
= ( A 9 (r )

A(r ) Ö j B (r ) j ) 9
. (61)

Subst itut ing these results back into (52) , integrat ing and plugging them

back into (53) , we ® nd

X
t

= ±
1

2 ( A 9 (r )

A(r ) Ö j B (r ) j ) M (t) , (62)

where M (t) = ò K(t)dt. and the constant of integrat ion has been set equal

to zero without loss of generality.

Thus, for this case a proper rc is of the form

X = ±
1

2 ( A 9 (r )

A(r ) Ö j B (r ) j ) ( s K(t)dt) ¶ t +
K( t)

Ö j B (r ) j
¶ r , (63)
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where K(t) is given by (60) , and the component s of the Ricci tensor must

satisfy (56) and (61) .

3.1.2. Case II

K = S 1 t + S 2 S 1 , S 2 = const (64)

and
1

2

A 9 (r )

A(r ) Ö j B (r ) j
= s = const . (65)

Then from (57) and (52) ± (54) one gets, after some straight forward calcu-

lat ions,

X = { ± s( 1

2
S 1 t

2
+ S 2 t) +

S 1

2s

1

A(r ) } ¶ t + ( S 1 t+ S 2 ) 1

Ö B (r )
¶ r . (66)

As an example of a space-t ime satisfying the above requirements [24],

take for instance

u(r ) =
1

2( r 4

8r 2
0

+ h ln
r

r0
+ k) and l(r ) = u(r ) + ln

r

r0
. (67)

Therefore the Ricci component s can be written

B (r ) = 2
h + 1

r 2
, C (r ) = 1 and A(r ) = const , (68)

where r0 , h and k are constants, and we have for the rc

X
t

= ± c4 Ö 2(h + 1) ln r + c0 and X
r

=
c4 t + c5

Ö 2(h + 1)
r. (69)

This result invalidat es a misleading theorem stated in [22] and used in [23].

According to this ª theoremº , this collineat ion vector (69) should represent

an isometry; however it is easy to see that X does not reduce to a kv unless

c4 = c5 = 0.

Since all kvs are naturally rcs and these (if assumed smooth) form a

Lie algebra under the usual bracket operat ion, the Lie bracket of the above

rcs with the four kvs the metric admits, must yield in turn rcs. Thus

[jI , j] = 0 " I = 1, 2, 3

where jI designat e the kvs implementing the spherical symmetry, and

[ ¶ t , X ] = X 9 ( /= 0)

where X 9 = (c4r )/ ( Ö 2(h + 1)) is also a proper rc .

A more detailed account of rcs for non-st at ic spherically symmetric

space-t imes will be given in a forthcoming paper.
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3.2. FRW space-times.

As an example of rc for non-stat ic spherically symmetric metrics, we

consider frw space-t imes described by [25]

ds
2

= ± dt
2

+ R (t)
2( dr 2

1 ± kr 2
+ r

2
d q 2

+ r
2

sin
2 q dw

2) . (70)

Again, using the above notation, we have F = rR( t),

hA B dx
A

dx
B

= ± dt
2

+ R (t)
2 dr 2

1 ± kr 2
(71)

and

hab dxa dxb = d q 2
+ sin

2 q dw
2 . (72)

Then the Ricci tensor takes the form

R t t = ± 3
ÈR

R
,

R r r = gr r
D

R2
,

Rab = gab
D

R2
,

D = 2k + 2 ÇR
2

+ R ÈR .

(73)

Specializing (12) to the present case, we obtain

X
t
Rr r , t + X

r
Rr r ,r + 2Rr r X

r
,r = 0,

X
t
R t t , t + 2R t t X

t
, t = 0,

R t t X
t
,r + R r r X

r
, t = 0,

X
t
R hh , t + X

r
R hh , r = 0 .

(74)

Thus we get [11]

X
t

= c(1 ± kr
2
)

1 / 2 j R00 j - 1 / 2
,

X
r

= g( t)r (1 ± kr
2
)

1 / 2
,

(75)

where g(t) = ± c j R00 j - 1 / 2 ( ÇD / 2D ), and c is a constant.
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