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Abstraet. An invariant characterization of warped spacetimes is given and a classification
scheme for them is proposed. Some results on the curvature structure (Petrov and Segre
types of the Weyl and Ricci tensors) are given and a thorough study of the isometry
group that each class of warped spacetime may admit is carried out.

1. Introduction

Given two manifolds (one Lorentzian and one Riemannian) (M, k) and (M, h,)
and given a smooth function 8 : M, — R (henceforth called the ‘warping function’),
one can build a new Lorentz manifold (Af,g) by setting M = M; x M, and
g=h,®e¥h,

We call (M, g) a ‘warped product manifold’ and denote it as M = M, x, M,.
The case dim M = 4 corresponds to (M, g) being a spacetime, and will therefore
be called a ‘warped product spacetime’ (or simply ‘warped spacetime’) from now on.

The aim of this paper is to study these warped spacetimes from both a geometricai
and a physical point of view. It should be noted that the study of such spacetimes is
of interest in general relativity, since they comprise a wide variety of exact solutions
to Einstein’s field equations: Bertotti-Robinson, Robertson-Walker, Schwarzschild,
Reissner-Nordstrom, de Sitter, etc. Also warped spacetimes can be regarded, in
some sense, as generalizations of locally decomposable spacetimes in the sense usually
meant in general relativity [1,2).

Special types of warped spacetimes have been studied by Allison [3,4], Beem
and Powell [5], Beem and Ehrlich [6] and Kemp [7], and brief accounts of some
general results may be found in O’Neill [8] and Beem and Ehrlich [9]. More recently,
Deszcz et al [10] looked into the symmetry properties of the Riemann tensor of these
spacetimes.

In the present paper we provide an invariant characterization of warped
spacetimes based mainly in the holonomy classification in Hall and Kay [2] and
put forward a classification scheme for these spacetimes. This is done in section 2.
In section 3 we study the curvature structure, ie. the allowed Petrov and Segre types
of the Weyl and Ricci tensors in each Case and give some specific results in particular
cases.

Section 4 is devoted to the study of the isometry group that each class of warped
spacetime may admit; discussing both the general form of the Killing vectors and the
maximal dimension of the Lie algebra that they form.
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Finally, in section 5 we present some examples and make some further
considerations.

2, Invariant characterization of the warped product spacetimes

As stated in the previous section, a warped product spacetime (M, g) is such that
the spacetime manifold M is the product of two others M = M, x M,, each one
of which is endowed with a metric; h; and h, respectively (such that the g defined
below is of Lorentz signature); and the spacetime metric g can be written as

g=h®eh, (1)
¢ being a smoth real function, called the ‘warping function’
8: M, —R. (2)

Given a certain spacetime, the question now arises as to how can one decide whether
it is warped or not, or in other words whether there exists a coordinate change that
brings the metric into the form (1), subject to the restriction (2).

To answer this question, first note that (1) can be re-written as

g=e"(hi@h,) =e¥§ 3)

where k] = e~2%h, is a metric on M, by virtue of (2); so a warped spacetime (M, g)
may be thought of as conformal to a locally decomposable one [1,2] say (M, §); the
conformal factor being a function of the coordinates of just one of the submanifolds
whose product defines M. Next, let us give a brief summary of the results on locally
decomposable spacetimes; which will be of use later on.

The spacetime (M, §) will be locally decomposable if its holonomy group is non-
degenerately reducible [1,2], i.e. its holonomy type is R,, R, R,, R¢, Ry, Ry O Ryg
(see [11] for a definition of R,/); and globally decomposable if and only if M is
simply connected.

One then has the following possibilities [2] (see also [12,13]).

(i) The spacetime (M, §) is 14 3 metrically decomposable, i.e. it admits a global,
non-null, convariantly constant, nowhere zero vecior field. (M, §) is then said to be
1 4 3 spacelike or 1 4 3 timelike depending on the nature of the three-dimensional
submanifold orthogonal to the covariantly constant vector field. This corresponds to
the holonomy types being R,; (case 1+3 spacelike) or R;, Ry or Ry, (case 1 + 3
timelike), The line element associated with the metric § takes then the farm

d3% = edu® + R e(27)dz%dz? e =4l @)

If there exists another non-null, covariantly constant, nowhere zero vector field, then
{ M, §) decomposes still further and it is then referred to as being 1+ 1+ 2 spacelike
or 14 1+2 timelike in an obvious notation (holonomy types R, and R, respectively).

(ii) The spacetime { M, g) is 2+ 2 locally decomposable, ie. no global, covariantly
constant, nowhere zero vector field exists but two global, linearly independent
recurrent null vector fields are admitted. The latter is equivalent to (M, §) admitting
two global, linearly independent covariantly constant tensor fields of rank 2, such that

gab = qu + Qab (S)
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that is P,, and @, are two-dimensional metrics acting on mutually orthogonal two-
dimensional surfaces; satisfying—as tensor fields on M—

Y Y

Pab;c = Qa.b;c =0. (6)

One can then choose coordinates in the two mutually orthogonal surfaces, say {z#},
A = 1,2 for the surface with metric £,, (M, for instance) and {z*}, o« = 3,4 for
the surface with metric Q,;( M,); such that the line element can be (locally) written
as

d&? = i, (2P )de d2® + §,4(27) da* d2P. ‘ )]

The holonomy type in this case is R,
Returning to (M, ¢) (the warped spacetime conformally related to (M, §) via
(3)), it appears natural to consider the following classes of warped spacetimes.

Class A. (M, g) is conformally related to a 1 + 3 locally decomposable spacetime
(M,§). (M =M, x M, and §=h|® h,).

Two different subclasses are to be distinguished here, depending on the respective
dimensions of M; and M,:

(i) A;: dim M; = 1 and dim M, = 3. The line element associated with g can
therefore be written as

ds? = edu? + e®(Mp _4(27) de* da? €= =1 a,B8,...=1,2,3 ®)

where {u} is the local coordinate chart in M, and {7}, _, , ; the one in My; and h;
and h, read, in their respective charts: h; = edu® du; hy; = b 5(z")dz*® dz?.
The case ¢ = 41(—1) corresponds to M, being Riemannian (Lorentzian) and
consequently M, is Lorentzian (Riemannian).
Since h,g{x") is a three-dimensional metric on M,, it is always possible to cast
it in diagonal form (irrespectively of its signature); and .therefore in most cases we
shall write the line element (8) as

dSz — eduz + ezﬁ(u)(_EeZA(»u,z,y) dvz + eZB(u,a:,g) dwz + eZC(o,a‘:,y) d,yZ)- (9)

Henceforth, we shall refer to (9) as the canonical form of the metric for warped
spacetimes of the class A,. Notice that all Robertson—Walker spacetimes belong to
this class.

(i) A, : dim M, = 3, dim M, = 1. The associated line element then takes the
form

ds? = e du? + hyg(2?) dz* daf e= =1 a,83,...=1,2,3.  (10)

Now {z7}._; , 5 is the local coordinate chart in M, and {u} the one in M,; whilst A,
and h, are written, in these charts, as h; = h,z(27) de* @ dz? and k, = edu® du.

The same remarks as in the previous case, regarding signature and diagonability
of h g, also apply here.
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Class B. (M,g) is conformally related to a 2 + 2 locally decomposable spacetime
(M,3),M = M; x M, and § = h| ® h, with dim M, = dim M, = 2. The line
element of (M, g) can then be written as

ds® = g, p(e%)dz? d2B + eze(‘c}gaﬁ(m"’)d:c"‘ da? a,B,...=3,4
A,B,...=12 (11a)

where {z4} ,_, ; and {#*},_5 , designate the local coordinate charts in M, and M,
respectively, and k; = g,p(2%)de4 ® dx®,k, = g,5(27)dz* @ dzf are their
respective metrics expressed in the chosen coordinate charts.

Again the same comments about the nature (Riemann or Lorentz) of the
submanifolds M, and M, apply here. Furthemmore, since a two-dimensional space
or spacetime is always conformally fiat, one can always write (11a) as

ds? = e24=%) (edu? + da?) + e¥(ZD?BEN (ede? + dy?)  (115)

and again (11b) will be referred to as the canonical form for warped spacetimes of
the class B,

Notice that Schwarzschild, Vaidya, Reissner-Nordstron and, in general, all the
(simply connected) spacetimes which admit a three-dimensional group of isometries
acting transitively on non-null two-dimensional orbits, belong to this class (this
includes all spherically symmetric solutions). This is due to a theorem by Schmidt {17]
(see also [14]) stating that if a group G, of motions of r = 1d (d + 1) parameters
has orbits of dimension d(d > 1), then the orbits admit orthogonal surfaces.

One should notice that there are spacetimes that belong to both classes A and B,
for example, spacetimes whose metric are of the form:

ds? = edu? + cza(")(—e do? 4 24y + d2*)) (12)

and many others.

We shall designate this class of spacetimes as class C, i.e. C = AN B; but they
will not be of much concern to us, since they can be regarded as special cases of
either of the two previously defined classes.

In order to characterize each one of the classes A,, A,, B of warped spacetimes
invariantly, we recall the special properties (preferred vector or tensor fields) that
the conformally related, locally decomposable spacetime has and look into what they
imply in the warped one. Thus, if we re-write the line element (8) (ie. class A
spacetimes) as

ds? = e®(*) e 2 du? + h,5(2") da” daP} = e d4? (13)
and re-scale the coordinate u to a new coordinate u'( du’ = e~? dw), so as to have
d8% = edu’? + b p(z") da> dz? (14)

the vector field 4 = 3,, becomes a non-null, nowhere zero covariantly constant vector
field in (M, §) (and therefore, a Killing vector in this spacetime). It can immediately
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be seen that this vector field is now a (proper) conformal Killing vector (CKV) in
(M, g). If we now consider

u* =e~f40 (15)

i.e. unit vector (in (M, g)) parallel to the CKv 4%; it is easy to see that its associated
shear (o,;), rotation (w,;) and acceleration (1, ) are all zero, and that its expansion
O(© # 0) is only a function of v’ (equivalently of u); ie.

Oap = Wap = ﬁa =0 (16)
©£0 ©,h=0 (17)

where k), = g,5 — €U, U, is the orthogonal projector to u®. (See Kramer et al [14]
for the definitons of o, w,, %, @ in the case v* timelike (e = —1). The proof for

u® being spacelike follows along the same lines; for the definition of shear, rotation,
acceleration and expansion in this case see [15].)

Conversely, if a spacetime admits a global, non-null, nowhere zerc unit vector ficld
which is geodesic, shearfree, hypersurface orthogonal, and such that the gradient of
its expansion © is paralle] to it, then a coordinate system exists [16] in which the
metric takes the form (8) with

© =3u’8, =3C,0. (18)
We have thus proven the following proposition.

Proposition 1. The necessary and sufficient condition for a spacetime (M, g) be
warped of class A, is that a global, non-null, nowhere zero unit vector field exists
that is geodesic, hypersurface orthogonal, shearfree and such that its expansion ©
satisfies © hz = 0.

A similar result holds for warped spacetimes of the class A,, although in this
case the preferred vector field is no longer peodesic, and it turns out that it must be
non-expanding; so we can state the following proposition.

Proposition 2. The necessary and sufficient condition that a spacetime (M, g) be
warped of class A, is that a global, non-null, nowhere zero unit vector field exists that
is hypersurface orthogonal, shear-free, non-expanding and such that its acceleration
is a gradient (it turns out that u, = (e’ ) el

The proof is almost identical to the one sketched eailier.
These two propositions can eas:ly be seen to be equivalent to the following two
theorems.

Theorem 1. Let (M,g) be a spacetime. Then the following conditions are
equivalent.
(a) (M, g) is conformally equivalent to a 1 + 3 locally decomposable spacetime.
(b) There exists a nowhere zero, nowhere null, hypersurface orthogonal conformal
Killing vector 4 in M such that if 8 = \/eg(4, &), then the vector field v = ¢4 is
shearfree and u, = —¢@ , + 6, u™u,, © =3u™0 .



466 J Carot and J da Costa

Theorem 2. Let (M,g) be a spacetime conformally equivalent to a 1+ 3 locally
decomposable spacetime; and let u be the vector field whose existence is guaranteed
by theorem 1. Then

(@) (M, g) is of class A, if and only if @, = G

(b) (M,g) is of class A, if and only if © = 0.

The existence of further non-null vector fields in Af with the same properties as
u would then imply that in fact (M, g) belongs to class C. Class B warped product
spacetimes cannot be characterized in such a neat way as spacetimes of class A.
Nevertheless, an invariant characterization is still possible and, as in the previous
case, it follows from the existence of vector fields with special properties in the
conformally related 2 4+ 2 locally decomposable spacetime (M, g). A 2+ 2 locally
decomposable spacetime always admits two null Tecurrent vector fields, /¢ and £,

such that [ k, = —1 [13]; and they can always be scaled in such a way that the
recurrence vector is parallel to one of them, say fe ie.
Lo = alydy kopy = —ak,ly (19)

where o is a smooth real function of the coordinates associated with the integrable
distribution spanned by [* and %%; and a stroke denotes the covariant derivative with
respect to the connection associated to §.

If one defines now vector fields 1%, k% in (M, g) as i = e~?{% and k* = e~%k°
(associated 1-forms !, = e®l,, k, = e®k, satisfying I°k, = —1) and computes their
covariant derivatives in the connection associated with g, one gets (see [14] for the
relationship between the connections associated with g and §):

za.;b = ﬁlalb - e,alb + gab(e,clc)
ka;b = _ﬁka lb - e,akb + gab(g,ckc) (20)
where 3 = ae™?

It is easy to see now from (20) and the expressions of the Newman-Penrose
spin coefficients x,o and w (see, for instance, [14] p 78) specified to !, and £k,
that both [* and k* are geodesic (although non-affinely parametrized), shearfree and
hypersurface orthogonal, and their respective expansions are given by

©;=0,1° ©,=0_k (1)

Had we defined L = ¢~ 28[* and K¢ = k*(L*K, = —1) their covariant derivatives
would read

La;b = aLaLb - B,u. Lb - GbLa + (e,ch)gab
Kypy=—aK, L, +0,K, -0, K, + (91CK°)gab (22)

and again L® and K® would turn out to be hypersurface orthogonal, shearfree and
geodesic, but in this case L is affinely parametrized. Their expansions are

O,=8,L° ©Of=86_,K" (23)

The expressions (20) and (21) or, alternatively, (22) and (23) lead to an invariant
characterization of 2 + 2 warped product spacetimes. Using one or the other is just
a matter of choice. We can therefore state the following theorem.
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Theorem 3. Let (M, g) be a spacetime. Then

(a) If (M, g) is conformally equivalent to a 2 -2 locally decomposable spacetime
(M, §) with g = €**§ then there exist null geodesic, shearfree and hypersurface
orthogonal vector fields {¢,k® (or alternatively L*, K*) on M whose covariant
derivatives are given by (20) and their expansions by (21) (respectively (22) and
(23).

(b) If there exists a function & : M — R and null vector fields {*,k* on M
satisfying [k, = -1 (or null vector fields L®, K¢ satisfying L*K, = -1) and
their covariant derivatives are given by (20) (respectively (22)), then the spacetime is
conformal to a 2 + 2 locally decomposable spacetime (M, §) where § = e~?g.

Theorem 4. Let (M, g) be a spacetime conformally equivalent to a 2 + 2 locally
decomposable spacetime (M, g§); and 8,1%,k* (or @, L%, K*®) the function and
vector fields whose existence is guaranteed by Theorem 3. Let A, = 2/, k;) and
hi-b = Gab — hab(Hab = 2L(aKb)vHaLb E 9, — Ha.b)' Then (M’g) is a warped
spacetime of class B if and only if either h,,8® = 0 or h}6° = 0 (respectively
H,,8* =0o0r H58° = 0).

Notice that in the first situation, ie. h,;6° = H,,8° = 0; the vector fields I* and
k* (L* and K*) are expansion-free. This case corresponds to M, being Riemannian,
whilst the other possibility, namely h1, 8% = 0, takes place when M, is Lorentz.

We have now a complete characterization of warped product spacetimes.

3. The curvature structure

In this section we shall study the possibilities for the Petrov and Segre types of
the Weyl and Ricci tensors, respectively, for the different classes of warped product
spacetimes.

Since every warped product spacetime is conformally related to a locally
decomposable spacetime and conformal scaling of the metric does not affect the
‘Weyl tensor, the allowed Petrov types for a given class of warped spacetimes will be
exactly those allowed for the type of locally decomposable spacetime that this class is
related to and one can simply read this information from the table in [2].

Thus, class A warped spacetimes are conformal to 1 +4 3 locally decomposable
spacetimes; i.e. holonomy types R;, B, or R,, in the case 1 + 3 timelike (the
covariantly constant vector field in the decomposable spacetime is spacelike); and
R,; when it is 1+ 3 spacelike (the covariantly constant vector field is timelike). In
the first case (14 3 timelike) there are no restrictions on the Petrov type of the Weyl
tensor, while in the second case (1 4+ 3 spacelike) it can only be I, D or 0. Class
B warped spacetimes are conformal to 2 + 2 locally decomposable spacetimes whose
holonomy type is R,; therefore [2] their Petrov type can only be D or 0.

Unfortunately, conformal scaling of the metric does change the Ricci tensor in
general, and therefore looking into the conformally related locally decomposable
spacetime is of little or no use in order to work out the algebraic structure of the
Ricci tensor in the warped spacetime. Nevertheless, a few conclusions can still be
reached.
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Proposition 3. Let (M, g) be a warped product spacetime of class A; then, the (non-
null) vector field spanning the one-dimensional submanifold (M for subclass A, and
M, for subclass A,) is a Ricci eigenvector.

Recalling that g = e*?g, where (M, §) is a 1 + 3 decomposable spacetime, and
that the unit vector spanning the one-dimensional submanifold in (M, §), say 49, is
covariantly constant with respect to the connection associated with g; ie. 4, = 0;
one has:

(a) Subclass A, : 6 = 8(u). Define now the unit vector field v* in (M, g) as

a

u® = e~ 94°

ie. u, =e’d,. One has 6 , = O&t, = e~ u,, where a dot indicates differentiation
with respect to the coordinate u. Evaluating now the Ricci identity for u_ in (M, g),
it follows that

1a--28

— ] -1 d
Ugibe] = —3¢€ e(gabuc - g@cub) = iudR abe"

Contracting now with ¢®® one gets

d — 2Aa=20
R cUg = 363 H,.

(b) Subclass A, : 8 = 6(z" ), 0 , = 0. Proceeding as before we get, in this case,
Rdcud = '_gab(g;ab + Bagb)uc
which completes the proof of the proposition. O

Notice that if the coordinate u is timelike (M; or M, of Lorentz type in the
subclasses A; and A, respectively), the Ricci tensor is of the diagonal Segre type
[18], since it admits a timelike eigenvector.

In the case of warped spacetimes of class B, there are no restrictions on the Segre
type, all types being possible in general.

To close this section, we next give the expression for the components of the
Riemann and Ricci tensors, which will be useful for further developments. In
what follows we shall denote the coordinates in (M, hy) by A&~ and those
in (M,, k) by 2P, and the geometrical objects (connection, Riemann tensor,
etc) defined on each one of them by means of an index 1 or 2 respectively. Also, we
shall write n for the dimension of M,(n = 1,2 or 3).

We now have, for the Riemann tensor,

R%cp =' R%cp

R%CD = RAB-)'D = RAB')'J = RAﬁ-f.s =0

R%cp = R%cp = R°gqy5 = R%es =0 (24)
R%cs = "eg(ea);%f% 86

—8(a8
Rgyp =—¢7"(¢°) pp &3

Raﬁ‘yf} =2 Raﬂ‘r‘ﬁ + (GEGE)eza (é}, ,81'650 - fztﬁ‘s&:,‘) .
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From these expressions it can immediately be seen that the components of the Ricci
tensor are

Rpp ='Rgp - nc—a(ea);BD

Rgs =" Rgs + {4(1- n)e* (650%) — *(e°)4}h g

where all indices are raised and lowered using the metric of the spacetime g.

4. Isometry groups of warped product spacetimes

The purpose of this section is to carry out systematic research on the possible isometry
groups that each class of warped product spacetimes may admit, giving to the furthest
possible extent the expression for the Killing vectors in it. In order to do this, it will
be useful to have the expressions for the covariant derivatives of vector fields and
1-forms defined on (M, g) in terms of the covariant derivatives in (M, k) and
{ M, h,) of their projections on these submanifolds. Following the same conventions
as at the end of the last section, we shall have for the connectior in (M, g)

I'as ='Tic rg, =0 rs, = —e”ﬁf‘”}zaﬁ,yﬁp (26)

Pge=0 T3, =658 T3 =T,

where 2{!Z satisfies h{*% hsc = 84; ie. is the inverse metric in (M, h,), and
should not be confused with h{!8 = g4°gB4p . namely the contravariant form of
1

h, (considered as a tensor field on (M, g)) with indices raised with the full metric
g. Although for Ay, 2{*Z coincides with h{*Z, this is not so for h,; in fact one has

R{E = ?—1‘143 h{‘B = hlaﬁ =0
hy? =e ¥h3?  hEBP=h$F =0 @7
gab — Ealtb + e-—-Zﬂﬁgb‘

Eet X be a vector field on Af. Define its vertical and horizontal components, X
Y
and i{ , as follows.

X2 0% X =R XS (28)
Xe=X*-Xx°. (29)
h v

One readily sees that X 4 = X4, X*=0and X* =X, X4 =0.
2 v h h
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With these definitions, and taking into account (27), one has

Xp=Xbh
X5 =X5—<"h{POphg X" ¢0)

For 1-forms w on AM; we also define vertical and horizontal components by first
taking w® = g®®w,, defining then w® and w* as before, and finally lowering indices

with g.,. We get
WaB T YWaAR
Wap=Wap— 04w

(31

where

— b Y 28
wn_gab(w +‘f )—‘cfu"a'{'e c;:a‘

L)

Now let X be a Killing vector (Kv) of (M, g); the Killing equations X, ; + X, =0
will now read

‘2? AB + {-{ BA = 0 (32)
Xapt c”i{ ga=0 (33)
Xop+ Xpat+20pX hap=0 (34)

or, equivalently, denoting by | and | the covariant derivatives induced in M, and M,
1 2

by their respective metrics 2, and h,,

Xap+Xpa=0 (35)
v v o

X a8 +"29‘§ﬁ.A =0 (36)
XajptXoa=-2X"0ph.0 (37
h 2 h 1 K ! 2

In what is to follow we shall denote the Lie algebra of Kvs on (M, g) as K(M, g),
and K (M, hy) and K(M,, h,) will denote, respectively, the Lie algebras of Kvs on
(M, hy) and (M,, k).
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We can now extract the following consequences from these equations.
() If X € K(M,g) with _i( = {, then X is a smooth vector field of { M) and
v

X € K(M,, h,). Moreover X 28 , =0.
(i) If X € K(M,,hy) and X P8 , =0, then X € K(M,g).
v v L

(tii) If X € K (M, g), then ,1{ is a conformal Killing vector (CKV) of (M, h,).
Furthermore, if X = 0, then Jh{ is a smooth vector field of (M,) and }h{ €
K(My, hy).

(iv) If_i;’ ¢ K(M,,h,), %{ € K(M,g).

Now fix p, € M, and consider the manifold M, x {p,} ~ M,. Now (35)
is a statement about Kvs in (M,,h,); suppose that dim K(M;, k) = p £
ni(n; +1)/2 (n; = dim M), and let (V,...,V,) be a basis of K(My,h,);
then there exist constants af(p,), I = 1...p, such that X = Y 7_, o (p,}V,; ie.

r
x =Y 38)
i=1

where of = of (2®) are functions depending on the variables 2> of M,.

In the particular case p = 0, one has K (M,g) ~ K(M,, h,) and it readily
follows that dim K (M, g) < 6 for class A, dim K (M, g) = 1 for class A, and dim
K(M,g) <3 for class B.

Take now p, € M, and consider the manifold {p,} x M, ~ M,. (37) is then a
statement that ,Z{ is a Ckv of (M,, hy) ( )h{ € C(M,,h,}). Proceeding as before,

let us denote by m the dimension of this Lie algebra, m = dim C(M,,h;) <
z(”z + {n, + 2) and by (Y;...Y,,) a basis of it. Now, there exist constants
M(py), I =1...m, such that X S Ty M(p)Yy; te.

w

X = > oAy (39)

I=1

where A/ are now functions of the coordinates in My;; A = A (2P). Taking into
account (38) and (39), it follows that X € K (M, g) must be of the form

m

Zij +3AY, (40)

=1
with o = o/ (27) and AT = Al (zP).

Notice that (40) is invariant under coordinate changes that preserve the warped
product structure, namely

' = FA(xP) and 2" = fr(z"). (41)



472 J Carot and J da Costa

4.1. Warped spacetimes of class A,

Let (M, g) be a class A, warped product spacetime and assume jts metric is given
in the canonical form (9); namely

d.52 = du2+629(u){_€e2A(t),w,y} dv2+e23(u,m,y) dw2+e2C(v,z,y) dyZ)
and assume that X € K(M,g) is a Kv. From (40) it follows that
X% =eafv,z,y)V* + Z M{w)YF (42)
I=1

where V is the vector spanning K (M, h); in this case V = 3, obviously; and Y;
constitute a basis for C(M,, h,) and therefore satisfies

(EYIIZT‘)QB = ij(va T, y)gaﬁ (43)
},I = bI(Uazay)au'}'cI(vamay)ax+dI(U7$:y)ay' (44)
The 1-form associated with X, given by (42), will be
m
X, = a(v,2,y)V, + 73 M ()Y, (45)
I=1

where Y;, denote the 1-forms in (M,, h,) associated with the vector fields (44), ie.
with the indices lowered with h:
2

Y, = —ce?b, dv + P, de + €% d, dy. (46)

The Killing equations (32)-(34) (or alternatively (35)-(37)) specialized to X, given
by (45) now read

a,=0 (47)
a,ﬁ+eze§:if?m =0 B=uvz,y (48)
I .
EAI (Y’}'atﬁ-i-?jﬁla) =—'2Q9‘ha'3 (49)
T 2 2 2

where a dot indicates differentiation with respect to u, as usual. Notice that (47) is
trivially satisfied.

Differentiating now (48) with respect to u, and specifying the result for each
index 4 = v, x,y; we obtain three equations; raising indices with fzz“ﬁ , multiplying
the equation corresponding to the (super)index o by 8, and adding the three of
them up we obtain

ey (26 + Ay =o0. (50)
I
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Since this is a linear combination of linearly independent vectors (remember that
(Y;)7L, form a basis of C(M,, k,)) that equals zero, the coefficients must be all
Zero; i.e.

2007 + XM =0. (51)
Integration with respect to u yields
M=p'Fw)+d  Fluy=e? (52)

p' and ¢’ being real constants.
Substituting these results in (49) we get

i
>0 P40 (Yo + (i) = 20000 53)

Now, since K(M,,h,) ¢ C(M,,h,) we can take the (Y;);_; . (vectors of the
basis of C{M,, h,)) in such a way that the first p amongst them, ie. (Y.);—; , P <
m, form a basis of K{ M, h,)} and the remaining m — p = ¢ complete it to a basis
of C(M,, h,), thus being proper conformals (except, maybe, one homothety). This
means that

Yiajs+ Yigla =0 L=1...p
2 2

YIaIB'I"YmIa:szI I=p+1...m. (54)
2 2

Edquation (53) now reads

S (' F+a )y = —ab. (35)

pHIgIgEm

Differentiating with respect to » and taking into account (52), it is easy to see that a
necessary condition for (55) to hold is

Ge?® = £k* (56)
— =Y pTy = (57)
I

From (56) one can see that there are two possibilities:
(a) For all & € R, 8(u) is not a solution of (56). In this case, it follows that
pl = ¢ =0for I = p+ 1...m; and therefore

a=0. (58)
A straightforward calculation shows that p* =0 for L = 1...p also, and hence

P
X=Y 4dY g eR 59
L=1
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or equivalently X'( M, g) & K(M,, h,) and therefore dimK (M, g) £ 6.
(b) There exists & € R such that 8 is a solution of (36). In this case, the solutions
of (56) can be given as

# = Incosh(ku) if the + sign holds
@ = Insinh(ku) if the — sign holds (60)
d=au+b if & =0.
Plugging this back into (55), it follows that
gd =0 I=p+1...m. (61)
The compatibility conditions (48) may now be written as
oty DD K(RY + 2Z) =0 (62)
1gLgp pHILIEm
where pf = +k2k7 and
Zp = ce™yy; 8, —e By, 8, —e X, B, 63)

Equation (62) sets restrictions on the maximum number of independent constants
p’,J = 1...m; thus restricting dim K(M,g). Consider E, the real vector
subspace spanned by Y;...Y, (dim E = p), F' the one spanned by iszp st
Z?_i_l,...,:i:kz}’m-l-zm (dim F = ¢ < mfp) and G = FNE (dim G = r g
min{p, g)); one can then come to the conclusion that

dim K(M,g)=m—-g+r<m (64)

where m = dim C(M,, h,) is at most 10 (and if m = 10, h, is conformally fiat);
g =dim F § m — p with p = dim K(M,, h,) < 6 and r € min(p, ¢). Recall that
in this case 6(«) must take one of the expressions given by (60).

It is interesting to notice that the maximal dimension of a Lie algebra of Killing
vectors, ie. 10, can indeed be achieved in this case when m = 10 (h, conformally
flat) and r = ¢. The spacetime (M, ¢) admitting 10 Kvs, it must be of constant
curvature and therefore one of the de-Sitter spacetimes; as it can be easily verified
by direct computation in this framework (see next section).

4.2. Warped spacetimes of class A,

We proceed as in the previous case by recalling the canonical form of the metric for
this class of warped spacetimes

dsz — Eez&(v,z,y) duz_ EezA(v,a:,yJ dvz +eZB(u,x,y) dwz +cZC(v,x,y) dyz.

Notice that these spacetimes always admit the Killing vector £ = 8,,. Expression (40)
of a generic Kv reads, in this case, as

X = 3o (W)VF + A(v,2, )Y (65)
I=1
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where (V;);_,. . form a basis of K (M, h 1) (m<£6)and Y € C(M,, hy) is a CKV
of { M,, h;} (notice that in this case, and since dim M, = 1, the conformal algebra
of (M,,h,) is infinite dimensional; therefore we cannot speak about one single
vector spanning C'(M,, h,); nevertheless (65) is still valid with Y € C(M,, h,) to
be determined by the Killing equations)

VI=b!(”a“"’y)au+CI(”smay)ax+dI(vamsy)ay (66)
Y = ef(u)d,. (67)

The 1-form associated with X, given by (65), will be

X, =Y al(w)V, + = W)\(v, z,9)Y, (68)
I=1

where

Vie = 0o VT = ffubvfb and Y, = -’zlabe

ie. ¥ = f(u)du. Now, the Killing equations (32)—(34) (or (35)-(37)) take the form:

1 i
ZdIVIA'l'f(U)ewA,A =0 (70
T
MY, ,ﬁ+Yﬂ,a)——2ZaI(V%D)hQﬁ (71)

Differentiating (70) with respect to u, it is easy to see that
of = p! Fluw)+ ¢ F(u) = f(u) I=1...m 72)

where p! ,q are real constants, Taking into account this information, and since
Yal g+ Yﬂl =2f h, aps it turns out that (70) and (71) can be re-written as
2 T

EpIVM-{-e”A,A =0 (73)
I
A ==3"F+ VP8 ). (74)
i

Equation (73) can then be viewed as a compatibility condition, while (74) yields
information on f(u), since differentiating it with respect to u we get

A ==f>p'VPe,
I
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which trivially implies
flr=% k = constant (75)

S PN (VPO ) = k. (76)
H

Equation (75) can now be integrated for the different values of the constant k giving

f = cosh{u) or sinh(u) for k=1 (77a)
f = cos(u) or sin(u) for k=-1 (77b)
f=ku+rk, for k=0 (Tc)

where we have rescaled the coordinate u in order to get these values for k.
Subsitituting back in (74) the different values of f given by (77) and taking into
account (76) it follows that

3 dVPe,=0  and S p'VPO L =—k) for k3 0 (78a)
I I

Sp'vPe,=0 and Y ¢VPOp=-kX  fork=0. (78b)
I I

Equation (78a) implies that 5 = 3", ¢’ V; € K(M,, h;), leaves 0 invariant and is
therefore a Killing vector of (M, g), ie. n € K(M,g). Similar remarks apply to
¢ =3, p'V, in the case k = 0.

Now, the set of Kvs (of (M, h;)) that leave a given function invariant, in our
case the warping function 8, form a Lie subalgebra of K (M, ;) which we shall
denote as K. It is a classical result (see for instance [19]) that given an r-parameter
group of isometries G, acting on s-dimensional orbits in an n-dimensional manifoid
V,(s £ n); there are n — s functions on V,, which are left invariant by G,.. In the
present case and according to this result, we shall have dim K, = p < 3(p € m); and
if p = 3 then the three Kvs spanning X, must act on two-dimensional orbits. The
general case, though, will be that of Ky, = @. It will also be useful (when studying the
case k = 0) to consider the subset of K'( M, h,) formed by those Kvs (of (M, hy))
n,,8 = 1...q satisfying £, 6 = constant. It is easy to see that this set also forms
a Lie algebra, namely H,; D K, such that given any two vectors in Hy there always
exists a linear combination of them that belongs to K y; therefore dim Hy, = ¢ € p+1.
Thus, dim H, < 4; and if it is 4 then H, contains a three-dimensional subalgebra
K, of Xvs that leave 8 invariant and that act on two-dimensional orbits.

Notice that A = constant implies, from (73), that pf =0 I =1,..., m; which
in turn implies A = 0 in the case k # 0 (from (76)) and ¥, ¢’ VIDQ,D =L,0 =
constant, in the case k = 0, The converse also holds, ie. p! = 0,1 = 1,...,m

implies A = 0 for & # 0, and A = constant and hence 3, ¢'V; = n € H; for k = 0.

Given a warped spacetime of this class, it is easy to see that there is only one
value of k possible; i.e. one cannot have Kvs corresponding to different values of &
in the same spacetime since otherwise they would not form a Lie algebra. We shall
therefore analyse the problem for each value of & separately.
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(a) Assume now k = 0 and ¢ = 1 for the sake of simplicity, and consider two
generic Kvs of (M, g); according to our previous developments they will read as

Xi=FfMO,+ Fé+m

Xy=FM8,+F&+m, (79)
where
=y plV; m=)dV, i=1.2 (80)
I=1 I=1
Mg =—e"¥, —kh =L, 0 i=1,2 (81)

and §; € K,,i = 1,2 (and therefore &; € K (M, g)), namely
L;0=0 i=1,2. (82)

Define X; = [¢,X;] and X; B [¢, X,], which must also belong to K(M,g),
and comsider now [X,, X]; [X;, X;}([X;, XX, X,] and [X;,X;] for i,j =
1,2. Next demand the value of each one of these Lie brackets to be a KV of
(M, g). The results can then be summarized as follows (we do not reproduce the
calculations involved here since they are rather lengthy, but on the other hand quite
straightforward}.

(i) K; = @ = A= constant and X, = cX;, ¢ = constant. There are
two possibilities: either H, = @ or dim Hy; = 1. In the first case A = 0 and
dim K(M,g) =1 and it is spanned by £ = &8,. In the second case A = A, # 0 and
dim K(M,g) = 2 and it is spanned by £ = 8, and X = fA\,8, + 7 with n € H,
such that £,8 = —k; A

(i) K, # @. If the xv &, (§; € K,) appearing in (79) is null, hypersurface
orthogonal (because of (81)) and such that [£;, ;] = a£; (& = constant or zero); then
X; € K(M, g) and X,, also given by (79), is necessarily of the form X, = bX,+ Z
where b = constant and Z € K (M, g) is such that

u©

Z=fl\8,+1 (83)

with A, = constant and n € H, satisfies L 8 = —k;A;. Needless to say, if
H,— K, = @ then Z = 0 and therefore K (M, g) is spanned by £ = 8,, X, X,
and K; thus dim K(M,g) = p+ 3 (p = dim K;). If H, —~ K; # © then every
X € K(M,g) is equal to c¢£ (¢ = 8,, ¢ = constant), bX; + Z or else dX, (d
= constant) (or a linear combination of them). Given now X' = b'X,; + Z' it is
easy to see that Z* = &Z 4+ ( with s = constant and { € X,; thus in this case
dim K(M,g)=p+4

Notice that if no null, hypersurface orthogonal kv £ in K, satisfying [£, 1] = af
for some n € K{(M,, h,) exists, then K(M,g) is spanned by £ = 8,, X =
fAaed, + 1 (n € Hy such that £,0 = kX)) and K,; its dimension being p + 2
if Hy— Ky # @ or p+1if Hy — Ky = 2. In particular, if (M, k,) is Riemannian
{€ = —1) it cannot contain a null vector, and then the latter holds.
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(b) Assume k& = 1 and ¢ = 1 as in the previous case for the sake of simplicity.
Take also two generic Kvs of (M, g):

X, = hycosh(u)d, 4+ sinh(u)é, +

X3 = Azcosh(u)d, + sinh(u) & + n, 84
where
&= 9oV, m=) ¢V i=12 (85)
I=1 I=1
L:0= =X Xoa=—e g, i=12 (86)

and n; € Ky (and therefore 5, € K(M, g)), ie.
Lme =0 i= 172' (87)

Since n; € K(M, g} it follows that X; — n; € K(M, g) and therefore we can drop
n, and n, from the expressions (84) of X, and X,. Defining as before X; = [¢, X;]
(mow X; = {£, X;] = X,), considering [X,, X,;1;[X;, X;] and [n, X,] for 4 € K,
and demanding the results of these Lie brackets to be Kvs of (M, g) it follows that

(i) K, = @; then K(M, g) is spanned by X, = X, cosh(u)8, + sinh(w)¢;, X,
and £ = 8,, where £; € (M, k) and satisfies the two equations (86) (for i = 1)
plus the condition

Al — L A = constant. (88)

The dimension of K'(M,g) is therefore 3 if such a vector £, exists or 1 if does not
exist; in which case £ = 9, is the only KV that (M, g) admits.

(i) Ky # 2. The are now two different situations to be taken into account;
namely

o There exists some n € K, satisfying [, £;] = ¢£, (c = constant); then K (M, g}
is spanned by X, defined as in (i), X, , £ = &, and all those n € K, satisfying the
condition above; dim K (M, g) < p+3 or even dim K(M, g) € p+ 1if it does not
exist any such &; € K( My, hy).

» There does not exist any n € K, satisfying [n,£] = c¢£,. Then,
dim K(M,g) =p+1and K(M,g) is then spanned by £ = 8, and K.
The remaining case, namely £ = —1, can be treated in exactly the same way as

the present one, arriving at conclasions similar to those just outlined.

4.3. Warped spacetimes of class B

In this case we cannot use the same technique as in the two previous cases, since
C(M,,h;) is now infinite-dimensional, and we cannot write an easy-to-handle,
generic form for the CKvs in it, as we did for the class A, warped spacetimes.
We must therefore tackle the problem directly; to this end recall the canonical form
of the metric for spacetimes of class B (116)

dsz = ezA(u,z)(eduz_l_ de) +626{u,x)823(u,y)(_€ dUZ + dy2)
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and let X be a kv of (M, g)
X =8, + 88, +v8, + 63, (89)

where «, 3,... are functions of the four coordinates u,x, v, y. Killing’s equations
now read

aB, A+ B8, A+8,a=0 (90)
8,8+ €0, a=0 (91)
a8, A+ BE,A+8,8=0 92)
- e9tBly v + €8 =0 (93)
e®+B) 3 6 + e’ 8,0 =0 (94)
— eeX1Blg v 4. e249,8=10 (95)
A+5)5 6+ e*40,8 =0 (96)
v78,B+ 89,B + 8,7 = —(8,0 + 33,8) (97
8,6~ed,y=0 (98)
v8,B+ 60,B + 8,6 = —(ad,0 + 38,6). (99)

Notice that (89)-(92) imply that for every pair of fixed values of v and y, say
(UU'J yu), Az( 8a(y,z, Vg y[})au + B(u, =, Vo yo)au

is a Kv of (M, h); ie. X € K(My,hy); thus , if (V;) I =1,...,m<3isa
L

basis of K (M, h,) it follows from the general considerations at the beginning of
this section that it must be

}v{ = Zal(v,y)VI. (100)
I=1

On the other hand, (97)-(99) imply that for every pair of fixed values of » and z,
(uy, zy) the vector i{ = v( g, 2g, vy ¥)8, + 8(uy, 2y v, ¥) 8, is a CKV of (M, hy);

although as we have already pointed out we cannot now write an expression for X
1)

equivalent to (100), since C(M,, h,} is infinite-dimensional and its members cannot
be expressed in a concise form which could be useful for our purposes.

To proceed further, let us consider the Ricci tensor of (M, g); then if X €
K (M, g) we must have

LyRicci=0, (101)
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Recall now the structure of Riccei (equations (25)):
Rpp =" Rpp —2¢7°(”);5p
Rpg; =0
Rgs =" Rgs+ A b gs
where
A= —{4e¥(6%65) + e (e®)4}-

On the other hand, since %( € C(M,, h,) we must have (see for instance [20]):

Xajogt Xpla=2Whag 102)
|3 2 h ] 2
Ly *Rog =205 5= ("% 5)hag (103)
h 2 2 z 2
where v = —(a8,0 + §8,0) as follows from (97) and (99). From all these

considerations and afier a long and tedious calculation, one can conclude that
(a) of (v,y) = constant, [ = 1,...,m;
()] %{ = 48, + 89, is a homothetic vector field of (M,, h,) with homothetic

factor — 3, of M, where M, =2, 6, I=1,...,m.

There are now two subcases to be considered.

(i) (M,, h,) has no proper homotheties. One must then have 3, of M; = O and
therefore

dim K(M, g) = | + dim K(M,, h,)

I being the number of independent o!'s which can be seen to be 0 € [ <
m~p+q-1, where p = dim F, F being the vector space spanned by
Zy ={(0,M[)8, + (8, M;)d,, p < m < 3and g = dim K(M,, h;) N F; since
dim K(M;.h;) = m < 3 it must be ¢ € min(p,m); thus having 0 < ¢ < p,
OgpEmand 0 m 3.

(ii) (M,, h,) admits a proper homothetic vector field. In this case one has

dim K (M, g) = | + dim K(M,, h,)

where ! (the number of independent o') now satisfies 0 I m —p + ¢, p and q
defined as before.

Since dim K'(M,,h,) <3 and ! € 3 in both cases (i) and (ii), it follows that the
maximal dimension of the Lie algebra of isometries for a warped spacetime of class
B is six.
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5. Examples and concluding remarks

As we have already pointed out in section 2, all spacetimes admitting a three-
dimensional group of isometries acting transitively on non-null two-dimensional orbits
(in particular all spherically symmetric solutions) are warped spacetimes of the class B;
as follows from the theorem, due to Schmidt [17], that we quoted there. This theorem
also allows us to conclude that all spacetimes which admit a six-parameter group of
isometries acting on three-dimensional orbits are also warped spacetimes, belonging
to the class A, in this case. These spacetimes include all Friedmann-Robertson-
Walker cosmological models and many others (for a good survey see [14]). It is trivial
to see that the converse does not hold.

It is also easy to see, as we mentioned in section 4.1, that the de-Sitter spacetimes
are warped spacetimes of class A;. Furthermore, they can be explicitly constructed
by making use of the results derived in 4.1

On the other hand, important families of spacetimes such as the stationary
axisymmetric solutions of the Einstein field equations are clearly non-warped, since
the metric of a warped product spacetime can always be diagonalized. Thus, for
instance, the Kerr solution and the Tomimatsu-Sato class of solutions are non-warped.

The problem of finding physically significant solutions belonging to the various
classes of warped spacetimes is currently being studied by the authors, and the results
will be presented elsewhere. Just to mention some resuits in this direction, one can
show that the only perfect fluid solutions of class A; with (M, h;) Lorentzian, are
the Friedmann-Robertson-Walker cosmologies. One can also prove that this class
(A, with (M, h,) Lorentzian) is emply for Einstein~Maxwell fields, both non-null
and null,

The possible Lie algebra structures of K(M,g) are also being investigated for
the various classes presented here. A study of the conformal lic algebra of warped
spacetimes is being carried out as an extension of the study of the Lie algebra of the
isometries presented in section 4.
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