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1. Introduction

Suppose thatM3, h1) and (M,, hy) are a pair of pseudo-Riemannian manifolds anid a

real valued function oi;. All structures will be considered smooth (where appropriate) and
all manifolds Hausdorff, paracompact and connected. Wared product[2] of (M3, h;)

and (M5, hy) with warping factor 6 is the pseudo-Riemannian manifold with underlying
manifold M; x M, and metricg given by

g =mihy ® € nihs. 1)

In (1) the functionsr; are the canonical projections onto the factors of the product and
will be omitted where there is no risk of confusion. The pseudo-Riemannian manifold
(M, g) will be denoted byM; x4, M,. A warped product spacetimer simply warped
spacetimeis a four-dimensional manifold with a Lorentz metric, constructed in the above
fashion. If the warping factor of a warped product spacetime is constant then the spacetime
is (globally) decomposable, physically relevant examples of which are, for instance, the
Bertotti-Robinson spacetimes [3, 4], or Einstein’s static universe [22]. The class of warped
product spacetimes with non-constant warping factors is, however, much richer and includes
such well known examples as Schwarzschild, Friedmann—Robertson—Walker and static
spacetimes. The purpose of this paper is to examine in detail which kinds of energy—
momentum tensor are possible in warped product spacetimes and to provide some examples
of such spacetimes.

Since the considerations in this work are mainly local it will be convenient to give a
local version of the warped product definition. Mf; x4 M» is a warped product spacetime
with dimM; = n; (for i = 1,2) andM = M; x M, then the convention will be adopted
that upper-case Latin indices take values from hiand Greek indices take values from
n1 + 1 to 4, with lower-case Latin indices taking the values 1 to 4. For gaehM there
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exists a neighbourhootl of p such that there is a coordinate systefnon U adaptedto
the product structure in the sense that the line elemeniad M can be written in the form

ds? = hap(r) dr’ di® + M hap (6 dx* . @)

Conversely, if a spacetime contains a neighbouridamh which there is a coordinate system
such that the line element takes the above form then it will be referred ttoaally warped
spacetime Some comments regarding the relationship between locally warped spacetimes
and warped spacetimes will be made in the next section.

The importance of warped spacetimes is that their geometry is directly related to the
geometry of their, lower-dimensional, factors which are generally easier to study. In the
case where the first factor is Lorentzian the causal structure of the warped spacetime can
be determined by examining the causal structure of the first factor [5,6]. The warped
product construction also provides a useful method for building examples of spacetimes
with particular causal properties. Another aspect of the spacetime geometry, whose study
is facilitated by the warped product structure, is the isometry algebra [1].

A classification of warped spacetime into three classes was given by Carot and da Costa
[1], and the possible Petrov types determined in each case. These results will be reviewed
here as they will be important later on. The three classes of warped products are denoted
as A, A, and B and are defined as follows:

Class A. n; = 1 andn, = 3. These spacetimes are essentially characterized by the
existence of a gradient conformal vector field (see next section) amt i Riemannian
(positive definite) then the Petrov type is |, D or O, with no restrictions on the Petrov type
in the case wheré/{, is Lorentzian.

Class B n; = np = 2. These spacetimes are necessarily of Petrov type D or O and can
be characterized by certain properties of the null directions tangent to the Lorentzian factor
of the product (see the third section).

Class A. n; = 3 andny, = 1. These spacetimes are characterized by the existence of
a hypersurface orthogonal non-null Killing vector and must be of Petrov type |, D or O if
M3 is Riemannian, with no restrictions on the Petrov typa/if is Lorentz.

It should be noted that the above three classes are not mutually exclusive (for example
the Schwarzschild spacetime falls into classesaAd B).

Warped product spacetimes of class B have been considered previously by several
authors [7-9], although they are not referred to as such. Some results on the relationship
between warped product manifolds and certain pseudo-symmetry properties of the curvature
tensor have been given by Desztzal [10, 11].

2. General geometric considerations

Certain geometric aspects of warped spacetimes will be discussed in this section and it is
noted that, whilst the discussion is concerned with warped spacetimes, the considerations
apply to warped product manifolds with arbitrary dimension and signature. The first point to
be remarked upon is the distinction between warped products and locally warped products
which was mentioned in the first section. The definition of a warped spacetime is essentially
a global geometric one, yet if one is interested in exact solutions then one normally works
locally and the local definition is more relevant. In fact a spacetiMe ¢g), which has

the property that eacp € M admits a neighbourhootl of p and an adapted coordinate
system onU in which the line element takes the form (2), can be given the structure of a
warped product under certain assumptions. Roughly speaking one has to assume that the
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local warped product structures on intersecting neighbourhoods are ‘compatible’, and that
certain global geometric and topological restrictions hold. The existence of the (global)
warped product structure then follows from a theorem of Ponge and Reckziegel [12] and
a discussion of how this theorem is applied will be given elsewhere [13]. In [1] warped
products of classes Aand A were characterized by the existence of certain types of
symmetry. The existence of these symmetries enables one to conclude that the metric can
be written in the special form (2) and hence that the spacetime is a locally warped product.
In fact it is possible to use direct geometric arguments to show that the existence of a
warped product structure where one factor is one dimensional is equivalent to the existence
of an appropriate type of symmetry [13].

In the case of a class;Awarped product the local characterization given in [1] can
be improved upon. If a spacetim@/, g) admits a (nowhere Killing) gradient conformal
vector field X,, i.e. X, satisfiesX,., = ¢g.» (Where a semicolon will denote covariant
differentiation and a comma partial differentiation) wigh a nowhere zero real-valued
function, then the spacetime is locally warped of clags &Arom [1] it must be shown
that X, is non-null andg , is parallel toX, in order to conclude thatM, g) is locally a
warped product. However the inequalif X,., # 0 shows thatX* X, cannot vanish over
an open set and an application of the Ricci identity gives

Ruhchd = 2¢,[agh]c- (3)

In the above, and in what followsR,,.; denotes the Riemann curvature tensor, square

brackets denote skew-symmetrization and round brackets denote the symmetrization

operation. If (3) is contracted witk® then one obtaingy X, = 0 showing thatg,

is parallel to X, and hence(M, g) is locally a warped product. The degenerate case

where¢ is identically zero andX, is non-null corresponds to the special case of a locally

decomposable spacetime or, equivalently, a warped product with constant warping factor.
Finally in this section it will be shown that all warped spacetimes admit a (second-order)

Killing tensor, that is a second-order symmetric ten&gy satisfyingK (.., = 0. It should

be remarked, however, that this Killing tensor may be decomposable, that is, expressible in

terms of Killing vectors. Suppose that/, g) is a warped spacetime and that equation (1)

is written in local coordinates as

8ab = ];lab + e2(9 I;lab- (4)

The spacetime with metrig/, = e % g,;, is decomposable and &g, is covariantly constant
2

under the Levi—Civita connection associated wgth). Using the well known formula for

the change in connection under a conformal change of metric one has

hab;c = _zhabg,c - hbcg,a - hace,b‘ (5)
2 2 2 2

It then follows thatK,, = €% h,, is a Killing tensor and hence one has the following
2

theorem.

Theorem 1 Suppose thatM, g) is a warped spacetime. It then follows thiaf, g) admits
a second-order Killing tensor which is proportional to the metric of the second factor of the
product.
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3. Warped spacetimes of class B

In this section a thorough study of class B warped spacetimes will be made and their possible
energy—momentum types determined. A theorem will be proven which shows that in many
cases the second factor of the warped product is of constant curvature, and a geometric
proof of an ‘extended Birkhoff theorem’ will be given.

If (M,g) is a warped spacetime of class B then one of the factors is a two-
dimensional Lorentz manifold which necessarily admits a unique pair of independent null
one-dimensional distributions. A pair of null vectors can locally be chosen to span these
distributions and then lifted to the spacetime to give null vectbendn® whose directions
are canonically determined by the product structure. A warped product spacetime of class
B can, in fact, be characterized by properties of these null directions [1]. Under the
decomposable metrig which is conformally related tg the vectorg”? andn® are recurrent
in the sense that there exist 1-formgandgq, such that,, = I, p, andng, = n.q, (Where
covariant differentiation with respect to the decomposable metric is denoted by a stroke).
These null vectors are therefore geodesic, shearfree and twistfree girade hence under
all metrics conformally related tg'. In fact theg-covariant derivatives of, andn, satisfy

la:b - la P — e,alb + (lce,c)gab (6)
Nazb = Naqp — 040y + (16 ) gab- (7)

In the above one has thét./,ng = 0 when My is Lorentzian and“6, = n“0, = 0
when M, is Lorentzian. Conversely if some spacetime admits a pair of independent null
directions!, andn, satisfying (6) and (7) for some, which either lies in thé-n plane or

its orthogonal complement at each point then this spacetime is locally warped [1].

A classification of class B warped spacetimes into four subclasses will now be given,
depending on the relationship between the gradient of the warping factor and the pair of null
directions picked out by the product structure. There is an obvious classification into two
types depending on whethéf; is Lorentzian or Riemannian but it will prove convenient
to further subdivide the first type, and introduce a degenerate type (corresponding to the
decomposable case). Suppose ttHt g) is a class B warped spacetind¢; xy M, and
thatl/, andn, span the null directions canonically determined by the product structure. This
spacetime is then classified as follows.

Br. If 0, #0,luny0, =0, 0 4lp) # 0 andé) 4ny) # 0 then the warped spacetime will
be said to be of type B In this caseM; is Lorentzian.

Br. If 0, # 0, [[unp0 q = 0 and eithem .l = 0 or f.n = 0 (but not both) then
the warped spacetime will be said to be of typg. BNithout loss of generality it will be
assumed that spacetimes of this type héyeparallel tol,. This class of type B warped
products may alternatively be characterized épyl,nq = 0 andi‘6, = 0. Using the
standard expression for the change in connection under a conformal change of metric it
may be shown that’ is recurrent in this case.

Bs. If 6, # 0 andi“6, = n“0, = 0 then the warped product spacetime will be said to
be of type B. In this caseM, is Lorentzian.

Bp. If 6, = 0 then the spacetime will be said to be of type Bnd this is the
decomposable case.

The above classification is not mutually exclusive as one could construct spacetimes
which fall into different types on different regions. Since a class B warped product either
has M; Lorentzian or Riemannian, such a spacetime cannot be both typen® Br on
separate non-empty subsets. However a class B warped spacefimg, with the first
factor Lorentzian, can be decomposed as a disjoint uMenJ Mz U Mp U M’ where the
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spacetime is of type Bon the open seMr; Mg and Mp are the interiors of the subsets

of type Bz and Bp, respectively, and’ is defined by the decomposition. An analogous
decomposition is possible in the case where the first factor is Riemannian. Consequently
one can always work in an open submanifold where one of the above four types holds
exclusively, and from now on it will be assumed that one is working in such a submanifold.
It will also be convenient to restrict oneself to an open submanifold where the Segre type
of the Ricci tensor is constant. It is remarked that in typgsaBd By neither/* nor n“ are
recurrent, in type B exactly one of the two vectors is recurrent and in type lidth are
recurrent.

The Ricci tensor of a class B warped spacetime will now be examined in more detalil
and the relationship between the Segre type and the above classification determined. An
adapted coordinate system of the form described in the introduction will generally be used
and, unless otherwise stated, indices will be raised and lowered with the spacetime metric
gap- If the Ricci tensors associated W'vltlab and}zzab are denoted byleab and Izeab respectively

then the Ricci tensoR,;, associated witlg,;, is given by the following [1, 6]

2
Rap = Rap — — .48 8
1 ¢
Rop = I}w - %(¢2)A;A lea,s 9
Rup = O. (10)

In (8)—(10),¢ is defined by = €, wheref is the warping factor. The block-diagonal form

of the Ricci tensor and metric in the adapted coordinate system means that the Segre type
can be determined fairly easily from the Segre type of the pair ®f2matriceskR,z and

R.p. This is because one can reduce each block to Jordan form using commuting similarity
transformations. In fact, since the Ricci tensor of a two-dimensional manifold is a multiple
of the metric it follows from (9) that the Segre type Bf; is just{(11)} (or {(1, D)} if M>

is Lorentzian). One simply needs to compute the Segre characteriskigzofnd ‘adjoin’

it to the Segre characteristic @,s. If M, is Riemannian, then the Segre type Rfp is

just {11} (or its degeneracy) but i#7; is Lorentzian then the three Segre typ2s {zz} and

{11} are possible. In the case of typg & follows from the existence of a null recurrent
vector and the Ricci identities th&,, has a null eigenvectdf satisfying/* = 0. For type

Bp one has thap is a constant. The possible Ricci types corresponding to the four types
of class B warped spacetime just described are given in table 1. Note that all degeneracies
of the types given in the table are also possible.

Table 1. Energy—-momentum types of class B warped products.

Warped type  Segre type

Br {2(1D)}, {zz(1D} or {1, 1(11)}
Br {2(1D) or {(1, H(AD}

Bs {1, D1y

Br {1, HAD}

Given the above classification, the question arises as to whether examples actually
exist. Since all spherically symmetric spacetimes are warped products where the first factor
is Lorentzian [1] (and the second factor is of constant curvature), such examples are easily
found in the literature. Specifically, the Schwarzschild and Reissner—Namistolutions
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are of type B; type Br spherically symmetric solutions have been given by Foyster and
Mclintosh [14] and the Bertotti-Robinson solutions mentioned in the introduction are of type
Bp. Examples of spacetimes of typg Bre less easy to find in the literature and it can be
seen from the table that the only physically interesting energy—momentum types possible
are non-null electromagnetia\-term or vacuum. It will be shown shortly that all these
solutions necessarily admit a three-dimensional isometry algebra acting on two-dimensional
timelike orbits (i.e. the second factor of the product is of constant curvature). A particular
example of a vacuum solution of types Bs given by the following line element, defined

on an appropriate open subsetRf with coordinates(x, y, z, 1)

ds? = F~1dx? + F dy? 4 x2(sirf(r) dz? — dr?) (11)
where

A
Fx)=—-1 A constant (12)
X

It has been shown previously that the second factor of a class B warped spacetime is
of constant curvature in the case of vacuum [8] and perfect fluid [9]. It then follows that
the Killing vector algebra of the second factor is three dimensional and all these Killing
vectors can be lifted ta/ [1]. In fact this conclusion can be reached for a wide variety of
energy—momentum types and the following is an attempt at formulating a theorem which
applies to most cases of interest. Note that the product structure can be used to define a
vector (at a point)X“ to be vertical if }11[1,,X“ = 0 andhorizontal if }zza,,X“ = 0, and that

Ricci eigenvectors must be either horizontal or vertical, at each point.

Theorem 2 Suppose thatM, g) is a class B warped product spacetime with factors

M x4 M, and warping facto#. In addition suppose that, at each pointdf) the subspace

of the cotangent space spanned by the gradients of the eigenvalues associated with all Ricci

eigenvectors can be spanned by the gradients of the eigenvalues associated with horizontal
eigenvectors. It then follows thall, is necessarily of constant curvature.

Corollary 1. The conclusions of the theorem apply in the case of vacunnaterm,
electromagnetic (null and non-null) and perfect fluid (with an equation of state).

Proof. Denote the Ricci scalars associated wit¥f1, #;) and (M,, hy) by R and R,
1 2
respectively. One can then rewrite the field equations (8) and (9) as

1 2
Rap = 5 ISI}AB - $¢;AB (13)
Rop = % Izﬂzlaﬂ — %(fﬁz)A;A ];lotﬂ- (14)

Firstly, suppose that there are non-constant Ricci eigenvalues. From the considerations on
Segre type earlier in this section it follows that there exists at least one horizontal Ricci
eigendirectionZz¢ and from the above assumption its eigenvalumay be assumed to be
non-constant. Now, from (13) and (14) (block-diagonal structure of the Ricci tensor) it
follows that A must be a root of the characteristic polynomial associated With and
therefore (see (13)) a function dvy; that is it only depends on the coordinatésandx?,

and the same holds for its associated (horizontal) eigendireZtioithat is: Z* is tangent

to M; and its components are functions 8fy. Now from (14) it is immediately seen that

the (degenerate) vertical eigenvaluds given by

= 30"2R - @)% (15)
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and, according to the hypotheses of the theorem, it must be a (possibly constant) function of
x1 andx,. Sinceu and¢ are functions of the first two coordinates only ards a function
2

of x3 and x* only it follows from the above thar is a constant. In the case where all
2

Ricci eigenvalues are constant, one arrives at equation (15)mwitbnstant and can again
conclude thatr is constant. This completes the proof of the theorem. O
2

The corollary follows immediately in the case of vacuuterm and electromagnetic
null since in these cases all the Ricci eigenvalues are constant. In the case of electromagnetic
non-null the tracefree condition shows that the pair of eigenvalues are functionally related
(and one of them is associated with a horizontal eigenvector) and in the case of a perfect
fluid the existence of an equation of state similarly shows that the conditions of the theorem
hold.

Finally in this section a geometric proof of an ‘extended Birkhoff theorem’ will be
given. Other proofs of extended Birkhoff theorems have been given by Goenner [15] and
Barnes [16] and a more geometrical proof was given by Bona [17].

Theorem 3 Suppose thatM, g) is a class B warped product spacetime whose Ricci tensor
is everywhere of Segre typgl, 1)(11)} or some degeneracy thereof. Assume that the
gradient of the warping factor does not vanish over a non-empty open set. It then follows
that one can decompod¢ as the disjoint uniodf = Mgy UMz UM’ whereMy and My are

open and a hypersurface orthogonal non-null Killing vector is admitted on a neighbourhood
of any point of Mg and a null recurrent vector field admitted on a neighbourhood of any
point of Mg. The setM’ has no interior.

Corollary 2. For non-flat (in the sense that the curvature does not vanish over a non-empty
open subset) Einstein spaces one has Mgt= M’ = ¢.

Proof. Given the assumptions on Segre type, one can write the Ricci tensBy,as
o hay + p hay (for some functionss and p) and hence the field equations (8) and (9)
1 2

become:
1 2
o fllAB =5 IffllAB - $¢;A3 (16)
P ]21043 = % R lziaﬂ — %(¢2)A;A }zla/s. (17)

It can be seen from the above thd admits a gradient conformal vectey, and if this is
non-null (as it must be in the Band By cases, but not in the Bcase) thenV; is locally

a 1+1 warped product (see remarks in section 2 and [13]). The fa¢tothen admits
(locally) a hypersurface orthogonal Killing vector which is orthogonal to the gradient of the
warping factor and so [1] lifts up to give a hypersurface orthogonal Killing vectoMon
Actually the field equations (16) and (17) reduce to the vacuum-term case if one has

andp zero or constant and the conclusion about the existence of a hypersurface orthogonal
Killing vector follows in this case also. In any non-empty open subse¥obf type Bg,

the ‘extra’ Killing vector is not necessarily admitted, but a null recurrent vector is admitted.
This completes the proof of the theorem. The corollary follows from the fact that a non-flat
Einstein space admitting a recurrent vector is necessarily of Petrov type N or Il [18].
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4. Warped spacetimes of class A

The purpose of this section is to determine what sort of energy—momentum tensors are
possible in warped spacetimes of clasg Alt will be shown that vacuum and-term

types imply that the spacetime must be of constant curvature, the only possible solution
then being the De Sitter spacetimes (including Minkowski, which is trivially seen to be
decomposable, i.e. the warping function is constant), whereas non-null electromagnetic
fields are not possible. On the other hand, examples will be given of null electromagnetic
and perfect fluid solutions which are warped products of clagslA the latter two cases
some general remarks can be made concerning the possible Petrov types.

As was remarked upon in section 2, clasg Wwarped products can essentially be
characterized by the existence of a (non-Killing) gradient conformal vector field. Some
results concerning spacetimes admitting gradient conformals have been given by Tarig and
Tupper [19] and Daftardar and Dadhich [20]. In addition, clagsvarped spacetimes with
the second factor Riemannian have recently been referred gemearalized Robertson—
Walker spacetimef21].

For later reference it will be convenient to display the expressions for the Ricci tensor
[1, 6] specialized to a class;Avarped spacetiméM, g) with warping factord. As before
an adapted coordinate system will be used and €.

3
Rap = —$¢;AB (18)
Rup = Rap + (—2(¢c®) — 8 c} hap- (19)

If ordinary differentiation with respect te® is denoted by a prime then the above can be
rewritten as

3
Ry = —afﬁ” (20)
Ryp = Rap + e{—2(¢)? — ¢¢"} ];laﬂ € =g11==%1 (21)

It can be seen from the above that the vedttrx! is necessarily an eigenvector of the Ricci
tensor. If this vector is spacelike (i.e. M, is Lorentzian) then no restrictions are placed
on the Segre type of the Ricci tensor, but if this is timelike (&.is Riemannian) then the
Ricci tensor is necessarily diagonalizable witthx! spanning a timelike eigendirection.

If one has thatR,, = Kg,, for some (perhaps zero) constakit then equation (21)
shows that]zeab is a multiple of the metric orM,. The Bianchi identity onM, then shows

that M, is a space of constant curvature and hemteadmits a six-dimensional isometry
algebra acting on three-dimensional orbits. However, it then follows that at each point
of M, the Killing isotropy group is three dimensional and hence the Weyl tensor must
vanish at each point [22], the resulting spacetime thus being of constant curvature. The
following theorem has therefore been established (cf [11]), which effectively says that the
only vacuum orA-term solutions which are locally warped products of clagsafe the

De Sitter spacetimes.

Theorem 4 Let (M, g) be a warped product of class Alf R, — %Rgab = 0 over some
non-empty open sdt then it follows that the curvature is constant &n
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Suppose now that the Ricci tensor given by (20) and (21) corresponds to a non-null
electromagnetic field, its canonical Segre form therefore being [23]

Ry = lpz{xaxb + YaYb — ZaZb + Uqlp} (22)

where {x?, y¢,z% u®} are unit eigenvectors that form an orthonormal tetrad with
corresponding eigenvalugs’ for x¢ and y¢ and —? for z* andu“. As we have already
pointed out,d/dx? is a (unit) Ricci eigenvector (timelike far= —1, spacelike foe = +1)
which can then be identified with one of the above vectors in the tetrady‘sdye = +1

or u® if e = —1. It therefore follows that

2 3 "

Il ¢¢ (23)
and the three remaining eigenvectors must necessarily lidintwo of them (sayy* and
z%) being spacelike and having opposite sign eigenvalgg and —?. Using (21) to
obtain the eigenvalue equation for this pair of eigenvectors one has

(Rap — €297 + ¢9") hap + 3¢ hagle = 0 (24)

whereo” = y# andw” = z#. Hencei. = (3 — €)¢p¢” — 2¢¢’2 must both be roots of
the characteristic polynomial associated withs, and sincep = ¢ (x!) both of them must
2

be constants, which immediately implies tiggtis constant; that ig” = (> = 0. Thus, no
non-null Einstein—Maxell warped spacetimes of the clagedist.

It will next be assumed thatM, g) is a warped spacetime of class Avhose Ricci
tensor is everywhere of Segre typ@11)} with constant eigenvalue. That is to say that
the spacetime represents a null electromagnetic field or null radiation field with a possibly
non-zero cosmological constant. Examples with non-zero cosmological constant have been
given by Tariq and Tupper [19] and these will be discussed shortly but first some general
remarks about the Petrov type will be made.

Since the Ricci tensor has no timelike eigenvalues it follows Mgis Lorentzian and
the gradient conformak, is spacelike. At an arbitrary point € M letl,, n,, x,, y, be
a real null tetrad wheré, is the (unique up to scaling) null Ricci eigenvector andis
parallel toX,. Equation (3) and the subsequent remarks then show that there exists a scalar
« such that

Rapeax’ = axiag)e- (25)
Now consider the decomposition (see e.g. [22])

Ravea = Cabea + Eapea + %Rga[cgd]b (26)
where in the above the following definitions have been used:

Eapca = Sa[c&d1b — Sblc&d]a (27)

Sab = Rap — 3Rgup. (28)

It follows from the assumptions concerning Segre type that [23]
Eabcdxcyd = Eabcdxcld =0. (29)

Hence from (25), (26) and (29) and the fact ti@t,.« F°“ = AF,, is equivalent to
Cubed F 4 = AF (where an asterisk denotes the usual dual operation) one has

Cab('dlcxd = )‘-l[axb] Cabcdleyd = )‘-l[ayb] Cabcdlcnd = )‘-l[anb] (30)
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for somei. Equation (30) implies that
Cabeal® = Mxaliaxp) + Yaliaye + laliane)- (31)

Transvecting withg?? then shows that. = 0 and soC,,.¢/¢ = 0. One can therefore
conclude that if the Weyl tensor is non-zero @t it is of Petrov type N with repeated
principal null direction/,. The following theorem has been established (cf [24]).

Theorem 5 Suppose thatM, g) is a warped product spacetime of clasg With Ricci
tensor of Segre typg211)} at each point. It then follows that the Petrov type is everywhere
either N or O.

Examples of class Awarped spacetimes representing null Einstein—-Maxwell fields,
both with and without cosmological constant, will now be discussed. Suppose that
Ruy = Ly + Kgap, Where K is a constant (possibly zero). The field equations (20),
(21) then become

3
K=—¢" 32
¢¢ (32)
K¢2 I;laﬁ + lotlﬁ = ]Zeotﬂ + {_2(‘1),)2 - ¢¢)”} }zlotﬂ- (33)

The gradient conformak, has componentgp, 0, 0, 0) in the adapted coordinate system
and satisfiesX,., = ¢'g.». In the case of non-zero cosmological constant, a judicious
choice of solutionp to the ordinary differential equation (32) enabled Tarig and Tupper to
produce a family of solutions [19]. In fact, if one seis= ef* where —R? = K /3 then
(33) reduces to

llp = Rup- (34)

An example of a three-dimensional Lorentz manifold satisfying (34) is the three-dimensional
analogue of the pp-waves of Ehlers and Kundt [25] and the full four-dimensional line
element is then given by

ds? = dx? + €8 (dy? — 2H (u, y) du?® — 2du dv). (35)

In the above, the coordinatés, y, u, v) are adapted to the warped product structure and
the third partial derivative ol with respect toy vanishes identically [19].

If the cosmological constant is assumed to be zero then it follows from equation (32)
that ¢” = 0 and so, in this caseX, is actually a homothety. It can then be shown [24]
that the metricg belongs to the class known as ‘Kundt’s class’ (see e.g. [22]) and the line
element is given locally by

4
ds? = dx? + dy? — 2du dv + ™Y du dx + ((v?/x?) — 2G(u, x, y)) du® (36)
x

where it should be noted that the coordinate systeny, u, v) in (36) is not adapted to
the warped product structure. Imposing the condition that a gradient homothety is admitted
then shows that the functiafi takes the fornG = xyf (u, x/y) for an arbitrary functionf
(which is nonlinear inx/y otherwise the solution is vacuum and hence flat). The gradient
homothety then has covariant componefisy, 0, 0) in the (x, y, u, v) coordinate system.

The last case to be considered in this section is the perfect fluid case. Assume that a
global unit timelike vector field:, and global functiong: and p exist such that the Ricci
tensor can be written as

w—
Ry = (H« + p)uuub + Tpgah (37)
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It will also be assumed that an equation of state- u(p) holds and thaj + p is nowhere
vanishing. In the case whefd, is Riemannian the vectd@/ax?! (in an adapted coordinate
system) spans the unique timelike Ricci eigendirection and so can be assumed to be equal
to u?. On substituting (37) into the second field equation (21) one finds Jzelagtis a

multiple of h.s and hencel/; is of constant curvature. It has therefore been shown that the
2

only perfect fluid warped spacetimes of classwith the second factor Riemannian are the
Friedmann—Robertson—Walker spacetimes (cf [1, 20]).

Now assume thaM, is Lorentzian and that an adapted coordinate systérns being
used. In these coordinates the gradient conforfals given by (¢, 0, 0, 0) and satisfies
Xa0 = ¢'gap. The field equations (20) and (21) in this case (noting that 0) become

nw—=p 3 "
=_° 38
5 = ® (38)
2H =P _ "2 1"

¢ 5 hap + (M + plugug = Rap + {—=2(¢)° — ¢ }];laﬂ- (39)
On differentiating equation (38) with respect.t6, for somea, one obtains the following

du 9 bl

Skop _ 9P (40)

dp ox«  ox¢

It can then be seen that eithentp = 1 or i and p are both functions ok! only. The
equation (39) can be considered as an equation for the Ricci tendds and if iz, is the
projection ofu, to M», scaled so as to be unit with respectiig, one has

2

Rep = {—¢¢" + 2¢)?} hap + &°(1t + p)itaii. (41)
Now, as it can readily be seen from the above expresstp,is of the Segre type
2

{1, (11)} with eigenvalues.; = 2(¢p2—p¢”) — (u+ p)p? andr, = i3 = 2(¢'>—¢p¢”) where

A1 is the eigenvalue associated to the (unit) timelike eigenvectoiSince); (i = 1, 2, 3)

must all be roots of the characteristic polynomialgyf it follows that they are all functions
2

of the coordinategx?), and sincap = ¢ (x?) this in turn implies: 22 — ¢¢”) = Ao With
Lo = constant, andu + p)¢? = S(x?), thus the above equation can be rewritten as

]zeaﬂ = S(x”)ﬂaﬁﬁ + )\Oélaﬂ (42)
with
S(x7) @
ptp=—5 pw—p=—6-—. (43)
#? ¢
Furthermore, the condition th&$'? — qbqb”)/ = 0 is equivalent to
¢//
ry = constant= k (44)

and therefore
S(x7) S(x”)
= — 3k =
242 P= 42
Notice that the energy conditiops> 0 andu+ p > 0 are satisfied providesi(x”) > 0
andk < 0.

+ 3k. (45)



300 B M Haddow and J Carot

Solutions of these characteristics do indeed exist as the following example (for which
k=0, thatisp = u ) shows:

ds? = dx? + x2(—dr® + F2(t, y, 2) dy? + H?(t, y, 2) dz?) (46)
where
. R\12 4Co 8Ce® — R
P P N 2 arctan
Hy ( 1€ +C2 4) Xp{ (64C1C; — R?)1/2 ((64C1C2 - Rz)l/z)}
(47)
1
H=_(Ci&" +Coe ™ — R/4) o

C1, C2, R, Hy and Cy all being functions ofy and z that must satisfy the following two
equations:

H;, Ci1&¥ —Ce? — (o Fp. C18% —Ce? 4+ Co

Hy 1% +Coe2 — & F. G +Ce?2 -k

The following is a family of solutions of the above type:
ds? = —x?dr? + dx? + x2sinh2)[(tanh(r)) "7 dy? + (tanh(r))? dz?]  (50)
whereg € [0, 1). The density is then

(1-4%

= sink?(2r)” 1)
In the case where the equation of state takes the form p the first field equation (38)
shows thatp” = 0 and henceX, is a homothety. The Ricci identity fak, then implies
that R,,.¢ X% = 0 and this will enable information about the Petrov type to be deduced.
Fix a point p € M and an orthonormal tetrad,, x,, v., z, whereu, is as before and
x, is parallel toX,. The Segre type of the Ricci tensor then implies thaty,; and
X[a2p] @re eigenbivectors of the tensay,.. (defined by (27)) with equal eigenvalues [23].
These bivectors also satis®,.qx“z”! = Rupeqax!“y?) = 0 and hence from equation (26)
they are eigenbivectors of the Weyl tensor with equal eigenvalues. Using the property

Capea F4 = AFu, & Cupea F Y = AF 4 of the Weyl tensor one therefore has (for some
A€ R):

(49)

Cabeatty* = Mtfayp) Capeattz" = Mtazy)
Cabcdxczd = )\x[azb] Cabcdxcyd = )‘x[u)’b]' (52)

Now definel, = x, +u, andn, = x, — u, and then using equations (52) one obtains, after
some calculation,

Cabtdlblcyd =0= Cabcdlblczd = lblccabc[dle] =0 (53)

and an analogous equation involving. These equations express the fact tfaand n“

span repeated principal null directions of the Weyl tensor and hence it is (if non-zero) of
Petrov typeD. It is also noted that the principal null directions lie in the timelike 2-plane
spanned by, and X, at each point.
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