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1. Introduction

Suppose that(M1, h1) and(M2, h2) are a pair of pseudo-Riemannian manifolds andθ is a
real valued function onM1. All structures will be considered smooth (where appropriate) and
all manifolds Hausdorff, paracompact and connected. Thewarped product[2] of (M1, h1)

and (M2, h2) with warping factor θ is the pseudo-Riemannian manifold with underlying
manifold M1 × M2 and metricg given by

g = π∗
1h1 ⊗ e2θπ∗

2h2. (1)

In (1) the functionsπi are the canonical projections onto the factors of the product and
will be omitted where there is no risk of confusion. The pseudo-Riemannian manifold
(M, g) will be denoted byM1 ×θ M2. A warped product spacetime, or simply warped
spacetime, is a four-dimensional manifold with a Lorentz metric, constructed in the above
fashion. If the warping factor of a warped product spacetime is constant then the spacetime
is (globally) decomposable, physically relevant examples of which are, for instance, the
Bertotti–Robinson spacetimes [3, 4], or Einstein’s static universe [22]. The class of warped
product spacetimes with non-constant warping factors is, however, much richer and includes
such well known examples as Schwarzschild, Friedmann–Robertson–Walker and static
spacetimes. The purpose of this paper is to examine in detail which kinds of energy–
momentum tensor are possible in warped product spacetimes and to provide some examples
of such spacetimes.

Since the considerations in this work are mainly local it will be convenient to give a
local version of the warped product definition. IfM1 ×θ M2 is a warped product spacetime
with dimMi = ni (for i = 1, 2) andM = M1 × M2 then the convention will be adopted
that upper-case Latin indices take values from 1 ton1 and Greek indices take values from
n1 + 1 to 4, with lower-case Latin indices taking the values 1 to 4. For eachp ∈ M there
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exists a neighbourhoodU of p such that there is a coordinate systemxa on U adaptedto
the product structure in the sense that the line element ds2 for M can be written in the form

ds2 = h
1
AB(xA) dxA dxB + e2θ(xA)

h
2
αβ(xα) dxα dxβ. (2)

Conversely, if a spacetime contains a neighbourhoodU on which there is a coordinate system
such that the line element takes the above form then it will be referred to as alocally warped
spacetime. Some comments regarding the relationship between locally warped spacetimes
and warped spacetimes will be made in the next section.

The importance of warped spacetimes is that their geometry is directly related to the
geometry of their, lower-dimensional, factors which are generally easier to study. In the
case where the first factor is Lorentzian the causal structure of the warped spacetime can
be determined by examining the causal structure of the first factor [5, 6]. The warped
product construction also provides a useful method for building examples of spacetimes
with particular causal properties. Another aspect of the spacetime geometry, whose study
is facilitated by the warped product structure, is the isometry algebra [1].

A classification of warped spacetime into three classes was given by Carot and da Costa
[1], and the possible Petrov types determined in each case. These results will be reviewed
here as they will be important later on. The three classes of warped products are denoted
as A1, A2 and B and are defined as follows:

Class A1. n1 = 1 andn2 = 3. These spacetimes are essentially characterized by the
existence of a gradient conformal vector field (see next section) and ifM2 is Riemannian
(positive definite) then the Petrov type is I, D or O, with no restrictions on the Petrov type
in the case whereM2 is Lorentzian.

Class B. n1 = n2 = 2. These spacetimes are necessarily of Petrov type D or O and can
be characterized by certain properties of the null directions tangent to the Lorentzian factor
of the product (see the third section).

Class A2. n1 = 3 andn2 = 1. These spacetimes are characterized by the existence of
a hypersurface orthogonal non-null Killing vector and must be of Petrov type I, D or O if
M1 is Riemannian, with no restrictions on the Petrov type ifM1 is Lorentz.

It should be noted that the above three classes are not mutually exclusive (for example
the Schwarzschild spacetime falls into classes A2 and B).

Warped product spacetimes of class B have been considered previously by several
authors [7–9], although they are not referred to as such. Some results on the relationship
between warped product manifolds and certain pseudo-symmetry properties of the curvature
tensor have been given by Deszczet al [10, 11].

2. General geometric considerations

Certain geometric aspects of warped spacetimes will be discussed in this section and it is
noted that, whilst the discussion is concerned with warped spacetimes, the considerations
apply to warped product manifolds with arbitrary dimension and signature. The first point to
be remarked upon is the distinction between warped products and locally warped products
which was mentioned in the first section. The definition of a warped spacetime is essentially
a global geometric one, yet if one is interested in exact solutions then one normally works
locally and the local definition is more relevant. In fact a spacetime(M, g), which has
the property that eachp ∈ M admits a neighbourhoodU of p and an adapted coordinate
system onU in which the line element takes the form (2), can be given the structure of a
warped product under certain assumptions. Roughly speaking one has to assume that the
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local warped product structures on intersecting neighbourhoods are ‘compatible’, and that
certain global geometric and topological restrictions hold. The existence of the (global)
warped product structure then follows from a theorem of Ponge and Reckziegel [12] and
a discussion of how this theorem is applied will be given elsewhere [13]. In [1] warped
products of classes A1 and A2 were characterized by the existence of certain types of
symmetry. The existence of these symmetries enables one to conclude that the metric can
be written in the special form (2) and hence that the spacetime is a locally warped product.
In fact it is possible to use direct geometric arguments to show that the existence of a
warped product structure where one factor is one dimensional is equivalent to the existence
of an appropriate type of symmetry [13].

In the case of a class A1 warped product the local characterization given in [1] can
be improved upon. If a spacetime(M, g) admits a (nowhere Killing) gradient conformal
vector field Xa, i.e. Xa satisfiesXa;b = φgab (where a semicolon will denote covariant
differentiation and a comma partial differentiation) withφ a nowhere zero real-valued
function, then the spacetime is locally warped of class A1. From [1] it must be shown
that Xa is non-null andφ,a is parallel toXa in order to conclude that(M, g) is locally a
warped product. However the inequalityXaXa;b 6= 0 shows thatXaXa cannot vanish over
an open set and an application of the Ricci identity gives

RabcdX
d = 2φ,[agb]c. (3)

In the above, and in what follows,Rabcd denotes the Riemann curvature tensor, square
brackets denote skew-symmetrization and round brackets denote the symmetrization
operation. If (3) is contracted withXb then one obtainsφ[,aXb] = 0 showing thatφ,a

is parallel to Xa and hence(M, g) is locally a warped product. The degenerate case
whereφ is identically zero andXa is non-null corresponds to the special case of a locally
decomposable spacetime or, equivalently, a warped product with constant warping factor.

Finally in this section it will be shown that all warped spacetimes admit a (second-order)
Killing tensor, that is a second-order symmetric tensorKab satisfyingK(ab;c) = 0. It should
be remarked, however, that this Killing tensor may be decomposable, that is, expressible in
terms of Killing vectors. Suppose that(M, g) is a warped spacetime and that equation (1)
is written in local coordinates as

gab = h
1
ab + e2θ

h
2
ab. (4)

The spacetime with metricg′
ab = e−2θgab is decomposable and soh

2
ab is covariantly constant

under the Levi–Civita connection associated withg′
ab. Using the well known formula for

the change in connection under a conformal change of metric one has

h
2
ab;c = −2h

2
abθ,c − h

2
bcθ,a − h

2
acθ,b. (5)

It then follows thatKab ≡ e4θ h
2
ab is a Killing tensor and hence one has the following

theorem.

Theorem 1. Suppose that(M, g) is a warped spacetime. It then follows that(M, g) admits
a second-order Killing tensor which is proportional to the metric of the second factor of the
product.
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3. Warped spacetimes of class B

In this section a thorough study of class B warped spacetimes will be made and their possible
energy–momentum types determined. A theorem will be proven which shows that in many
cases the second factor of the warped product is of constant curvature, and a geometric
proof of an ‘extended Birkhoff theorem’ will be given.

If (M, g) is a warped spacetime of class B then one of the factors is a two-
dimensional Lorentz manifold which necessarily admits a unique pair of independent null
one-dimensional distributions. A pair of null vectors can locally be chosen to span these
distributions and then lifted to the spacetime to give null vectorsla andna whose directions
are canonically determined by the product structure. A warped product spacetime of class
B can, in fact, be characterized by properties of these null directions [1]. Under the
decomposable metricg′ which is conformally related tog the vectorsla andna are recurrent
in the sense that there exist 1-formspa andqa such thatla|b = lapb andna|b = naqb (where
covariant differentiation with respect to the decomposable metric is denoted by a stroke).
These null vectors are therefore geodesic, shearfree and twistfree underg′ and hence under
all metrics conformally related tog′. In fact theg-covariant derivatives ofla andna satisfy

la;b = lapb − θ,alb + (lcθ,c)gab (6)

na;b = naqb − θ,anb + (ncθ,c)gab. (7)

In the above one has thatθ[,albnc] = 0 when M1 is Lorentzian andlaθ,a = naθ,a = 0
when M2 is Lorentzian. Conversely if some spacetime admits a pair of independent null
directionsla andna satisfying (6) and (7) for someθ,a which either lies in thel–n plane or
its orthogonal complement at each point then this spacetime is locally warped [1].

A classification of class B warped spacetimes into four subclasses will now be given,
depending on the relationship between the gradient of the warping factor and the pair of null
directions picked out by the product structure. There is an obvious classification into two
types depending on whetherM1 is Lorentzian or Riemannian but it will prove convenient
to further subdivide the first type, and introduce a degenerate type (corresponding to the
decomposable case). Suppose that(M, g) is a class B warped spacetimeM1 ×θ M2 and
that la andna span the null directions canonically determined by the product structure. This
spacetime is then classified as follows.

BT . If θ,a 6= 0, l[anbθ,c] = 0, θ[,alb] 6= 0 andθ[,anb] 6= 0 then the warped spacetime will
be said to be of type BT . In this caseM1 is Lorentzian.

BR. If θ,a 6= 0, l[anbθ,c] = 0 and eitherθ[,alb] = 0 or θ[,an,b] = 0 (but not both) then
the warped spacetime will be said to be of type BR. Without loss of generality it will be
assumed that spacetimes of this type haveθ,b parallel to lb. This class of type B warped
products may alternatively be characterized byθ[,albnc] = 0 and laθ,a = 0. Using the
standard expression for the change in connection under a conformal change of metric it
may be shown thatla is recurrent in this case.

BS . If θ,a 6= 0 andlaθ,a = naθ,a = 0 then the warped product spacetime will be said to
be of type BS . In this caseM2 is Lorentzian.

BP . If θ,a = 0 then the spacetime will be said to be of type BP and this is the
decomposable case.

The above classification is not mutually exclusive as one could construct spacetimes
which fall into different types on different regions. Since a class B warped product either
hasM1 Lorentzian or Riemannian, such a spacetime cannot be both type BS and BT on
separate non-empty subsets. However a class B warped spacetime(M, g), with the first
factor Lorentzian, can be decomposed as a disjoint unionMT ∪ MR ∪ MP ∪ M ′ where the
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spacetime is of type BT on the open setMT ; MR andMP are the interiors of the subsets
of type BR and BP , respectively, andM ′ is defined by the decomposition. An analogous
decomposition is possible in the case where the first factor is Riemannian. Consequently
one can always work in an open submanifold where one of the above four types holds
exclusively, and from now on it will be assumed that one is working in such a submanifold.
It will also be convenient to restrict oneself to an open submanifold where the Segre type
of the Ricci tensor is constant. It is remarked that in types BS and BT neitherla nor na are
recurrent, in type BR exactly one of the two vectors is recurrent and in type BP both are
recurrent.

The Ricci tensor of a class B warped spacetime will now be examined in more detail
and the relationship between the Segre type and the above classification determined. An
adapted coordinate system of the form described in the introduction will generally be used
and, unless otherwise stated, indices will be raised and lowered with the spacetime metric
gab. If the Ricci tensors associated withh

1
ab andh

2
ab are denoted byR

1
ab andR

2
ab respectively

then the Ricci tensorRab associated withgab is given by the following [1, 6]

RAB = R
1

AB − 2

φ
φ;AB (8)

Rαβ = R
2

αβ − 1
2(φ2)A;A h

2
αβ (9)

RαB = 0. (10)

In (8)–(10),φ is defined byφ = eθ , whereθ is the warping factor. The block-diagonal form
of the Ricci tensor and metric in the adapted coordinate system means that the Segre type
can be determined fairly easily from the Segre type of the pair of 2× 2 matricesRAB and
Rαβ . This is because one can reduce each block to Jordan form using commuting similarity
transformations. In fact, since the Ricci tensor of a two-dimensional manifold is a multiple
of the metric it follows from (9) that the Segre type ofRαβ is just {(11)} (or {(1, 1)} if M2

is Lorentzian). One simply needs to compute the Segre characteristic ofRAB and ‘adjoin’
it to the Segre characteristic ofRαβ . If M1 is Riemannian, then the Segre type ofRAB is
just {11} (or its degeneracy) but ifM1 is Lorentzian then the three Segre types{2}, {zz̄} and
{11} are possible. In the case of type BR it follows from the existence of a null recurrent
vector and the Ricci identities thatRab has a null eigenvectorla satisfyinglα = 0. For type
BP one has thatφ is a constant. The possible Ricci types corresponding to the four types
of class B warped spacetime just described are given in table 1. Note that all degeneracies
of the types given in the table are also possible.

Table 1. Energy–momentum types of class B warped products.

Warped type Segre type

BT {2(11)}, {zz̄(11)} or {1, 1(11)}
BR {2(11)} or {(1, 1)(11)}
BS {(1, 1)11}
BP {(1, 1)(11)}

Given the above classification, the question arises as to whether examples actually
exist. Since all spherically symmetric spacetimes are warped products where the first factor
is Lorentzian [1] (and the second factor is of constant curvature), such examples are easily
found in the literature. Specifically, the Schwarzschild and Reissner–Nordström solutions



294 B M Haddow and J Carot

are of type BT ; type BR spherically symmetric solutions have been given by Foyster and
McIntosh [14] and the Bertotti–Robinson solutions mentioned in the introduction are of type
BP . Examples of spacetimes of type BS are less easy to find in the literature and it can be
seen from the table that the only physically interesting energy–momentum types possible
are non-null electromagnetic,3-term or vacuum. It will be shown shortly that all these
solutions necessarily admit a three-dimensional isometry algebra acting on two-dimensional
timelike orbits (i.e. the second factor of the product is of constant curvature). A particular
example of a vacuum solution of type BS is given by the following line element, defined
on an appropriate open subset ofR4 with coordinates(x, y, z, t)

ds2 = F−1 dx2 + F dy2 + x2(sin2(t) dz2 − dt2) (11)

where

F(x) ≡ A

x
− 1 A constant. (12)

It has been shown previously that the second factor of a class B warped spacetime is
of constant curvature in the case of vacuum [8] and perfect fluid [9]. It then follows that
the Killing vector algebra of the second factor is three dimensional and all these Killing
vectors can be lifted toM [1]. In fact this conclusion can be reached for a wide variety of
energy–momentum types and the following is an attempt at formulating a theorem which
applies to most cases of interest. Note that the product structure can be used to define a
vector (at a point)Xa to be vertical if h

1
abX

a = 0 andhorizontal if h
2
abX

a = 0, and that

Ricci eigenvectors must be either horizontal or vertical, at each point.

Theorem 2. Suppose that(M, g) is a class B warped product spacetime with factors
M1 ×θ M2 and warping factorθ . In addition suppose that, at each point inM, the subspace
of the cotangent space spanned by the gradients of the eigenvalues associated with all Ricci
eigenvectors can be spanned by the gradients of the eigenvalues associated with horizontal
eigenvectors. It then follows thatM2 is necessarily of constant curvature.

Corollary 1. The conclusions of the theorem apply in the case of vacuum,3-term,
electromagnetic (null and non-null) and perfect fluid (with an equation of state).

Proof. Denote the Ricci scalars associated with(M1, h1) and (M2, h2) by R
1

and R
2

,

respectively. One can then rewrite the field equations (8) and (9) as

RAB = 1

2
R
1

h
1
AB − 2

φ
φ;AB (13)

Rαβ = 1
2 R

2
h
2
αβ − 1

2(φ2)A;A h
2
αβ. (14)

Firstly, suppose that there are non-constant Ricci eigenvalues. From the considerations on
Segre type earlier in this section it follows that there exists at least one horizontal Ricci
eigendirectionZa and from the above assumption its eigenvalueλ may be assumed to be
non-constant. Now, from (13) and (14) (block-diagonal structure of the Ricci tensor) it
follows that λ must be a root of the characteristic polynomial associated withRA

B and
therefore (see (13)) a function onM1; that is it only depends on the coordinatesx1 andx2,
and the same holds for its associated (horizontal) eigendirectionZa, that is: Za is tangent
to M1 and its components are functions onM1. Now from (14) it is immediately seen that
the (degenerate) vertical eigenvalueµ is given by

µ = 1
2φ−2(R

2
− (φ2)A;A) (15)
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and, according to the hypotheses of the theorem, it must be a (possibly constant) function of
x1 andx2. Sinceµ andφ are functions of the first two coordinates only andR

2
is a function

of x3 and x4 only it follows from the above thatR
2

is a constant. In the case where all

Ricci eigenvalues are constant, one arrives at equation (15) withµ constant and can again
conclude thatR

2
is constant. This completes the proof of the theorem. �

The corollary follows immediately in the case of vacuum,3-term and electromagnetic
null since in these cases all the Ricci eigenvalues are constant. In the case of electromagnetic
non-null the tracefree condition shows that the pair of eigenvalues are functionally related
(and one of them is associated with a horizontal eigenvector) and in the case of a perfect
fluid the existence of an equation of state similarly shows that the conditions of the theorem
hold.

Finally in this section a geometric proof of an ‘extended Birkhoff theorem’ will be
given. Other proofs of extended Birkhoff theorems have been given by Goenner [15] and
Barnes [16] and a more geometrical proof was given by Bona [17].

Theorem 3. Suppose that(M, g) is a class B warped product spacetime whose Ricci tensor
is everywhere of Segre type{(1, 1)(11)} or some degeneracy thereof. Assume that the
gradient of the warping factor does not vanish over a non-empty open set. It then follows
that one can decomposeM as the disjoint unionM = MK ∪MR ∪M ′ whereMK andMR are
open and a hypersurface orthogonal non-null Killing vector is admitted on a neighbourhood
of any point ofMK and a null recurrent vector field admitted on a neighbourhood of any
point of MR. The setM ′ has no interior.

Corollary 2. For non-flat (in the sense that the curvature does not vanish over a non-empty
open subset) Einstein spaces one has thatMR = M ′ = φ.

Proof. Given the assumptions on Segre type, one can write the Ricci tensor asRab =
σ h

1
ab + ρ h

2
ab (for some functionsσ and ρ) and hence the field equations (8) and (9)

become:

σ h
1
AB = 1

2
R
1

h
1
AB − 2

φ
φ;AB (16)

ρ h
2
αβ = 1

2 R
2

h
2
αβ − 1

2(φ2)A;A h
2
αβ. (17)

It can be seen from the above thatM1 admits a gradient conformal vectorφA, and if this is
non-null (as it must be in the BS and BT cases, but not in the BR case) thenM1 is locally
a 1+1 warped product (see remarks in section 2 and [13]). The factorM1 then admits
(locally) a hypersurface orthogonal Killing vector which is orthogonal to the gradient of the
warping factor and so [1] lifts up to give a hypersurface orthogonal Killing vector onM.
Actually the field equations (16) and (17) reduce to the vacuum or3-term case if one hasσ
andρ zero or constant and the conclusion about the existence of a hypersurface orthogonal
Killing vector follows in this case also. In any non-empty open subset ofM of type BR,
the ‘extra’ Killing vector is not necessarily admitted, but a null recurrent vector is admitted.
This completes the proof of the theorem. The corollary follows from the fact that a non-flat
Einstein space admitting a recurrent vector is necessarily of Petrov type N or III [18].�
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4. Warped spacetimes of class A1

The purpose of this section is to determine what sort of energy–momentum tensors are
possible in warped spacetimes of class A1. It will be shown that vacuum and3-term
types imply that the spacetime must be of constant curvature, the only possible solution
then being the De Sitter spacetimes (including Minkowski, which is trivially seen to be
decomposable, i.e. the warping function is constant), whereas non-null electromagnetic
fields are not possible. On the other hand, examples will be given of null electromagnetic
and perfect fluid solutions which are warped products of class A1. In the latter two cases
some general remarks can be made concerning the possible Petrov types.

As was remarked upon in section 2, class A1 warped products can essentially be
characterized by the existence of a (non-Killing) gradient conformal vector field. Some
results concerning spacetimes admitting gradient conformals have been given by Tariq and
Tupper [19] and Daftardar and Dadhich [20]. In addition, class A1 warped spacetimes with
the second factor Riemannian have recently been referred to asgeneralized Robertson–
Walker spacetimes[21].

For later reference it will be convenient to display the expressions for the Ricci tensor
[1, 6] specialized to a class A1 warped spacetime(M, g) with warping factorθ . As before
an adapted coordinate system will be used andφ ≡ eθ .

RAB = − 3

φ
φ;AB (18)

Rαβ = R
2

αβ + {−2(φCφC) − φφC;C} h
2
αβ. (19)

If ordinary differentiation with respect tox1 is denoted by a prime then the above can be
rewritten as

R11 = − 3

φ
φ′′ (20)

Rαβ = R
2

αβ + ε{−2(φ′)2 − φφ′′} h
2
αβ ε = g11 = ±1. (21)

It can be seen from the above that the vector∂/∂x1 is necessarily an eigenvector of the Ricci
tensor. If this vector is spacelike (i.e. ifM2 is Lorentzian) then no restrictions are placed
on the Segre type of the Ricci tensor, but if this is timelike (i.e.M2 is Riemannian) then the
Ricci tensor is necessarily diagonalizable with∂/∂x1 spanning a timelike eigendirection.

If one has thatRab = Kgab for some (perhaps zero) constantK then equation (21)
shows thatR

2
ab is a multiple of the metric onM2. The Bianchi identity onM2 then shows

that M2 is a space of constant curvature and henceM admits a six-dimensional isometry
algebra acting on three-dimensional orbits. However, it then follows that at each point
of M, the Killing isotropy group is three dimensional and hence the Weyl tensor must
vanish at each point [22], the resulting spacetime thus being of constant curvature. The
following theorem has therefore been established (cf [11]), which effectively says that the
only vacuum or3-term solutions which are locally warped products of class A1 are the
De Sitter spacetimes.

Theorem 4. Let (M, g) be a warped product of class A1. If Rab − 1
4Rgab = 0 over some

non-empty open setU then it follows that the curvature is constant onU .
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Suppose now that the Ricci tensor given by (20) and (21) corresponds to a non-null
electromagnetic field, its canonical Segre form therefore being [23]

Rab = ψ2{xaxb + yayb − zazb + uaub} (22)

where {xa, ya, za, ua} are unit eigenvectors that form an orthonormal tetrad with
corresponding eigenvaluesψ2 for xa andya and−ψ2 for za andua. As we have already
pointed out,∂/∂x1 is a (unit) Ricci eigenvector (timelike forε = −1, spacelike forε = +1)
which can then be identified with one of the above vectors in the tetrad, sayxa if ε = +1
or ua if ε = −1. It therefore follows that

ψ2 = − 3

φ
φ′′ (23)

and the three remaining eigenvectors must necessarily lie inM2, two of them (sayya and
za) being spacelike and having opposite sign eigenvalues+ψ2 and −ψ2. Using (21) to
obtain the eigenvalue equation for this pair of eigenvectors one has

{R
2

αβ − ε(2φ′2 + φφ′′) h
2
αβ ± 3φφ′′

h
2
αβ}ωβ

± = 0 (24)

whereω
β
+ ≡ yβ and ω

β
− ≡ zβ . Henceλ± ≡ (±3 − ε)φφ′′ − 2εφ′2 must both be roots of

the characteristic polynomial associated withR
2

αβ , and sinceφ = φ(x1) both of them must

be constants, which immediately implies thatφ′ is constant; that isφ′′ = ψ2 = 0. Thus, no
non-null Einstein–Maxell warped spacetimes of the class A1 exist.

It will next be assumed that(M, g) is a warped spacetime of class A1 whose Ricci
tensor is everywhere of Segre type{(211)} with constant eigenvalue. That is to say that
the spacetime represents a null electromagnetic field or null radiation field with a possibly
non-zero cosmological constant. Examples with non-zero cosmological constant have been
given by Tariq and Tupper [19] and these will be discussed shortly but first some general
remarks about the Petrov type will be made.

Since the Ricci tensor has no timelike eigenvalues it follows thatM2 is Lorentzian and
the gradient conformalXa is spacelike. At an arbitrary pointp ∈ M let la, na, xa, ya be
a real null tetrad wherela is the (unique up to scaling) null Ricci eigenvector andxa is
parallel toXa. Equation (3) and the subsequent remarks then show that there exists a scalar
α such that

Rabcdx
d = αx[agb]c. (25)

Now consider the decomposition (see e.g. [22])

Rabcd = Cabcd + Eabcd + 1
6Rga[cgd]b (26)

where in the above the following definitions have been used:

Eabcd = Sa[cgd]b − Sb[cgd]a (27)

Sab = Rab − 1
4Rgab. (28)

It follows from the assumptions concerning Segre type that [23]

Eabcdx
cyd = Eabcdx

cld = 0. (29)

Hence from (25), (26) and (29) and the fact thatCabcdF
cd = λFab is equivalent to

Cabcd

∗
F

cd = λ
∗
F ab (where an asterisk denotes the usual dual operation) one has

Cabcd l
cxd = λl[axb] Cabcd l

cyd = λl[ayb] Cabcd l
cnd = λl[anb] (30)
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for someλ. Equation (30) implies that

Cabcd l
c = λ(xdl[axb] + ydl[ayb] + ld l[anb]). (31)

Transvecting withgad then shows thatλ = 0 and soCabcd l
d = 0. One can therefore

conclude that if the Weyl tensor is non-zero atp, it is of Petrov type N with repeated
principal null directionla. The following theorem has been established (cf [24]).

Theorem 5. Suppose that(M, g) is a warped product spacetime of class A1 with Ricci
tensor of Segre type{(211)} at each point. It then follows that the Petrov type is everywhere
either N or O.

Examples of class A1 warped spacetimes representing null Einstein–Maxwell fields,
both with and without cosmological constant, will now be discussed. Suppose that
Rab = lalb + Kgab, where K is a constant (possibly zero). The field equations (20),
(21) then become

K = − 3

φ
φ′′ (32)

Kφ2
h
2
αβ + lαlβ = R

2
αβ + {−2(φ′)2 − φφ′′} h

2
αβ. (33)

The gradient conformalXa has components(φ, 0, 0, 0) in the adapted coordinate system
and satisfiesXa;b = φ′gab. In the case of non-zero cosmological constant, a judicious
choice of solutionφ to the ordinary differential equation (32) enabled Tariq and Tupper to
produce a family of solutions [19]. In fact, if one setsφ = eRx where−R2 = K/3 then
(33) reduces to

lαlβ = R
2

αβ. (34)

An example of a three-dimensional Lorentz manifold satisfying (34) is the three-dimensional
analogue of the pp-waves of Ehlers and Kundt [25] and the full four-dimensional line
element is then given by

ds2 = dx2 + e2Rx(dy2 − 2H(u, y) du2 − 2du dv). (35)

In the above, the coordinates(x, y, u, v) are adapted to the warped product structure and
the third partial derivative ofH with respect toy vanishes identically [19].

If the cosmological constant is assumed to be zero then it follows from equation (32)
that φ′′ = 0 and so, in this case,Xa is actually a homothety. It can then be shown [24]
that the metricg belongs to the class known as ‘Kundt’s class’ (see e.g. [22]) and the line
element is given locally by

ds2 = dx2 + dy2 − 2du dv + 4v

x
du dx + ((v2/x2) − 2G(u, x, y)) du2 (36)

where it should be noted that the coordinate system(x, y, u, v) in (36) is not adapted to
the warped product structure. Imposing the condition that a gradient homothety is admitted
then shows that the functionG takes the formG = xyf (u, x/y) for an arbitrary functionf
(which is nonlinear inx/y otherwise the solution is vacuum and hence flat). The gradient
homothety then has covariant components(x, y, 0, 0) in the (x, y, u, v) coordinate system.

The last case to be considered in this section is the perfect fluid case. Assume that a
global unit timelike vector fieldua and global functionsµ andp exist such that the Ricci
tensor can be written as

Rab = (µ + p)uaub + µ − p

2
gab. (37)
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It will also be assumed that an equation of stateµ = µ(p) holds and thatµ+p is nowhere
vanishing. In the case whereM2 is Riemannian the vector∂/∂x1 (in an adapted coordinate
system) spans the unique timelike Ricci eigendirection and so can be assumed to be equal
to ua. On substituting (37) into the second field equation (21) one finds thatR

2
αβ is a

multiple of h
2
αβ and henceM2 is of constant curvature. It has therefore been shown that the

only perfect fluid warped spacetimes of class A1 with the second factor Riemannian are the
Friedmann–Robertson–Walker spacetimes (cf [1, 20]).

Now assume thatM2 is Lorentzian and that an adapted coordinate systemxa is being
used. In these coordinates the gradient conformalXa is given by(φ, 0, 0, 0) and satisfies
Xa;b = φ′gab. The field equations (20) and (21) in this case (noting thatu1 = 0) become

µ − p

2
= − 3

φ
φ′′ (38)

φ2 µ − p

2
h
2
αβ + (µ + p)uαuβ = R

2
αβ + {−2(φ′)2 − φφ′′} h

2
αβ. (39)

On differentiating equation (38) with respect toxα, for someα, one obtains the following

dµ

dp

∂p

∂xα
= ∂p

∂xα
. (40)

It can then be seen that either dµ/dp = 1 or µ andp are both functions ofx1 only. The
equation (39) can be considered as an equation for the Ricci tensor inM2 and if ũα is the
projection ofua to M2, scaled so as to be unit with respect toh

2
αβ , one has

R
2

αβ = {−φφ′′ + 2(φ′)2} h
2
αβ + φ2(µ + p)ũαũβ . (41)

Now, as it can readily be seen from the above expression,R
2

αβ is of the Segre type

{1, (11)} with eigenvaluesλ1 ≡ 2(φ′2−φφ′′)−(µ+p)φ2 andλ2 = λ3 ≡ 2(φ′2−φφ′′) where
λ1 is the eigenvalue associated to the (unit) timelike eigenvectorũα. Sinceλi (i = 1, 2, 3)

must all be roots of the characteristic polynomial ofR
2

α
β it follows that they are all functions

of the coordinates(xγ ), and sinceφ = φ(x1) this in turn implies: 2(φ′2 − φφ′′) ≡ λ0 with
λ0 = constant, and(µ + p)φ2 ≡ S(xγ ), thus the above equation can be rewritten as

R
2

αβ = S(xγ )ũαũβ + λ0 h
2
αβ (42)

with

µ + p = S(xγ )

φ2
µ − p = −6

φ′′

φ
. (43)

Furthermore, the condition that
(
φ′2 − φφ′′)′ = 0 is equivalent to

φ′′

φ
= constant≡ k (44)

and therefore

µ = S(xγ )

2φ2
− 3k p = S(xγ )

2φ2
+ 3k. (45)

Notice that the energy conditionsµ > 0 andµ±p > 0 are satisfied providedS(xγ ) > 0
andk 6 0.
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Solutions of these characteristics do indeed exist as the following example (for which
k = 0, that isp = µ ) shows:

ds2 = dx2 + x2(−dt2 + F 2(t, y, z) dy2 + H 2(t, y, z) dz2) (46)

where

F = 1

H0

(
C1e2t + C2e−2t − R

4

)1/2

exp

{
4C0

(64C1C2 − R2)1/2
arctan

(
8C2e−2t − R

(64C1C2 − R2)1/2

)}
(47)

H = 1

F
(C1e2t + C2e−2t − R/4) (48)

C1, C2, R, H0 and C0 all being functions ofy and z that must satisfy the following two
equations:

H,ty

H,y

= C1e2t − C2e−2t − C0

C1e2t + C2e−2t − R
4

F,tz

F,z

= C1e2t − C2e−2t + C0

C1e2t + C2e−2t − R
4

. (49)

The following is a family of solutions of the above type:

ds2 = −x2 dt2 + dx2 + x2 sinh(2t)[(tanh(t))−q dy2 + (tanh(t))q dz2] (50)

whereq ∈ [0, 1). The density is then

µ = (1 − q2)

x2 sinh2(2t)
. (51)

In the case where the equation of state takes the formµ = p the first field equation (38)
shows thatφ′′ = 0 and henceXa is a homothety. The Ricci identity forXa then implies
that RabcdX

a = 0 and this will enable information about the Petrov type to be deduced.
Fix a point p ∈ M and an orthonormal tetradua, xa, ya, za where ua is as before and
xa is parallel to Xa. The Segre type of the Ricci tensor then implies thatx[ayb] and
x[azb] are eigenbivectors of the tensorEabcd (defined by (27)) with equal eigenvalues [23].
These bivectors also satisfyRabcdx

[azb] = Rabcdx
[ayb] = 0 and hence from equation (26)

they are eigenbivectors of the Weyl tensor with equal eigenvalues. Using the property
CabcdF

cd = λFab ⇔ Cabcd

∗
F

cd = λ
∗
F ab of the Weyl tensor one therefore has (for some

λ ∈ R):

Cabcdu
cyd = λu[ayb] Cabcdu

czd = λu[azb]

Cabcdx
czd = λx[azb] Cabcdx

cyd = λx[ayb] . (52)

Now definela = xa + ua andna = xa − ua and then using equations (52) one obtains, after
some calculation,

Cabcd l
blcyd = 0 = Cabcd l

blczd ⇒ lblcCabc[d le] = 0 (53)

and an analogous equation involvingna. These equations express the fact thatla and na

span repeated principal null directions of the Weyl tensor and hence it is (if non-zero) of
Petrov typeD. It is also noted that the principal null directions lie in the timelike 2-plane
spanned byua andXa at each point.
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