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Abstract

Within the context of a first-order phase transition in the early Universe, we
study the collision process for vacuum bubbles expanding in a plasma. The
effects of the plasma are simulated by introducing a damping term in the
equations of motion for a U(1) global field. We find that Lorentz-contracted
spherically symmetric domain walls adequately describe the overdamped mo-
tion of the bubbles in the thin wall approximation, and study the process of
collision and phase equilibration both numerically and analytically. With an
analytical model for the phase propagation in 141 dimensions, we prove that
the phase waves generated in the bubble merging are reflected by the walls of
the true vacuum cavity, giving rise to a long-lived oscillating state that delays
the phase equilibration. The existence of such a state in the 3+1 dimensional
model is then confirmed by numerical simulations, and the consequences for
the formation of vortices in three-bubble collisions are considered.
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I. INTRODUCTION

According to the standard model and its extensions, symmetry breaking phase transitions
are expected to occur in the early universe. The mechanism by which these transitions may
take place could be either by formation of bubbles of the new phase within the old one
(i.e., first order phase transition) or by spinodal decomposition (i.e.,second order phase
transition). Although the verdict is still pretty much in the air as to which one would have
actually taken place, in the particular case of the electroweak phase transition common
opinion inclines more towards the first of the two possibilities. As this scenario would have
it, bubbles of the new phase nucleated within the old one (the nucleation process being
described by instanton methods as far as the WKB approximation remains valid [1]), and
subsequently expanded and collided with each other until occupying basically all of the space
available at the completion of the transition. The caveat introduced by the word “basically”
is important though: in the process of bubble collision, the possibility arises that regions
of the old phase become trapped within the new one, giving birth to topologically stable
localized energy concentrations known as topological defects (for recent reviews see refs. [2]
), much in the same way in which these structures are known to appear in condensed matter
phase transitions. From a theoretical point of view, topological defects will appear whenever
a symmetry group G is spontaneously broken to a smaller group H such that the resulting
vacuum manifold M = G/H has a non-trivial topology: cosmic strings for instance, vortices
in two space dimensions, will form whenever the first homotopy group of M is non-trivial,
i.e., 7T1(M) 7£ 1.

To see how this could happen in detail, let’s consider the Lagrangian

L= %8,@8“@* — V() (1)
for a complex field ®. If V is a potential of the type V = 2(|®|> — n*)? and its parameters
are functions of the temperature such that at high temperatures ® = 0 is the only minimum
of V, while at zero temperature all the |®| = 1 values of the field correspond to different
minima, then the structure of the vacuum manifold will be that of S'. As m(S') # 1,
cosmic strings should then be created in this model during the phase transition.

The way in which this would actually take place is via the Kibble mechanism [3]. The
basic idea behind it is that when two regions in which the phase of the field takes different
values encounter each other, the phase should interpolate between this two regions following
a geodesic in the vacuum manifold. In the context of a first order phase transition, a
possible scenario for vortex formation in two space dimensions would then look like this:
three bubbles with respective phases of 0, 27 /3, and 47 /3 collide simultaneously. According
to the so-called geodesic rule then, if we walk from the first bubble to the second , then from
the second to the third, and finally back from the third to the first again, the phase will have
wounded up by 27 in our path, having traversed the whole of the vacuum manifold once
along the way. Continuity of the field everywhere inside the region contained by our path
demands then that the field be zero at some point inside of it, namely the vortex core. In the
limit in which the bubbles extend to infinity, outwards from the center of collision, removal
of this vortex would cost us an infinite amount of energy, since it would involve unwinding
the field configuration over an infinite volume. The vortex is thus said to be topologically



stable. In three space dimensions, the resulting object would obviously be a string, rather
than a vortex.

Clearly, there are other ways in which strings could be formed. Collisions of more than
three bubbles could also lead to string formation, or, for instance, two of the bubbles could
hit each other first, with the third one hitting only at some later time while the phase is still
equilibrating within the other two. This event in particular will be far more likely than a
simultaneous three way (or higher order) collision, and it is probably the dominating process
by which strings are formed (especially if nucleation probabilities are as low as required for
WKB methods to be valid). If this is the case, the importance of understanding the processes
that take place when two bubbles collide, as well as the need to clarify the role of the third
bubble and the conditions that should be met in order to get vortex formation, becomes
clear.

Bubble collisions have been studied by a number of groups, most notably by Hawking et
al. [4], Hindmarsh et al. [3], Srivastava [§] and more recently by Melfo and Perivolaropoulos
7], but important aspects of the question remain unclear so far. For instance only in [§] and
[7] the posterior collision of a third bubble is treated (the first two references studied only two
bubble collisions), and in none of the referred works did the authors concern themselves with
the interaction between the bubble field and the surrounding plasma. From current work in
the electroweak phase transition however, we can expect that in many cases such interaction
will not be negligible (e.g, see Ref [§]). The basic underlying reason is relatively simple to
understand: as the bubble wall sweeps through an specific point, the Higgs field ® acquires
an expectation value, and the fields coupled to it acquire a mass. Thus, particles with not
enough energy to acquire the corresponding mass inside the bubble will bounce off the wall
(thus imparting negative momentum to it), while the rest will get through. Obviously, the
faster the wall propagates the stronger this effect will be, since the momentum transfer in
each collision will be larger, and thus a force proportional to the velocity with which the
wall sweeps through the plasma appears.

The aim of this paper will thus be to explore two bubble collisions in an environment
that damps the bubble motion to try and establish how phase diffusion and equilibration will
proceed in this case, both analytically and numerically. The damping that we will consider
here will only affect the modulus of the field though (which is equivalent to damping only
the bubble wall motion), since, the phase being a Goldstone boson, we do not expect it to
couple to the plasma as strongly as the modulus. We will find significant differences with
the undamped case, the main new features being related to the possibility of the phase
wave catching up with the bubble wall and bouncing off it. Once that is understood, we
will study collisions with a third bubble and see under what circumstances we can expect
to have vortex formation. All this will be done in the context of a global U(1) symmetry
breaking model.

The paper is organized in three sections: in the first one we establish the general ana-
lytical model, in the second we study two bubble collision and phase bouncing in 141 and
2+1 dimensions (the 341 case should be analogous to the latter one), and finally the third
is devoted to three bubble collisions in 241 dimensions.



II. ANALYTICAL MODEL

Consider the Lagrangian (il) for a complex field ®. We will use the same form of potential
that was used in [0,7], that is,

P|? €
V=[5 o) -~ Spjap|. 2)

This is just a quartic potential with a minimum at |®| = 0 (the false vacuum), and a set
of minima connected by a U(1) transformation (true vacuum) at |®| = p;, = 7(3 + € +

(3 + 6)2 — 8), towards which the false vacuum will decay via bubble nucleation. It is the
dimensionless parameter € that is responsible for breaking the degeneracy between the true
and the false vacua.

The equations of motion for this system are then

0,0"® = —0V/0d. (3)

For the potential (2), approximate solutions of (3) exist for small values of ¢, the so-called
thin wall regime [10], and are of the form

| = % [1—tanh (@(X—Ro)ﬂ, (4)

where Ry is the bubble radius at nucleation time and x> = | ¥ |*> — 2. The bubble then
grows with increasingly fast speed and its walls quickly reach velocities of order 1. We are
interested however in investigating a model with damped motion of the walls due to the
interaction with the surrounding plasma. In order to model this effect, we will insert a
frictional term for the modulus of the field in the equation of motion, namely

0,0"D + || ¢ = —0V/0D, (5)

where |®|= 0|®|/0t, 0 is the phase of the field, and v stands for the friction coefficient (which
will as a matter of fact serve as parameter under which we will hide our lack of knowledge
about the detailed interaction between the wall and the plasma). We have found that there
are approximate analytical solutions to () corresponding to one bubble configurations that
have reached their terminal velocity in the thin wall limit . Solutions will be found in a
constructive way: first we will suppose that solutions for which the wall has the form of a
traveling wave do exist to find out what their terminal velocity would be, and then use this
expression for the velocity to obtain the detailed analytical form of such solutions in the
thin wall limit. Comparison with numerical simulations will confirm the existence of such
solutions. Writing ® in polar form:

® = pe”, (6)

the equation of motion (§) takes the form



8,0"p 4+~ P = —V(p)/dp + 2p0,00"6, (Ta)
8, {p0"0} = 0. (7b)

For a single bubble configuration we take € to be a constant (the phase of the bubble).
Equation (7H) is then automatically satisfied and the equation left for the modulus of the
field is

0,0"p+~ p= =0V (p)/dp. (8)

To get an approximate expression for the terminal velocity of a bubble under this equation
of motion in the thin wall limit, note that because the wall thickness is much smaller than the
radius of the bubble, we can go to 141 dimensions. Inserting then the ansatz p = p(x—x(t))
leads to

(1— a5)p" + (i +7 £0)p' = AV (p)/p, 9)

where p' = 0p/0xz. We then get an effective equation for the wall motion simply by multi-
plying by p’ and integrating over —oo < x < +00 to get rid of the extra degrees of freedom
pertaining to the field, whence

B ) +oo +oo
(o 4+ o) (/ p’de> = / V'de = AV, (10)

where AV is just the potential energy difference between the false and the true vacuum
phases, and we have used the fact that derivatives go to zero far from the origin. The
solution to (10) for the initial conditions z(t = 0) = Ry, 7o (t =0) =0 is

1
w0 (1) = ot + %(e—% — 1)+ Ro (11)

where o = AV/ ([ p'*dx). Thus, for values of ¢ > 7! the bubble walls will have reached
their terminal velocity

AV
e = ([ pPda)

Although obtained in a slightly different way, this expression coincides with what Heckler
found in [{1]. Typical estimates for the terminal velocities of thin wall bubbles in the
electroweak phase transition give vy, ~ 0.1 [§] (although in recent work higher values have
been found, see [9]).

To get an approximate expression for p valid within this regime , it suffices to rewrite (8)
with a p = p(r —ro(t)) ansatz, where r is the usual radial coordinate. Using 7o= 0, 7o~ vter,
we get

(12)

0? 2 0
(1= vt) 5 + (5 + 70 ) 32 = 0V(0)/op, (13

7 being the radial coordinate in 3 spatial dimensions. According to (12) however the terminal
velocity goes roughly like



Vter = AV = AV(Sm? (14)

y (%%&n) Y07

where 0, is the bubble wall thickness and py, is the true vacuum value of the field. That
is, at the values of r for which the first derivative of the field is important (r ~ R for a
thin wall bubble), we have Ryvi, ~ d,,, < 1, and the second sumand in the parenthesis is
negligible when compared to the first. Furthermore, since the radius of thin-walled bubbles
is very large, we can also neglect the term (2/r) Op/Or —this is just the standard thin wall
approximation. Thus, we are left with

(120 22 = ovip) /o, (19

whose solutions for the potential written in (2) will be

p= Pro [1 — tanh (\/577 (r _Utert_R0)>

2 \V 1 - /Ut267’

which is simply a Lorentz-contracted, moving domain wall.

We have followed closely the analytical study with numerical simulations of the processes.
This was done in two steps (for details see Ref [[]): first we find a numerical solution of
the Euclidean equations of motion for the field, whose analytic continuation into Minkowski
space will give us the shape of the instanton solution immediately after the tunneling has
taken place. The initial bubbles thus found were then placed in a two dimensional lattice,
and evolved according to (§) with a modified leapfrog method and reflecting boundary
conditions. In the following sections, we will be comparing the analytical results with these
simulations.

, (16)

III. TWO BUBBLE COLLISIONS: PHASE PROPAGATION AND BOUNCING

We will now try to take a look at the events that take place when two damped bubbles
collide. To do so, we will organize the section into three parts. The first one will deal with
the configuration and evolution of the phase from the time when the bubbles are still very
far away from each other to the point when they have completed the collision process. The
second one takes on from there to study the propagation inside the bubbles of the phase
waves that originate at that time, and stretches out until the moment when these waves
catch up with the walls at the other end of the system. Finally, the third part studies
the interaction between the phase waves and the bubble walls, finding how the former will
bounce off the latter and propagate again into the interior of the bubbles, which will thus
behave almost as a resonant cavity.

A. Initial phase configuration
Within the WKB approximation the bubble nucleation rate is small, and therefore typical

bubbles are nucleated a long distance apart from each other. The approximate solution for
a system of two bubbles is then simply the sum of the two independent bubble solutions,
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®(bubblel + bubble2) = pe® ~ d(bubblel) + ®(bubble2) = p1e™® + pye'®, (17)

to exponential accuracy. From this it is easy to compute how the phase interpolates between
the two bubbles

_ pitan 01 + po tan Oy
p1+ p2

tanf

(18)

which has a kink like shape centered at the origin. One could worry however that, as the
bubbles move towards each other, phase waves could be generated in the central region that
would subsequently propagate over the exponentially small (but finite) background of the
modulus so that (18) would no longer adequately represent the combined phase of the two
bubbles in motion, even if (17) still provided a good ansatz for the combined modulus. To
check whether this is indeed the case we can solve the equation of motion for the phase (7b)
using the modulus given by (7). In a 1+ 1 dimensional approximation, near || = 0 and far
away from the centers of each bubble we can take their moduli to be (we will write simply
v for vte, now)

P~ ptve(:ﬁ—l—vt—:ﬁo)/ém7 (19)

po ptve—(m—vt—l—mo)/ém’

where we have taken the centers of the two bubbles to be initially situated at +x,. Then
(177) yields for the combined modulus

p? ~ p? e2tmm0)/0m £9 cosh (22 /8,,) 4+ 2 cos(By — 62)} . (20)
We can now use this in the equation of motion for the phase (7H), to get

. . 20 . 26,1 sinh (2 /4,,)
0—0"+—0-—
Om cosh(2x/6,,) + cos(6y — 6-)

0 = 0. (21)

Note that for an initial phase difference 0; — 3 = 7w the modulus of the field (20) is zero
at the midpoint between the bubbles. In this case then the denominator in the last term
of (21) goes to zero, which means that the phase has the shape of a step function as we
go over the origin, switching discontinuously from 6; to 6. On the other extreme, if the
initial phase difference is zero there is of course no dynamics to it. We will then focus in an
intermediate situation, and find solutions to (21) for a phase difference of 7/2. Using the
ansatz 0 = T'(t) X (x), we can separate variables to obtain:

. .
T+ —5U T+ KT =0, (22a)
" 2 2z / 2
X"+ 5—tanh(6—)X +k°X =0, (22b)

k being the separation constant. The equation for 7" is obviously that of a damped oscillator.
For k =0, a T = const. solution exists consistent with our boundary condition that 6 goes
to 012 as * — £oo at all times, while, for k£ # 0, solutions with temporal dependence on the
phase will die away on time scales of the order of d,,/v (as a matter of fact these solutions
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would seem to have been artificially introduced by the switching on of the interaction between
the bubbles). To exponential accuracy then, the phase will rapidly settle in a stationary
state that will interpolate between its two values at infinity. The solution to (22H) for k =0
interpolating from say #; = 0 at © — —oo to 02 = 7/2 at * — 400 will thus give us its
complete behavior:

1 i 2z T

0= 5 arcsm(tanh(ém)) +7 (23)
Thus, the near false vacuum state around the bubbles behaves as a rather effective insulating
material as far as conduction of phase waves is concerned, and we should not expect any
significant propagation of the phase until the bubbles run into one another. It may also be
worth noting how the phase interpolates from one of its values to the other by means of a
wall-like structure similar to walls created by the modulus of the field. The thickness of this
phase wall, ¢, seems to be closely related to the thickness of the bubble wall ¢,,, although
this relation will obviously change as the phase difference between the bubbles change.

Once the bubbles collide and their walls begin to merge, the phase of each bubble will
start propagating into the other one at the speed of light. While this merging is taking
place, its net effect will be to widen the phase wall, so that its final thickness will be at least
twice the thickness of the bubble walls for relativistic bubbles.

Figure 1 shows the results of simulations of this process. We have plotted the phase and
the bubble walls for a 1-dimensional, 2 bubble configuration with an initial phase difference
of 7/2, for three different times of the evolution: when they are about to start colliding, at
the middle of the merging process, and at the point of its completion respectively. We can
clearly see how the phase wall smoothens out and thickens while this takes place.

B. Phase propagation inside the bubbles

Once the bubble walls have completed their merging, the phase is free to propagate in the
resulting single cavity. Since, especially in the thin wall case, the modulus of the field inside
the cavity remains essentially constant and equal to its true vacuum value, the equation of
motion for the phase simplifies to a wave equation

0,00 = 0. (24)

Kibble and Vilenkin [12] have studied the process of wave propagation for the Abelian
gauge model without dissipation. In the case they studied the bubbles move essentially at
the speed of light, and the problem has a high degree of symmetry: if the axes are chosen
so that the bubbles nucleate along the z axis at say (0,0, 0, £R), the whole bubble collision
process will be invariant under the 3-dimensional Lorentz group SO(1,2) in the (¢, z,vy)
subspace. The bubble collision occurs then along the surface z = 0, 2 — 22 — y? = R?, and
for any point in that surface there will be a frame of reference in which that is the point of
first contact. Thus, symmetry dictates that 6 be a function

0=10(rz2), (25)

where 72 = t? — 22 — y2. In our case, the damped motion of the walls obviously breaks
Lorentz invariance as far as the bubbles motion and collision is concerned. The points at
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which the two bubbles connect to each other in the z = 0 plane however will still move at
a very high speed (in fact much higher than the terminal velocity of the walls), and, since
the phase is not affected by the damping, SO(1,2) Lorentz invariance should still be a good
approximation in our case. Inserting the ansatz (25 ) for 6 in (24) yields then the equation
for the phase

020+ 26,0 — 0.0 — 0. (26)
T

As initial setup we will assume that the bubbles have been nucleated at £R in the z axis
while the collision takes place at t = 0. For the initial conditions we will take the thickness
of the phase wall to be negligible when compared to the other scales of the problem, that is,

0|T:0 = 008(2) s 870|T:0 = O, (27)

where ¢ is the step function. Equation (28) can then be solved to get

6o for 2> \/t? —x? — 2,
0 — 00ﬁ2_y2 for |z| < VB2 — 2% —y? (28)
—0by for — 2z >\ t? —a? — g2

This approximation will obviously work better for bubbles that move with relatively high
terminal velocities. Firstly of course because the Lorentz invariance approximation will be
more adequate, but also because faster wall motion leads to smaller phase wall thicknesses,
as seen at the end of the last subsection, so that (27) is a better approximation for the
phase wall. It will also clearly work better in the central region of the bubble than close to
its walls, where the interaction between these and the phase wave, as well as the detailed
way in which the connecting circumference between the two bubbles expands, may be of
importance.

To see how well this approximation holds we can compare it with numerical simulations,
which will however be performed in 2 4+ 1 dimensions. The solution to the 2 4+ 1 version of
(26) is easily found

6o for 2 >\t?— a2,
0 = { 2% arcsin( ) for |z| < V2 —a2 (29)
—0y for — 2 >\t? — 22,

and has general features similar to those of the 3 + 1 case. Figure 2a shows a couple of
snapshots of the phase wave profile along the z axis at different times after the collision for
thin wall bubbles with relatively low friction. As we can see, our results give a rather accurate
picture of how the phase evolves in this case. Figure 2b shows the same situation for the case
in which the bubbles move under high friction (i.e., low terminal velocity). As we can see,
here the phase wall thickness at the the time at which the bubbles finish merging is rather
large, and therefore the step function approximation in (27 ) fails to correctly represent the
initial state of the phase. We should note however that the phase propagation seems to
proceed along similar lines as before, so that if we were to solve (26) with a smoother ansatz
for 6(T = 0) we should again reproduce the observed phase behavior.

9



C. Interaction between the phase wave and the bubble walls: phase bouncing

The most salient feature of the problem of bubble collision in the damped regime will
be the possibility of interaction between the phase waves that propagate inside the merged
bubbles, and the bubble walls. Such a situation was of course never encountered in the case
of walls moving in vacuum and reaching asymptotically the speed of light.

We can roughly anticipate the outcome of this interaction on physical grounds: since the
phase is massless inside the bubbles, but massive in the near false vacuum outside them,
it should follow that only the contributing modes to the phase wave which have sufficient
energy to acquire the required mass will be able to go through the wall at all, while all the
others must bounce off it. Whether these modes will exist at all in the phase wave, and if
they do in what proportion, will then determine how the phase wave will behave after the
bouncing.

We will first study the interaction between the phase wave and the bubble wall both
analytically and numerically in the simpler 1 + 1 dimensional scenario, and then try to
extrapolate our conclusions to the 2 + 1 case and confront them with more numerical simu-
lations there.

In 14 1 dimensions, our damped thin wall solution looks like

p= % [1 — tanh (\/577 (= ?/%xO))] : (30)

Boosting to a frame of reference that moves along with the wall and has its origin at its

center leads then to
v A
p= % ll — tanh <gx>] . (31)

We will be interested in the situation in which phase waves approach the wall from
xr — —oo,t — —oo and look at the asymptotic outcome for t — 400, assuming that the
incoming phase waves carry a very small amount of energy as compared to that stored in the
wall so that we can neglect any back reaction on it due to the collision. In these conditions
we can then take the shape of the wall as being essentially fixed by (81). The equation of
motion for the phase simplifies to

/
i—0"— 2Ly o, (32)
p
or, doing a Fourier transform in ¢,
/
0" + 2%9’ + w20 = 0. (33)

Using then (81) for p as advertised and performing the change of independent variable

1

i (34
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puts the phase equation in the form

/! / w2
y(1—y)0"+(1—4y)0 +)\n2y(1—y)0 0, (35)
where now the prime indicates derivatives with respect to y. Equation (35) is a form of
Papperitz equation with regular singular points at 0, 1, 400, (see Ref. [12]) and consequently
its solutions will be given by hypergeometric functions.
To learn about the fate of an incoming wave we will look at the two independent solutions
of (B5) around y — 1 (i.e., x — +00) and select the one that represents an outgoing wave.
In terms of z, these outgoing wave solutions are found to be (B being an arbitrary constant)

-1 w1 B ev/dm civw/on , W0 > 1
0y~ T 1 ~ jl (36)
(—=1)“7" B e®/0m em/om |w|0m < 1
- -1
with w= /1 —w?/(An?), and where for notational convenience we have used 6,, = (\/Xn)

for the bubble wall thickness. (Note that the exponential growth of the solutions would
apparently yield a diverging energy density, specially for the case |w|d,, < 1, more on this
later).

Using now the connection formulas for the hypergeometric functions, we can express 6
in terms of incoming and outgoing waves around r — —oo. We get

Or oo~ (—1)° 7" B[T1e™" + Toe "] (37)

where I'1, 'y are combinations of gamma functions. Demanding that the incoming wave
has unit amplitude fixes the constant B and determines the reflection and transmission
coefficients. We obtain as final expressions for

O oo == ™% + F—Qe_wm, (38a)
1

0 N { (Fl)—l em/ém €ixw/6m ,|W|6m >1

r—+o00 —

- . (38b)

(Fl)_l e®/Om erolom )8,, < 1
It only rests now to write down the precise form of the gammas and analyze their behavior.
We get

Dy DL+ 2iwd)T(2— @ —iwd,)D(—1— w —iwd,,) (39)
T P = 2iw6,,)T(2— w +iwdn)T(—1— w +iwd,y,)

Thus, for as long as w remains real (i.e., for as long as |w|d,, < 1), numerator and
denominator in (89) will be complex conjugate of each other, and the reflection coefficient
will be

2

_ By (40)

R=1r,
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When |w|0,, > 1, w— i w however, and R is

L (x(wn 2)
sinh® (7T (w5m+ w))

and we see that R — 0 for wd,, > 1. Thus incidents waves with wavelength 1/w larger than
the wall thickness will be completely reflected by the wall, whereas waves with wavelengths
shorter than the wall thickness will be partially reflected and partially transmitted, the
reflected part going to zero quickly as the wavelength decreases. Of course these conclusions
will have to be somewhat modified to describe the process from the point of view of a static
observer at the origin. For such a reference frame, a boost with velocity —uy,. yields for the
new frequencies w’ of the incident and reflected waves

(41)

w;, = Pw (1 4 vter) , (42)

wq’nef = Bw (1 — Vger) = Wi

where 8 = 1/4/1 — vZ,. Thus, for a static observer the condition wd,, < 1 is transformed
into

Wi Om < B (1 + Vger) (43)

while the reflected wave will present a Doppler shift relative to the incoming wave due to it
having bounced off a moving wall.

Figures 3a, 3b show an incident wave train of wavelength roughly five times that of
the wall (in the static frame) being completely reflected. The reflected wave has the same
amplitude as the incident one, but its frequency has decreased due to the Doppler shift.
Figures 4a, 4b then show how a wave train with wavelength about half the wall thickness is
partially reflected. Both cases present exponential growth of the phase outside the bubble
(remember that, modulo 27, the maximum phase difference that one can have is 7). This
seems to fit the general behavior (3G). Note however that an exponential growth of the
phase with x does not neccesarily lead to an equivalent growth of the energy stored by the
phase gradient, since this goes like 7% (06/ 8x)2 and the modulus is decaying exponentially.
Thus, in the expression for the case wd,, > 1 the energy in the phase gradient will tend
to a constant for instance. If the behavior of the phase outside the bubble were to be like
the one given by the wd,, < 1 regime in the same equation however, the phase gradient
energy would diverge exponentially with . Any of these two behaviours however will end
up in the breakdown of our approximation that the wall is unaffected by the phase wave
propagation. Once the phase wave gets through to the false vacuum, the modulus of the field
stops behaving like a transparent medium as we saw in section III.1. In those conditions,
and since the modulus decays exponentially, no matter how small was the energy carried
initially by the phase wave we will always get to a point in which it will be of the same
order than the energy of the modulus. At that point, backreaction on the modulus is no
longer negligible, and a proper analysis of the problem would require solving the two coupled
equations. The situation is depicted in Figures 3c, 4c, where a blow up shows how the wall
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develops what appear as small bumps in its decaying region. Figures 3d, 4d then, where
the energy of the modulus and of the phase are plotted, show how these bumps appear at
the points where the energy of the phase is getting larger than that of the modulus. The
result of this backreaction seems to be that the modulus absorbs the excess energy in the
phase, whereas the phase will still propagate forward in some exponential way. We have not
carried out a detailed analysis of this part of the problem however, since it does not directly
affect the behavior of the phase inside the bubbles in any relevant way.

To sum up, we can expect that waves with wavelengths (roughly) larger than the bubble
thickness will be totally reflected by the wall, the rest being partially transmitted and
partially reflected by it. It is then easy to see what will happen to the phase wave in a (1+1
dimensional) two bubble collision: as we saw in section III.1, the phase wall thickness at
the end of the collision will be at least of the order of twice the bubble wall thickness, and
more likely larger than that. It seems clear then that basically all of the Fourier components
of the phase wave will have wavelengths that will fall into the total reflection regime, and
thus the whole phase wave itself will simply be reflected by the wall, while some form of
exponential behaviour propagates to the outside of the bubbles. Let us imagine for the sake
of clarity that, at collision time, bubble 1 had a phase #; and bubble two 6y > 6, with
0y — 601 = AG. If the shape of the phase wall at the completion of the collision was f(z) then,
after it, we will have phase waves with shape f(x —t)/2, f(x +t)/2 propagating into each
bubble, carrying a phase difference —A6#/2 into bubble 2 and Af/2 into bubble 1. After
these waves have bounced off the bubble walls and propagated back into the interior again,
the phase of each bubble will however be, for bubble 2, §; — 2A0/2 = 6,, and for bubble 1,
01 + 2A60/2 = 0. The phases of the bubbles will thus have switched. The whole process is
depicted in Figure 5, where the refered sequence has been plotted from a simulation. In Fig.
ba, the walls of the two bubbles are just about to finish their merging (continous line), and
the shape of the phase wall at that time is shown (dashed line). The bubble to the right
plays the role of bubble 2 above, having 6, > 6;. The following pictures show how the two
phase waves propagate into the bubbles (Fig. 5b), and back after bouncing (Fig. 5¢). As
expected, after reflection each phase wave still carries a phase of £A68/2, for bubbles 1 and
2 respectively. Finally, in Fig. 5d the two phase waves meet again. The phase polarity of
the system has been completely inverted.

If this mechanism had no energy losses, the two bubbles would then behave as a sort
of resonator in which the phase of each bubble would continuously oscillate between 6; and
02,their respective polarities always switched. Since the bubble walls are moving though,
the phase waves present the expected Doppler shift after bouncing off the walls as was seen
before (which can also be clearly seen in Figs. 5¢, d). For non-relativistic terminal velocities
(i.e., for vy, < 1), the magnitude of this shift is from (42) (we drop the primes in the
notation for the frequencies here)

wref =~ wzn(l - QUteT)> (44)
or what is the same, after n reflections, the resulting phase wave will have a frequency
Whref = Win (1 — 204e,)". (45)

The oscillation process will effectively die off when wy,er ~ (2R)™*, R being the (approxi-
mate) radius of the single true vacuum cavity after n reflections have taken place. If w;,! is
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very small when compared to R, and neglecting higher orders in vy, wprer becomes then of
the order of the radius after

1
n~
2Uter

(46)

oscillations. On the other hand, it is not difficult to see that the time needed to complete
each oscillation grows like

1 n
t, =4R , 47

0 (1 - Uter) ( )
where Ry is the radius of the bubbles at collision time (keeping in mind that it will take
only half #1to reach the walls for the first time though). Thus, the relaxation time until the
oscillations die off will be

(48)

~
TOSC -

2R n~1/2vter 1 n
Y am( )
n=2

- Vter 1 - Vter

For a terminal velocity around 0.1, (46) gives us five oscillations until equilibration, for a
total oscillating time 7,5 ~ 24R, from (48). We see therefore that the relaxation time for
the system can in general be quite significant.

IV. THREE BUBBLE COLLISIONS: VORTEX FORMATION

We wish now to try to generalize the results found for phase wave bouncing in 141
dimensions to 241 dimensions, since our final concern is to find whether these effects can
affect the formation of vortices. Finding an exact solution for the phase propagation and
interaction in 241 dimensions is an extremely involved problem, but the results in one spatial
dimensions can certainly be used as a guide, and numerical simulations can provide the rest.

Note first that wave propagation in two or three spatial dimensions differs qualitatively
from the one dimensional case. Whereas in one dimension we have two phase waves that
propagate inside the bubbles carrying half of the phase difference each, in two or more
dimensions we have two wavefronts with amplitudes that decrease in time and a region that
continuously interpolates between them (see the previous section). In Figure 6 we have
plotted magnitude and phase contours in a two-bubble collision, as well as the phase at
each point represented by an arrow. We can see how the phase interpolates between the
two bubbles at merging (6a), and then starts to propagate. During the initial stages of
propagation, the points of contact of the two bubbles move in the direction perpendicular to
the z axis at superluminal speed, so that the phase waves cannot reach them. Propagation
is similar in these first stages to the undamped case: the region of interpolated phase is just
a semicircle (6b). Soon however the contact points will slow down to asymptotically reach
the terminal velocity. When the phase waves reach the walls, the shape of the interpolating
region is affected by the interaction, as can be seen in 6¢ and d. We come then to the first
consequence of the damped motion of the walls. The fact that the phase waves are able to
catch up with the bubble walls means that, at this point, a region of smoothly interpolated
(i.e., nearly homogeneous) phase extends up to the boundaries of the system. At this stage
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then it is easy for a third bubble of the right size and position to collide with the merged
two-bubble system inside the region where the phase is nearly homogeneous. Hence, no
vortex will be formed. The situation is depicted in Fig. 7, where a third bubble collides
with the two bubble system while the processes seen in Figure 6 are taking place. In 7a
and b, the third bubble collides shortly after the phase starts interpolating, so that a vortex
is created. In 7c and d however the nucleation of the third bubble occurs a little later.
When it finally reaches the two bubble system, the phase has already interpolated beyond
the collision points and no vortex is formed. Notice that the initial phases of the bubbles
in these figure are not exactly 7/6, 57/6 and 37 /2, but the two initial bubbles have slightly
smaller values of the phases, so that the resulting interpolated phase after merging is slightly
smaller than 7 /2. This was done in order to avoid having the third bubble colliding with
a region of exactly opposite phase. As was shown in Ref. [7], such a collision produces a
long-lived “domain wall” state between the bubbles that delays the merging significantly.
We will come back to this point after we discuss the further evolution of the system below,
for the time being we just remark that the phase distribution is responsible for the slight
asymmetry in the vortex’s position.

The situation depicted in Fig. 7 could represent a rather efficient mechanism for the
suppression of vortex formation, if it were not for the interaction with the walls. From the
1+1 case, one expects the phase wave to bounce back, thus spoiling its homogenization.
How does the bouncing look like in 2+1 dimension? In two spatial dimensions, at any
point that the phase wave meets the wall, its propagation vector will have one component
in the direction normal to the wall and another one tangential to it. Only the component
in the normal direction will see the wall and bounce off it however, while the other one will
continue to propagate freely. Thus, although in general the interaction between the wall and
the phase wave will be a complicated superposition of these two processes, we can expect
that after some time, in the region close the walls the phase will predominantly propagate
tangentially to them, the rest of it having bounced towards the center. The effects of this
bouncing can already be seen in Figures 6¢ and d: it is the reflection of the normal modes
that causes the change of shape in the wavefront.

After this we only have to wait for the central region of the phase, propagating along the
z axis, to get to the end of the bubble and bounce off the wall. Fig. 8 is a continuation of the
same simulation started in Fig. 6. At the stage depicted by 8a, the phase wave has reached
the end of the bubble. Therefore, at that point virtually all the phase propagating normal
to the wall has bounced towards the center, and tangential propagation dominates close to
the wall. In Figure 8b we see the subsequent evolution of the system. While the central
region of the phase, propagating along the z axis, collides head on and bounces off the end
of the bubble as expected, the tangential components cross each other at that region and
start propagating in the opposite direction, back towards the center of the collision. Thus,
the combination of these two phenomena brings about an inversion of the phase similar to
that found in 141 dimensions. Finally, a third bubble collides with the system in 8c, after
the bouncing has taken place. Because of phase inversion, we get an antivortex formed in
8d.

Note that if we were to wait for the collision to happen until yet another bounce had
taken place (for a total of two bounces), the resulting defect would again be a vortex.
Three bounces and an antivortex again, and so on. To get a total suppression of the vortex
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formation probability, therefore, one would have to delay the collision of the third bubble
until the system has relaxed. As we have seen, the 14+1-dimensional model predicts a large
value for the relaxation time. Simulations show that for v, ~ 0.1, vortices can still be
formed in collisions occurring after the merged system has gone through five oscillations,
our predicted time for equilibration. So the two-bubble system will have to remain in
“isolation” for a very long time to be able to acquire an homogeneous distribution of phase,
a very unlikely situation. Our results seem to indicate then that an analysis of the vortex
formation probability will have to take into account multiple bubble collisions, such as for
example the one carried out in Ref. [I3]

The situation is of course further complicated if we consider different initial positions
for the colliding bubbles. We have taken them to be situated so that the latest bubble is
centered in the plane of collision of the other two, but it is easy to see that any shift in
position will affect the formation of vortices in a non trivial way, as it does any change in
the nucleation time. We conclude with some more words about the case depicted in Fig. 7c
and d. Had we set the three phases equally distributed, the delay caused in the merging due
to the formation of a metastable wall between the region of opposite phases will have given
enough time for the bouncing to take place, and an antivortex to be formed. Simulations
show that for the positions of the bubbles considered here, a defect is always formed in
the particular (and less likely) case of equally distributed initial phases, unless the phase
oscillations have completely relaxed.

V. CONCLUSIONS

We have analyzed bubble motion and interactions in a plasma, simulating its damping
effect by a friction term in the equations of motion. We have found that there exists an exact
solution for the damped motion of the bubble in the thin-wall regime, representing a bubble
propagating with a terminal speed roughly equal to the inverse of the friction coefficient.

An analytical study of the collision of two bubbles, and the subsequent process of phase
interpolation, was then performed. First, the shape of the “phase wall” that interpolates
between the bubbles was found, and it was shown that the vacuum state outside the bubbles
is a very efficient “insulator”, so that one does not expect the phase to propagate in the
false vacuum. The initial thickness of the phase wall was shown to be at least twice that of
the bubble’s walls.

Once the initial set up for the collision was thus determined, the equations for the phase
propagation were solved, and the interaction with the walls determined, using the previously
found solution for the wall’s motion. It was shown that phase waves generated in a collision
have wavelengths such that they are always reflected by the walls. The result is that an
oscillating state is formed, in which the bubble’s walls act almost as a resonant cavity. Since
the true vacuum cavity expands, though, these oscillations are damped and eventually die
off. For terminal velocities typical of those expected in an electroweak phase transition, the
relaxation time is estimated to be around 24R, with R the radius of the bubbles at collision.

Using numerical simulations, these results were shown to hold in 2+1 dimensions. The
reflection of the phase wave goes along similar lines than the one-dimensional case. The
formation of vortices was shown to be affected by the damping motion, basically due to
two facts: first, that the interpolated phase region can reach the boundaries of the system,
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where a reflection of the phase waves off the bubble walls will take place; and second that
the long-lived oscillatory state thus produced delays significantly the homogenization of the
phase. The main effect of this oscillatory state will have on vortex formation processes will
be that it will become possible, for the same set of three bubbles, to form a vortex, and
antivortex or no defect at all depending on the precise timing of the last collision.
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FIGURES

FIG. 1. Modulus of the field (a) and phase (b) of a system of two bubbles, along the axis that
joins their centers, for three moments of the collision process. Continuos line is for ¢ = 16, dotted
for t = 19, dashed for t = 20 (where radial and time coordinates are given in units of the field’s
mass, and the modulus is normalized with the symmetry-breaking scale). Bubbles are nucleated
at t =0, and v = 3. Here and in the following graphs, € = 0.8.

FIG. 2. Phase propagation inside the bubbles. In (a), the friction coefficient + is 3, in (b) is 10.
The analytical solution is shown for different times with a continuos line. Results of the simulation
of the phase propagation are shown with triangles (for t = t. + 1, t.= collision time ) and circles
(fort=t.+7).

FIG. 3. Interaction of a phase wave with the bubble wall, for a phase wavelength approximately
equal to five times the width of the wall. Arrows indicate the direction of propagation of bubble
and phase. In (a), (b) and (c), the field’s phase (dashed line) and magnitude (continuos line) are
plotted for different times as indicated. In (d), the energy in modulus (continuos line) and phase
(dashed line) are compared.

FIG. 4. Same as Fig. 3, where now the phase wave has a wavelength of approximately half the
wall’s width.

FIG. 5. Phase propagation and bouncing. The phase (dashed line) and the bubble walls (con-
tinous) are plotted for (a)t = 15, (b)t = 25, (¢)t = 50 and (d)¢ = 60, with v = 10.

FIG. 6. Collision of two bubbles with phases /6 and 57/6, and subsequent phase interpolation.
Continuos lines are contours of equal modulus of the field, dotted lines are phase contours. The
phase of the field is also represented by arrows. In this and the following graphs, v = 10. The axes
are arbitrary lattice coordinates.

FIG. 7. Collision of three bubbles with phases (7/6 — A), 57/6 — A) and 37 /2, with A = 0.01.
(a) and (b) are plots of two moments of the collision of two bubbles nucleated at ¢ = 0 with a third
one nucleated at ¢t = 8. (c¢) and (d) correspond to a similar simulation, where now the third bubble
is nucleated at ¢t = 18, in the same position as the previous one. Only field magnitude contours
are represented.

FIG. 8. Later evolution of the system of Figure 6. A third bubble is nucleated at t = 48. Phase
contours are omitted in the last frame for clarity.
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