
INSTITUTE OF PHYSICS PUBLISHING CLASSICAL AND QUANTUM GRAVITY

Class. Quantum Grav. 20 (2003) 801–811 PII: S0264-9381(03)57333-6

Conformal symmetry inheritance in null fluid
spacetimes

B O J Tupper1, A J Keane2, G S Hall3, A A Coley4 and J Carot5

1 Department of Mathematics and Statistics, University of New Brunswick, Fredericton,
New Brunswick, Canada E3B 5A3
2 Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
3 Department of Mathematical Sciences, University of Aberdeen, Dunbar Street, Aberdeen
AB24 3UE, UK
4 Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia,
Canada B3H 3J5
5 Department de Fisica, Universitat de les Illes Balears, E-07071 Palma de Mallorca, Spain

Received 10 December 2002
Published 10 February 2003
Online at stacks.iop.org/CQG/20/801

Abstract
We define inheriting conformal Killing vectors for null fluid spacetimes and
find the maximum dimension of the associated inheriting Lie algebra. We show
that for non-conformally flat null fluid spacetimes, the maximum dimension
of the inheriting algebra is seven and for conformally flat null fluid spacetimes
the maximum dimension is eight. In addition, it is shown that there are two
distinct classes of non-conformally flat generalized plane wave spacetimes
which possess the maximum dimension, and one class in the conformally flat
case.

PACS numbers: 04.20.Jb, 04.40.Nr, 02.40.Ky

1. Conformal symmetry inheritance

Knowledge of the symmetry group of a spacetime is a useful tool in constructing spacetime
solutions of Einstein’s field equations and also in classifying known solutions according to the
Lie algebra structure generated by these symmetries. While much is known about isometries
and homotheties, comparatively little is known about conformal symmetries. This is, at least
in part, due to the difficulty in solving the conformal Killing equations which contain the
conformal scalar ψ , in general a function of all four coordinates. Some slight simplification
of these equations occurs in the case of perfect fluid spacetimes if one searches for inheriting
conformal Killing vectors [1–5], and this simplification has led to the discovery of all spherical
and plane symmetric perfect fluid spacetimes admitting inheriting conformal Killing vectors.
One result of particular interest is that the maximum dimension of the Lie algebra of inheriting
conformal Killing vectors is eight for conformally flat perfect fluid spacetimes [6] and five for
non-conformally flat perfect fluid spacetimes [7].
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In this paper, we extend the concept of inheritance to null fluid (pure radiation) spacetimes.
We define inheriting conformal Killing vector fields for such spacetimes and determine the
maximum possible dimension of the Lie algebra of inheriting conformal Killing vectors for
conformally flat and for non-conformally flat spacetimes. As a result of this study, we are able
to clarify and extend some of the previous work on the symmetries of generalized plane wave
spacetimes [8, 9], and to provide some insight into the conformal relations between members
of this class of spacetimes.

Let M be a four-dimensional spacetime manifold with metric tensor g of Lorentz signature.
Any vector field ξ which satisfies

Lξg = 2ψ(xα)g (1)

is said to be a conformal Killing vector (CKV) of g. If ψ is not constant on M then ξ is called
a proper conformal Killing vector, if ψ;ab = 0 then ξ is called a special conformal Killing
vector (SCKV), if ψ is constant on M then ξ is called a homothetic Killing vector (HKV) and
if ψ = 0 then ξ is said to be a Killing vector (KV). An SCKV is called a proper SCKV if
ψ;a �= 0 and an HKV is called a proper HKV if ψ �= 0. The set of all CKV (respectively,
SCKV, HKV and KV) forms a finite-dimensional Lie algebra denoted by C (respectively,S,H
and G). The maximum dimension of the algebra of CKV on M is 15 and this is achieved if M
is conformally flat. If the spacetime is not conformally flat, then the maximum dimension is
seven, and this occurs for special type N solutions. Indeed, if the Petrov type of a spacetime
(M, g) is N, dim C � 7 [10]. It can be shown that [11]

LξRab = −2ψ;ab − gab�ψ, (2)

LξR = −2ψR − 6�ψ, (3)

where �ψ = gabψ;ab.
Let us first remark on the definition of inheritance. Consider a spacetime admitting

one or more KV and some geometrical object X (scalar, vector, tensor, etc) defined on this
spacetime. We say that X inherits the symmetry of the KV, ξ , if LξX = 0. We are interested
in those objects that inherit the symmetries of all members of G. If we consider the case of a
perfect fluid spacetime, we find that the timelike fluid velocity vector V naturally inherits the
symmetry of any KV of the spacetime, i.e., LξV = 0 for all ξ ∈ G. Thus, V is the natural
object of interest in the context of inheritance. If the spacetime admits an HKV, ξ , the field
equations imply that [2]

LξV a = −ψV a, LξVa = ψVa. (4)

This is the definition of inheritance of a homothetic symmetry in a perfect fluid spacetime.
This definition of inheritance for a perfect fluid spacetime is also supported by dimensional
considerations [12]. Equations (4) also hold for SCKV but, in the context of perfect fluid
spacetimes, this is of no consequence since no perfect fluid spacetime can admit an SCKV [2].

If the spacetime admits a CKV it does not follow, in general, that the Lie derivative of V
with respect to the CKV will be parallel to V , but if the relations (4) do hold for the CKV then
it is said to be an inheriting CKV (ICKV) with respect to the fluid flow vector V . We note that
the set of ICKV forms a subalgebra I of the Lie algebra C (this is proved in [13]) and we refer
to this as the inheriting algebra.

Let us now turn to the case of a null fluid. The field equations are (cosmological constant
� = 0)

Gab = Rab = Fkakb, (5)

where the function F > 0 for energy conditions to hold and k is null. If ξ is a KV, the null
vector k satisfies Lξ ka = αka where α is a scalar function of the coordinates which, in general,
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is not zero with respect to every KV of G. Thus, ka is not the required object that inherits the
symmetries of G. However, if we define

Va = c
√
Fka, (6)

where c is a non-zero constant, the field equations become

Rab = c−2VaVb (7)

and, since (2) implies LξRab = 0, it follows that LξVa = 0 for all KV of G, so that Va is
the inheriting object analogous to the fluid velocity vector of the perfect fluid case. We may
regard Va as the null fluid velocity vector. Note that in equations (6) and (7), without loss of
generality, we may put c = 1, which henceforth we shall do.

For an HKV ξ , (2) again gives LξRab = 0 and, from equation (7) it follows that for any
HKV the inheriting vector satisfies

LξV a = −2ψV a, LξVa = 0. (8)

Following in the spirit of the definition of ICKV in the perfect fluid case, we define ICKV for a
null fluid as those CKV (including automatically KV and HKV) that satisfy (8), or equivalently
LξRab = 0. Since R = V aVa = 0, (3) implies �ψ = 0 and hence (2) implies that for a CKV
LξRab = −2ψ;ab, so that every ICKV must be a SCKV. Thus, the ICKV in the null fluid case
consist of the set of all SCKV of the spacetime, and so, form a finite-dimensional subalgebra
I of the Lie algebra C. From now on (unless indicated otherwise) when referring to an ICKV,
we shall mean a CKV satisfying relations (8).

We determine the maximum dimension of I in section 2. For the non-conformally flat
spacetimes, the maximum possible dimension of the CKV algebra occurs when the spacetime
is conformal to a (special) generalized plane wave spacetime [10]. There are only two classes
of conformally flat null fluid spacetime, the (special) generalized plane wave spacetimes and
the Edgar–Ludwig spacetimes [14, 15]. We note that, if a non-conformally flat generalized
plane wave spacetime admits a C7 it need not be an S7 [16]. In section 3, we consider certain
conformal factors which preserve the maximum dimension.

2. The maximum dimension of the inheriting algebra

2.1. Inheritance in generalized plane wave spacetimes

The details of the conformal symmetry properties of the null fluid pp-wave spacetimes are
given in [8, 9, 16] and [17]. The line element for such a pp-wave spacetime can be written
[18] as

ds2 = −2du dv − 2H(u, y, z) du2 + dy2 + dz2. (9)

The null covariantly constant vector k is necessarily a KV and has the form

ka = δav , ka = −δua . (10)

In this case, F = H,yy + H,zz. In the special case of a null Einstein–Maxwell generalized
plane wave spacetime, the function H can be put in the form

2H = A(u)y2 + 2B(u)yz + C(u)z2 (11)

and (9) admits at least an H6. When A(u) = −C(u) the spacetime is vacuum and when
A(u) = C(u) and B(u) = 0, the spacetime is conformally flat and admits an H7 subalgebra.
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We wish to determine the maximum number of ICKV admitted by the spacetimes of the
form (9) with H given by (11). The KVs k,Xi and HKV Z are a basis for the Lie algebra H6,
i.e.,

Xi = di(u)
∂

∂y
+ ei(u)

∂

∂z
+ (yd ′

i(u) + ze′
i (u))

∂

∂v
, (12)

where the prime denotes differentiation with respect to u, i = 1, . . . , 4 and there are four sets
of functions (di(u), ei(u)) each of which satisfies

di(u)C(u) + ei(u)B(u) + d ′′
i (u) = 0, (13)

di(u)B(u) + ei(u)A(u) + e′′
i (u) = 0, (14)

and

Z = 2v
∂

∂v
+ y

∂

∂y
+ z

∂

∂z
. (15)

Thus, all generalized plane wave spacetimes admit at least an I6.

2.1.1. Non-conformally flat spacetimes. For non-conformally flat spacetimes there are
specializations of the functions A(u), B(u), C(u) in (11) which give rise to one additional
symmetry satisfying the SCKV condition, giving an S7. Since dim C � 7 for any non-
conformally flat spacetime, it follows that the maximum dimension of the inheriting algebra
for non-conformally flat spacetimes is seven. There are six such specializations, four of these,
namely cases 11–14 of table 2 in [8] give rise to an additional KV, and two give rise to a proper
SCKV. We list the six types.

(i) Case 11 of [8]. The function H has the form

A(u) = au−2, B(u) = bu−2, C(u) = cu−2, (16)

where a, b and c are constants. The additional KV is

X6 = u
∂

∂u
− v

∂

∂v
. (17)

(ii) Case 12 of [8]. The function H has the form

A(u) = cu−2(sin φ + l), B(u) = cu−2 cosφ, C(u) = cu−2(−sin φ + l), (18)

where φ = 2γ ln |u|, and c, l and γ are constants. The additional KV is

X6 = γ

(
z
∂

∂y
− y

∂

∂z

)
+ u

∂

∂u
− v

∂

∂v
. (19)

(iii) Case 13 of [8]. The function H has the form

A(u) = a, B(u) = b, C(u) = c, (20)

where a, b and c are constants. The additional KV is

X6 = ∂

∂u
. (21)

(iv) Case 14 of [8]. The function H has the form

A(u) = c sin φ + l, B(u) = c cosφ, C(u) = −c sinφ + l, (22)

where φ = 2γ u, and c, l and γ are constants. The additional KV is

X6 = ∂

∂u
+ γ

(
z
∂

∂y
− y

∂

∂z

)
. (23)
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(v) The function H has the form

A(u) = c(u2 + β)−2(sin φ + l), B(u) = c(u2 + β)−2 cosφ,

C(u) = c(u2 + β)−2(−sin φ + l),
(24)

where

φ = 2γ
∫
(u2 + β)−1 du (25)

and c, β and γ are constants. The proper SCKV is

W = (u2 + β)
∂

∂u
+

1

2
(y2 + z2)

∂

∂v
+ u

(
y
∂

∂y
+ z

∂

∂z

)
+ γ

(
z
∂

∂y
− y

∂

∂z

)
(26)

with conformal scalar ψ = u. We emphasize that this is the form for a proper SCKV and it is
worth noting that the form for a general (i.e., not necessarily proper) SCKV for a generalized
plane wave spacetime can be written in a slightly different form; see [16].

(vi) The function H has the form

A(u) = −a(u2 + β)−2, B(u) = −b(u2 + β)−2, C(u) = −c(u2 + β)−2, (27)

where a, b and c are constants. The corresponding proper SCKV is

W = (u2 + β)
∂

∂u
+

1

2
(y2 + z2)

∂

∂v
+ u

(
y
∂

∂y
+ z

∂

∂z

)
. (28)

Setting γ = 0 in (ii) and (iv) leads to classes of functions of H more restricted than
permitted in (i) and (iii). Similarly, setting γ = 0 in (v) leads to classes of functions of H
more restricted than permitted in (vi).

2.1.2. Conformally flat spacetimes. The conformally flat generalized plane wave spacetimes
have metrics of the form

ds2 = −A(u)(y2 + z2) du2 − 2du dv + dy2 + dz2. (29)

Conformally flat spacetimes admit a C15. Such spacetimes admit an H7, with basis k,Xi, Z
given by equations (10), (12) and (15), respectively and another KV given by

X7 = z
∂

∂z
− y

∂

∂y
. (30)

Thus, spacetimes of the form (29) admit at least an I7. Since conformally flat spacetimes admit
a C15, it follows that there are in general eight CKV which are all proper. However, there are
three specializations of the functionA(u) for which one of the proper CKV becomes an SCKV.
Thus, the maximum dimension of the inheriting algebra for conformally flat generalized plane
wave spacetimes is eight.

(vii) Case 16 of [8]. The function H has the form

A(u) = a, (31)

where a is a constant. The additional KV is

X6 = ∂

∂u
. (32)

(viii) Case 17 of [8]. The function H has the form

A(u) = au−2, (33)

where a is a constant. The additional KV is

X6 = u
∂

∂u
− v

∂

∂v
. (34)
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(ix) The third specialization occurs when H has the form

A(u) = a(u2 + β)−2, (35)

where a and β are constants. The corresponding symmetry is a proper SCKV W given by
equation (28).

Thus, the three classes of conformally flat spacetimes given by (29) with (31), (33), (35)
each admit eight ICKV and the maximum dimension of the inheriting algebra is eight.

2.2. Inheritance in Edgar–Ludwig spacetimes

The most general conformally flat pure radiation spacetime which is not a pp-wave spacetime
is given by [14, 15]

ds2 = (xV (u, x, y)−w2) du2 + 2x du dw− 2w du dx − dx2 − dy2 (36)

where

V = x2 + y2 + 2M(u)x + 2F(u)y + 2S(u) (37)

and M,F and S are arbitrary functions of the coordinate u. Since (36) is conformally flat, it
admits a C15. Barnes [19] gives the general solution to the CKV equation (1) for the metric
(36) in terms of the functionsM,F and S and 15 unknown functions of u, i.e., in the notation
of [19], a, b, c and their first and second derivatives, d and its first derivative and β, γ, ε and k.
Barnes has shown that the maximum possible dimension of the homothety algebra for the
spacetime (36) is two and the maximum possible dimension of the isometry algebra for this
spacetime is one.

It is straightforward to show that for a CKV to be an SCKV a = b = c = β = 0, ε and
γ are constants and the conformal scalar must have the form

ψ = γ.

It follows that the only SCKV admitted by the metric (36) are the HKV and KV determined
by Barnes. Thus, the maximum possible number of ICKV admitted by this metric is two and
the metric will admit no proper ICKV.

3. Conformally related spacetimes

Given any null fluid spacetime with line element ds2 and Ricci tensor given by (5), then the
conformally related spacetime

ds̄2 = �2(u) ds2 (38)

corresponds to another null fluid with Ricci tensor

R̄ab = V̄ aV̄ b (39)

where

V̄ a =
√
F̄ ka = [F − 2(ln�),uu + 2(ln�),u(ln�),u]

1
2 ka. (40)

This is straightforward to verify. The Ricci tensors of the conformally related metrics are
related by [20]

R̄ab = Rab − 2∇a∇b ln� + 2(∇a ln�)(∇b ln�)

− gabgcd∇c∇d ln�− 2gabgcd(∇c ln�)(∇d ln�). (41)
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Now if we consider � = �(u) only, then it immediately follows that

∇a(ln�) = (ln�),uka
(42)

∇a∇b(ln�) = (ln�),uukakb,

the second equation resulting from the fact that ka is a covariantly constant null vector. The
second and third terms on the RHS of (41) are thus proportional to kakb and the last two terms
in equation (41) vanish since they are proportional to the magnitude of the null vector k.

It is known that every generalized plane wave spacetime is conformally related to a vacuum
plane wave spacetime [21]. Here we show that every generalized plane wave spacetime is
conformally related to another generalized plane wave spacetime by a non-constant conformal
factor. We define a new variable U by

dU = �2(u) du (43)

and write �̄(U), Ā(U), B̄(U), C̄(U), for the functions�(u),A(u), B(u), C(u), respectively,
expressed as functions of U according to (43). Then the discrete transformation

u =
∫
(�̄(U))−2 dU, v = V − (ln �̄(U)),U (Y 2 + Z2)/2,

y = Y/�̄(U), z = Z/�̄(U),

(44)

allows us to put the metric (38) into the form of a generalized plane wave spacetime

ds̄2 = −2K(U, Y,Z) dU 2 − 2dU dV + dY 2 + dZ2, (45)

where

2K(U, Y,Z) = [Ā(U)�̄−4(U)− �̄−1(U)�̄,UU (U)]Y 2 + 2B̄(U)�̄−4(U)YZ

+ [C̄(U)�̄−4(U)− �̄−1(U)�̄,UU (U)]Z2. (46)

Now, a CKV in a spacetime will be a CKV for any conformally related spacetime:
however, the form of the conformal scalar ψ may not be preserved. The conformal factors are
related by

ψ̄ = ξa(ln�),a + ψ. (47)

Let us consider the restrictions on the form of�(u) in order that the maximum dimension r of
the inheriting algebra I be maintained by the new spacetime (38). From the form of the five
KV k,Xi, i = 1, . . . , 4 and the HKV Z one can see immediately that they preserve the form
of the conformal scalars, i.e., ψ̄ = ψ for any functional form of �(u).

The only exceptions for the case of non-conformally flat spacetimes are the KV X6 and
the SCKV W which require special forms for �(u) in order to preserve the dimension of I.
Note that even though the dimension of I may be preserved, the new conformal scalar may
not be so, e.g., ψ̄ �= ψ .

We now use equations (43)–(46) to show that the SCKV spacetimes (v), (vi) and (ix) are
not conformally related to each other, but each is conformally related to two of the non-SCKV
spacetimes given by (ii) and (iv), (i) and (iii), (vii) and (viii), respectively.

3.1. Conformal class I

Consider the metric conformally related to (24), i.e.,

ds̄2 = �2(u)[−c(u2 + β)−2((sin φ + l)y2 + 2 cosφyz

+ (−sinφ + l)z2) du2 − 2du dv + dy2 + dz2]. (48)
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(a) We first look for �(u) such that the SCKV (26) becomes a KV of (48). Since ψ = u for
the SCKV (26), equation (47) becomes

u + (ln�(u)),u(u2 + β) = 0

and it follows that

�2(u) = 1/(u2 + β). (49)

Equation (43) gives

U =
∫
(u2 + β)−1 du (50)

and hence, from (25),

φ = 2γU. (51)

Equations (44) put the metric (48) in the form

ds̄2 = −[(c sinφ + l̄)Y 2 + 2c cosφYZ + (−c sin φ + l̄)Z2] dU 2 − 2dU dV + dY 2 + dZ2,

(52)

with l̄ = cl + β. Furthermore, we find that the SCKV (26) becomes the KV

X6 = ∂

∂U
+ γ

(
Z
∂

∂Y
− Y

∂

∂Z

)
.

Thus, the resulting spacetime is that of case (iv).
(b) We now look for �(u) such that the SCKV (26) becomes an HKV of (48). This HKV

must be a linear combination of the HKV Z and the appropriate KV X6. In this case
equation (47) becomes

u + (ln�(u)),u(u2 + β) = ψ,

that is,

�2(u) = (u2 + β)−1 e2ψω, (53)

where

ω =
∫
(u2 + β)−1 du. (54)

Equation (43) now leads to

2ψU = e2ψω, (55)

and we find that the metric (48) is of the form

ds̄2 = −c̄U−2[(sinφ + l̄)Y 2 + 2 cosφYZ + (−sin φ + l̄)Z2] dU 2

− 2dU dV + dY 2 + dZ2, (56)

where c̄ = ψ−2c/4 and l̄ = l + (ψ2 + β)/c. After the rescaling 2ψU = Ū , 2ψV = V̄ ,
and defining γ̄ = γ /2ψ , the metric (56) is unchanged in form and, from equations (25),
(54) and (55), we find φ = 2γω = γψ−1 ln |2ψU |, i.e.,

φ = 2γ̄ ln |Ū |. (57)

The SCKV becomes the HKV

ξ = 2ψŪ
∂

∂Ū
+ ψ(Y + 2γ̄ Z)

∂

∂Y
+ ψ(Z − 2γ̄ Y )

∂

∂Z

which is the linear combination ξ = 2ψX6 + ψZ. Thus, the resulting spacetime is that
of case (ii).
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3.2. Conformal class II

Consider the metric conformally related to (27), i.e.,

ds̄2 = �2(u)[−(u2 + β)−2(ay2 + 2byz + cz2) du2 − 2du dv + dy2 + dz2]. (58)

(a) We find that the conformal factor (49) transforms the metric (58) into the form

ds̄2 = −[(a + β)Y 2 + 2bYZ + (c + β)Z2] dU 2 − 2dU dV + dY 2 + dZ2, (59)

and the SCKV (28) becomes the KV

X6 = ∂

∂U
. (60)

Thus, the resulting spacetime is that of case (iii).
(b) We find that the conformal factor (53) transforms the metric (58) into the form

ds̄2 = −U−2[āY 2 + 2b̄YZ + c̄Z2] dU 2 − 2dU dV + dY 2 + dZ2, (61)

where ā = (a + β + ψ2)/4ψ2, b̄ = b/4ψ2, c̄ = (c + β + ψ2)/4ψ2 and the SCKV (28)
transforms into the linear combination ξ = 2ψX6 + ψZ, where

X6 = U
∂

∂U
− V

∂

∂V
.

Thus, the resulting spacetime is that of case (i).

Let us now consider the type of conformal factor which will preserve the SCKV. We find
that for both spacetimes (24) and (27) the conformal factor is

�2(u) = (U 2 + α)/(u2 + β) (62)

where α is a constant. From equation (43), the coordinates are related by∫
(U 2 + α)−1 dU =

∫
(u2 + β)−1 du. (63)

Multiplying the metric (24) with this �2(u) and transforming according to equation (44), we
obtain the metric coefficients

A(U) = c(U 2 + α)−2(sin φ + l̄), B(U) = c(U 2 + α)−2 cosφ, (64)

C(U) = c(U 2 + α)−2(−sinφ + l̄), (65)

where cl̄ = cl − α + β. Equation (63) shows that the ‘angle’ φ, defined by equation (25),
is unchanged. Hence, the resulting spacetime is of the same class as that in (24). Likewise,
the metric (27) transforms into a metric of the same class as (27). Thus, spacetimes with
metrics (24) and (27) are not conformally related to one another, so we have two sets of
non-conformally flat spacetimes which admit the maximum number of seven ICKV. Each set
consists of a class of SCKV spacetimes, (24) or (27), and two further classes of maximal
ICKV spacetimes, conformally related to (24) or (27), in each of which the SCKV is replaced
by a KV.
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3.3. Conformal class III

Consider the conformally flat case, i.e., the SCKV spacetime (35).

(a) The conformal factor (49) transforms the metric (35) into the metric (31) of case (vii),
i.e.,

ds̄2 = −ā(Y 2 + Z2) dU 2 − 2dU dV + dY 2 + dZ2, (66)

where ā = a + β, and the SCKV (28) becomes the KV

X6 = ∂

∂U
.

(b) The conformal factor (53) transforms the metric (35) into the metric (33) of case (viii),
i.e.,

ds̄2 = −āU−4(Y 2 + Z2) dU 2 − 2dU dV + dY 2 + dZ2, (67)

where ā = (a + β + ψ2)/4ψ2, and the SCKV (28) becomes the KV

X6 = U
∂

∂U
− V

∂

∂V
,

with an added multiple of the HKV Z.

Thus, the null fluid ICKV spacetimes of maximal dimension are contained in the three
sets of conformally related spacetimes I–III above. One of the sets consists of conformally
flat spacetimes, each of which admits eight ICKV, while the other two sets consist of non-
conformally flat spacetimes which are not conformally related, and admit seven ICKV. In each
set there are three classes of maximal ICKV spacetimes which are conformally related by
means of the conformal factors in (49), (53) and (62).

4. Discussion

In this paper, we have defined conformal symmetry inheritance for null fluid spacetimes and
found the maximum dimension of the associated inheriting Lie algebra.

We have shown that for non-conformally flat spacetimes, the maximum dimension of the
ICKV algebra is seven and this occurs when the metric is conformally related to a generalized
plane wave spacetime with an H7. There are only two classes of conformally flat null fluid
spacetimes, the generalized plane wave spacetimes and the Edgar–Ludwig spacetimes. In the
former the maximum dimension of the ICKV algebra is eight, and in the latter the dimension
is two. Thus, for conformally flat null fluid spacetimes the maximum dimension is eight. For
a spacetime which is conformally related to a generalized plane wave spacetime, it is possible
to restrict the form of the conformal factor�(u) in order to preserve the maximum dimension
of the inheriting algebra. We have the following theorem.

Theorem. For non-conformally flat null fluid spacetimes dim I is at most seven, in which
case the spacetime is conformally related to a type N generalized plane wave spacetime. For
conformally flat null fluid spacetimes dim I is at most eight in which case the spacetime is a
type O generalized plane wave spacetime.

There are no type N or O Robinson–Trautman pure radiation solutions [18], thus dim I
cannot be greater than six for this class of spacetimes. The general Vaidya spacetime admits
a G3, and a special case will admit an H4 [22]. Hall and Carot [23] showed that the only type
N Einstein–Maxwell spacetime to admit a proper CKV is a generalized plane wave spacetime
and so, if searching for proper ICKV in type N Einstein–Maxwell spacetimes, attention must
be limited to these solutions.
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