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Abstract. It is shown that if a null Einstein-Maxwell spacetime admifs a proper conformal vector 
field it must either be a (generalized type N) pp-wave or a (generalized type In) Goldberg-Ken 
metric. 

PACS number: 0450 

1. Introduction 

There has been much recent interest in the study of conformal symmetries in spacetime. 
This paper is intended as a further contribution to this area of research and deals with the 
existence of proper conformal symmetries in null Einstein-Maxwell fields. It extends some 
recent work by Lewandowski (1990) in the case of vanishing cosmological constant and 
shows that, roughly speaking, if such a spacetime admits a proper conformal vector field 
then it is either of Petrov type N with a covariantly comstant (null) ray vector or of Petrov 
type Ill with a properly recurrent ray vector. The first of these possibilities generalizes 
the (vacuum) pp-wave spacetimes (Ehlers and Kundt 1962) and the second generalizes the 
vacuum metrics discovered by Goldberg and Kerr (1962) and Ken and Goldberg (1962). 
The result generalizes the known fact that the only vacuum spacetimes which can admit 
proper conformal vector fields are the pp-waves and which is a trivial consequence of 
Brinkmann's theorem (Brinhann 1925, Ehlers and Kundt 1962, Hall 1983). 

Throughout, M will denote a smooth spacetime manifold with smooth metric g of 
Lorentz signature. The corresponding Riemann, Ricci and Weyl tensors are denoted in 

a null Einstein-Maxwell field and so Einstein's field equations are given by 
component form by Robed. Rob (=-Rcneb) and C&d.  In paI'tiCUlar, (M,  g) is assumed to be 

Rob = ae,eb (1) 

where a is a global smooth real-valued function and l a global smooth nowhere zero null 
vector field on M .  The null vector field e represents the rays of the null Maxwell field and 
Maxwell's equations then show that l is geodesic and shear-free. In calculations L will be 
taken as locally scaled so that it is affinely parametrized. 

0264-938l/94/020475tffi$O7.50 0 1994 IOP Publishing Ltd 415 



476 

2. Conformal symmetries 

Let X be a global conformal vector field on M. Then one has 
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X o ; b  = &?gab t Fob (0 fX&b = 2d'gob) (2)  

where @ is the conform1 scalar of X ,  F is the conformal bivector of X ,  a semi-colon 
denotes a covariant derivative and f a  Lie derivative, In keeping with the usual geometrical 
interpretation of a conformal vector field, X should be C3 and then it follows that X (and 
@ and F) are necessarily smooth. Equation (2) also implies that F and @ satisfy 

Fob:c = R & d X d  - 2 @ [ 0 g h ] ~  

&:b = -$%b& - @&b + R d b T  

(3) 

and 

(4) 

where round and square brackets denote the usual symmetrization and skew-symmetrization, 
respectively, where @a denotes the gradient of 4 and where the vanishing of the Ricci 
scalar (from (1)) has been incorporated into (4). Throughout, X is assumed to be 'properly' 
conformal in the sense that it is not homothetic over any non-empty open subset of M .  In 
other words, 

If the Weyl tensor vanishes everywhere on M then it follows that M is locally isometric 
to a conformally flat 'generalized' (Einstein-Maxwell) plane wave (see e.g. Kramer el al 
1980) and the (local) conformal vector fields arising can be completely constructed (see e.g. 
Hall er al 1992). The question of their global existence then depends on global topological 
requirements (Hall 1989) and so this case is essentially known. Although the Weyl tensor 
will, in general, vanish at some points of M and not at others, it will be assumed here, 
in keeping with the local nature of the present paper, that the Wey! tensor vanishes at no 
point of M .  The Weyl tensor is necessarily of an algebraically special Petrov type with e 
spanning a repeated principal null direction at each point of M (Goldberg and Sachs 1962) 
and the finite number of such directions (< 2 since cabcd is never zero on M )  together with 
equation (2) and the consequent result f X C a b c d  = 0 shows that 

cannot vanish over any non-empty open subset of M .  

f x e Q  = pea (+ xaibeb - e.;*xb = pea) (5) 

for some function p on M .  The bracketed equation in (5) together with (2) gives 

@ea + Fabe' - pe. = eOthxb (6) 

and then use of (6) and (1) in (4) gives 

@o;b = %ib (7) 

for some function v on M .  The Riemann tensor is now introduced through the Ricci identity 
for the covector field @a which, when contracted with e and use is made of (7), gives 

Robcdec$d = 0. (8) 

Finally, using the usual expression for the Weyl tensor in terms of the Riemann and Ricci 
tensors together with equations (1) and (8) one finds 

Cahcd Hed = 0 (9) 
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where H is the bivector given by Hob = 2e[a$bI. 
Let U be the (necessarily open) subset of M on which $o is not proportional to e, and 

let V = M\U. Now V contains the zeros of and because of the original assumption 
regarding these zeros the open subset 3, defined as the intersection of the interior of V ,  
int V ,  and the open dense subset of M where $a is not zero, is such that V\? has no interior. 
It now follows that the closed subset M\(U U 3) of M has empty interior. Now, on U 
the bivector H is nowhere zero and (9) shows that the Weyl tensor has a zer? eigenvalue 
everywhere on (I and is hence of Petrov type N or Ill everywhere on U. On V one has 
nowhere zero and proportional to e,, and (7) shows that e must be recurrent (i.e. ea:b = eaqb 
for some covector field qa) on this subset. It then follows from an elementary argument 
using the Ricci identity and (1) that e'T.b,d = ehPcd for some bivector P which satisfies 
e[bfcd]  = 0 (and hence is simple with e in its blade) and &',beb = 0 (and so is a null bivector 
with principal null direction spanned by e). It tiow follows (Bel 1962) that the Weyl tensor 
is of Petrov type N or III on v. Thus the Petrov type is Nor Ill over the open dense subset 
U U 3 of M and hence everywhere on M (since if it were either of the other two admissible 
types I1 or D at some at some p E M it would be so over some open neighbourhood of p). 
So let W _C M be the (necessarily open) subset of M where the Petrov type ism. It should 
be noted that since the only eigenbivectors of the Weyl tensor for this type are null, H is 
necessarily a null bivector and hence 

Suppose W is not empty and let p E W .  There exists an open neighbourhood A of p 
in W and a smooth null tetrad ( 8 ,  n,  x ,  y )  on A where e is the null vector field described 
earlier and where e%, = x'x. = y o y o  = 1 with all other tetrad inner products zero. Since 
e is affinely parametrized the shearfree condition on e gives 

= 0 on W .  

(10) a b  o b  o b  e.;bx Y = -e,,by x . e o ; b X Q X b  = eaibY Y 

Now the Petrov type U1 condition allows a canonical expression for c&cd to be written 
down in A after, possibly, adjusting the choice of n, x and y in the above null tetrad (which 
will not affect (lo)), in the form 

* I  

(11) 
* *  

cobcd = b(NabMcd + MabNcd - Nob Mcd - Mob Ned) 

where b is a nowhere zero function on A ,  Nob = 2e[&,], M d ,  = 2e[,nbl and * denotes the 
usual duality operator. Equations (1) and ( 1  1) then lead to a similar canonical form for the 
curvature tensor on A 

(12) Road = a(NabNcd f Nob Ndd) i- b(N,bM,d - N a b  Mcd f MobNcd - h o b  i C d )  

where a is some function on A. This latter canonical form together with equation (7) 
can then be directly substituted into the Ricci identity for and the resulting equation 
contracted successively with r a n b ,  y"yb,  x'yb and y'xb (and noting that $8' = 0 on W ) .  
The expressions obtained, when combined with (10) (and considering separately the cases 
u(p)  = 0, v ( p )  # 0) show that at each p E A,  = &yo = 0. However $2' = 0 on 
W and so &, o( e,. Recalling the clause about the vanishing of it now follows from (7) 
that e is recurrent on A. Hence e is recurrent on the whole of W. It is properly recurrent 
there (i.e. i t  cannot be rescaled so as to be (locally) covariantly constant). Otherwise, the 
Ricci identity would give = o and hence C,b,ded = 0 in the relevant region and 
thus the Petrov type would be N .  Such metrics generalize those of Goldberg and Ken 
mentioned earlier and, as mentioned in the introduction, cannot be vacuum metrics if a 
proper conformal vector field is admitted. Further discussion of such spacetimes together 

* *  * I  
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with a specific example of one which admits a proper conformal vector field is given in 
appendix I .  

Now let W' be the open subset of M given by W' = int(M\W) so that the Petrov 
type is N everywhere on W'. Then one repeats the calculation of the previous paragraph 
but where now the appropriate canonical forms for the Weyl and curvature tensors in some 
open neighbourhood of any p E M are 

enbed = C ( N o b N c d  - N o b  N d )  

where c is a nowhere zero function and d and e functions on that neighbourhood. One 
obtains 
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* *  . *  
Robcd = d N o b N c d  4- e N o b  N e d  (13) 

(14) U(t.;bX'Xb) = v (e ,qby 'yb )  = v(&;bX a b  y ) - - U(ea;bynXb)  = 0. 

If D is the (necessarily open) subset of W on which Y is non-zero, equation (14) shows 
that e has vanishing mist expansion and shear on D .  On the interior (in W') of the set 
W'\D, U 0 and so, from (7), @a$ = 0 on int(W'\D). If & is not null at one (and hence 
every) point of int(W'\D) one obtains an immediate contradiction with the algebraic type 
of the Ricci tensor ( I )  (Hall 1990). Thus q$, is null everywhere on int(W'\D). The Ricci 
identity applied to then gives Rabcdq4d = 0 (and hence, from (I), &t4 = 0). It follows 
that cx t ,  on int(W'\D) and hence from (7) that e, is recurrent on this set. Returning 
to the subset D, if the rotation r of (in the sense of Ehlers and Kundt 1962) fails to 
vanish at any point p and hence in some open neighbourhood E of p then g would restrict 
to one of Kundt's type N class of metrics on E (Kundt 1961). But then it follows (see 
appendix 2 and cf Salazar erul (1983) for the vacuum case) that the conformal vector field 
X is homothetic when restricted to E ,  contradicting the proper conformal nature of X. It 
follows that the rotation o f t  is zero on D and hence (since its expansion twist and shear 
also vanish on D )  that e is recurrent on D (cf Ehlers and Kundt 1962). Using the previous 
argument one now sees that t is recurrent on W'. Thus t . ;b = Qgb and the type N condition 
on the Weyl tensor together with ( I )  yields R a k d e d  = 0 and hence, from the Ricci identity, 
qra;bl = 0. It follows that g is locally the gradient of a function U ,  say, and that may be 
locally rescaled to the vector field e-Oe which is covariantly constant; (e-O'e,);b = 0. Thus 
(W', g) is locally isometric to a generalized (null Einstein-Maxwell) pp-wave. 

In summary, the following result has been established. 

Theorem. Let (M, g) be a null Einstein-Maxwell field whose Weyl tensor does not vanish 
at any point of M and which admits a proper conformal vector field (equation (2) with 
&, not vanishing over any non-empty open subset of M). Then M may be decomposed 
disjointly as M = W U (M\W) where W is open and the Petrov type is III at each point of 
W and where the Petrov type is N at each point of M\W. The null ray vector e is properly 
recurrent on W and scalable to a covariantly constant null vector field on int(M\W). The 
region int(M\W) is everywhere locally isometric to a generalized pp-wave. 

Appendix 1 

Here it will be shown that on the open subset W of M where the Weyl tensor is of Petrov 
type ID everywhere and t is recurrent, the function @ is necessarily a function of U (U 
being the coordinate adapted such that 1, = - u , ~ ) .  An example of a null fluid with these 
characteristics (Petrov type III, t recurrent) which admits a proper conformal vector field 
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will also be provided. It follows from the above requirements that the metric belongs to 
one of Kundt's class of metrics (Kundt 1961) and it can be written in the form 

(AI) 
in some open neighbourhood of any point of W. Here the notation is that of Kramer et al 
(1980, p 295) with 

H = $(w,s +*,<)U + H'. (A21 
It is remarked that for the other family of solutions listed in Kramer er al, e is non-recurrent. 

If the metric in (AI) admits a proper conformal vector field X with associated function 
@ as in (2) then (5) gives 

(A3) 
and (2) can be rewritten as 

(A41 

(A5) 

(A6) 

(A7) 

(A8) 

(A9) 

d.? = 2d< d j  - 2du(dv + w + W d< + H du) 

= (0,1,0,0),  e, = (-1,0,0,0) and 
w = ~ ( f ,  U) 

X," - - Xf" = xy" = 0 

H, ,XC + 2HX::  + 
x i  + XY" = 26 
X I  = x;  = 0 

xs. 2 = x;< = 0 

Xf< + x$ = 2@ 

w,,x= + xf ;  + Wcxy" + Xf<)  - X!$ = Z@W 

+ wXCu + fixeu = 2@H 

W,,XC + x."i + *(xyu + X i )  - x:= = 2@*. 
From (A3) and (A6) it readily follows that Xu = X u @ ) ;  and from (A3) and (A8) that 

q5." = 0, and thus (A5) gives 

(Al l )  
where C is a real function of its arguments. Substituting (Al l )  into (A9) and (AlO), and 
taking into account (A7) it follows that q5,< = @,i = 0; i.e. q5 =@(U) and also 

( A W  

(A13 

xu = (2@ - X;Ju + C(U, (, F, 

X <  = A(u)< + B(u) 

w,u< + w,,? + w , ~ ~ ( A S  + B )  + G,<<(A< + B )  - 2A .U = 0 

C = ct(u)(< + <) +@(U). 

Differentiating (AS) with respect to < and (A10) with respect to <, and adding gives 

which constitutes an integrability condition for (A9) and (AlO). Substituting now (A13), 
(A15) and (A16) into (A4),'one finds from the coefficients of the terms linear in U, 

+ W , , t ) X u  + w,t t (A< + B )  + *,<<(A< + B )  + (W,< + w,c)XyU = -4A,, + 2Xyu,. 

(A14 

A , ~  = fxyUu i.e. A = 4 ~ ; ~  +constant. (A13 
Solutions to the above equations can be found, thus providing examples of Petrov type 

III null fluid spacetimes admitting proper conformal vector fields: take, for instance, w and 
Ho in (Al) to be 

w = U-452 + U-' +U-= and Ho -wW (A161 
then this metric admits the following conformal vector field X 

x = 2 a ,  - u2va, + u2<as + 2 < a t  (A17) 
with corresponding conformal factor q5 = U', 

Combining the two last equations gives 
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Appendix 2 

Suppose now that M is everywhere of Petrov type N, and that the rotation of e fails ta 
vanish at some point p E M and hence in some open neighbourhood E of p (i.e. e is 
non-recurrent on E) .  It will now be shown that X is homothetic on E .  

Choosing local coordinates on E the line element can be written as in (AI) with the 
functions w and H being in this case (see Kramer et al. p 295): 

w = -Zu/(< + f )  

Substituting these values in the equations (A3)-(A10), it follows from (A9), (A5) and (A8) 
that 
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and H = -U’/(< + f ) =  + Ho(u,< , f ) .  

where C is a real function satisfying 

- 2C/(< + f ,  + c,< - 4 ,2  = 0. (A211 

Substituting (A19) and (AZO) back into (A4), one finds from the linear terms in U that 

c = -fx;”.(< + 5)’ (A221 

and hence (A21) implies 

and so X is homothetic on E. 
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