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Abstract. It is shown that if a null Einstein-Maxwell spacetime admits a proper conformal vector
field it must either be 2 (generalized type N) pp-wave or a (generalized type III) Goldberg-Kerr
metric.

PACS number; (450

1. Introduction

There has been much recent interest in the study of conformal symmetries in spacetime.
This paper is intended as a further contribution to this area of research and deals with the
existence of proper conformal symmetries in null Einstein—-Maxwell fields. It extends some
recent work by Lewandowski (1990) in the case of vanishing cosmological constant and
shows that, roughly speaking, if such a spacetime admits a proper conformal vector field
then it is either of Petrov type N with a covariantly constant (null) ray vector or of Petrov
type III with a properly recurrent ray vector. The first of these possibilities generalizes
the (vacuum) pp-wave spacetimes (Ehlers and Kundt 1962) and the second generalizes the
vacuum metrics discovered by Goldberg and Kerr (1962) and Kerr and Goldberg (1962).
The result generalizes the known fact that the only vacuum spacetimes which can admit
proper conformal vector fields are the pp-waves and which is a trivial consequence of
Brinkmann’s theorem (Brinkmann 1925, Ehlers and Kundt 1962, Hall 1983).

Throughout, M will denote a smooth spacetime manifold with smooth metric g of
Lorentz signature. The corresponding Riemann, Ricci and Weyl tensors are denoted in
component form by Raped, Rop (=Raep) and Cgpey. In particular, (M, g) is assumed to be
a null Einstein—-Maxwell field and so Einstein’s field equations are given by

Rap =l (1)
where @ is a global smooth real-valued function and £ a global smooth nowhere zero null
vector field on M. The null vector field £ represents the rays of the null Maxwell field and
Mazxwell’s equations then show that £ is geodesic and shear-free. In calculations £ will be

taken as locally scaled so that it is affinely parametrized.
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2. Conformal symmetries

Let X be a global conformal vector field on M. Then one has

Xa;b = ¢gab + Fap (® -£Xgab = 2¢gab) (2)

where ¢ is the conformal scalar of X, F is the conformal bivector of X, a semi-colon
denotes a covariant derivative and £ a Lie derivative. In keeping with the usual geometrical
interpretation of a conformal vector field, X should be C* and then it follows that X (and
¢ and F) are necessarily smooth. Equation (2) also implies that F and ¢ satisfy

Fabie = Rapea X — 210881 3

and

¢a;b = _% ab;cXc — ¢Rap+ Rc{an)c 4

where round and square brackets denote the usual symmetrization and skew-symmetrization,
respectively, where ¢, denotes the gradient of ¢ and where the vanishing of the Ricci
scalar (from (1)} has been incorporated into (4). Throughout, X is assumed to be ‘properly’
conformal in the sense that it is not homothetic over any non-empty open subset of M. In
other words, ¢, cannot vanish over any non-empty open subset of M.

If the Weyl tensor vanishes everywhere on M then it follows that M is locally isometric
to a conformally fiat ‘generalized’ (Einstein-Maxwell) plane wave (see e.g. Kramer et af
1980) and the (local) conformal vector fields arising can be completely constructed (see e.g.
Hall er al 1992). The question of their global existence then depends on global topological
requirements (Hall 1989) and so this case is essentially known, Although the Weyl tensor
will, in general, vanish at some points of M and not at others, it will be assumed here,
in keeping with the local nature of the present paper, that the Weyl tensor vanishes at no
point of M. The Wey! tensor is necessarily of an algebraically special Petrov type with £
spanning a repeated principal null direction at each point of M (Goldberg and Sachs 1962)
and the finite number of such directions (< 2 since Cupeq 15 never zero on M) together with
equation (2) and the consequent result £y C%,.4+ = 0 shows that

£ = pl® (4 Xapl® — LapX® = pty) 5)
for some function x on M. The bracketed equation in {5) together with {2) gives

$la + Fapt” — puly = LapX° (6)
and then use of (6) and (1) in (4) gives

$up = violy | M

for some function v on M. The Riemann tensor is now introduced through the Ricci identity
for the covector field ¢, which, when contracted with £ and use is made of (7), gives

Ropeale? = 0. (8)

Finally, using the usual expression for the Weyl tensor in terms of the Riemann and Ricci
tensors together with eqguations (1) and (8) one finds

CapcaHE =0 )
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where H is the bivector given by Hy = 2£(,0n.

Let IJ be the (necessarily open) subset of M on which ¢, is not proportionai to £, and
let V.= M\U. Now V contains the zeros of ¢, and because of the original assumption
regarding these zeros the open subset V, defined as the intersection of the interior of V,
int V, and the open dense subset of M where ¢, isﬂnot zero, is such that V\? has no interior.
It now follows that the closed subset M\{U U V) of M has empty interior. Now, on U
the bivector / is nowhere zero and (9) shows that the Weyl tensor has a zero eigenvalue
everywhere on U and is hence of Petrov type N or III everywhere on U. On V one has (i
nowhere zero and proportional to £,, and (7) shows that £ must be recurrent (i.e. £, = £,95
for some covector field ¢,) on this subset. It then follows from an elementary argument
using the Ricci identity and (1) that £°Capeg = £, Py for some bivector P which satisfies
£y Poyp = 0 (and hence is simple with £ in its blade) and P.pf? = 0 (and so is a null bivector
with principal null direction spanned by £). It now follows (Bel 1962) that the Weyl tensor
is of Petrov type N or IIl on V. Thus the Petrov type is N or IIl over the open dense subset
LUV of M and hence everywhere on M (since if it were either of the other two admissible
types II or D at some at some p € M it would be so over some open neighbourhood of p).
Solet W C M be the (necessarily open) subset of M where the Petrov type is IIL. It should
be noted that since the only eigenbivectors of the Weyl tensor for this type are null, H is
necessarily a null bivector and hence ¢,£* = 0 on W,

Suppose W is not empty and let p € W. There exists an open neighbourhood A of p
in W and a smooth null tetrad (£, r, x, y) on A where £ is the null vector field described
earlier and where £%n; = x%x, = ¥?y, = 1 with all other tetrad inner products zero. Since
£ is affinely parametrized the shearfree condition on £ gives

ea;bxﬂxb = ga;b)’a}'b Ea;bx“)’b = —fa;b)'“xb- 7 (10

Now the Petrov type III condition allows a canonical expression for Capcs to be written
down in A afier, possibly, adjusting the choice of #, x and y in the above null tetrad (which
will not affect (10}), in the form

Cabed = b(NapMeg + MapNeg — Nab Med — Map Nea) (11)

where b is a nowhere zero function on A, Ngp = 2€[5x4), Map = 2Eenp) and * denotes the
usual duality operator. Equations (1) and (11) then lead to a similar canonical form for the
curvature tensor on A

* * *
Rabca’ = a(Nachd + l{rab f\}cd} + b(Nachd — Nap litdcn’ - Machd — Map ch) (]2)

where o is some function on A. This latter canonical form together with equation (7)
can then be directly substituted into the Ricci identity for ¢, and the resulting equation
contracted successively with x2x®, y2y®, xy® and y“x® (and noting that ¢,£* =0 on W),
The expressions obtained, when combined with (10} (and considering separately the cases
v(p) = 0, v(p) # 0) show that at each p € A, ¢.x° = ¢,y° = 0. However ¢,£9 = 0 on
W and so ¢, o £,. Recalling the clause about the vanishing of ¢, it now follows from (7)
that £ is recurrent on A. Hence £ is recurrent on the whole of W. 1t is properly recurrent
there (i.e. it cannot be rescaled so as to be (locally) covariantly constant), Otherwise, the
Ricci identity would give Rupeaf? = 0 and hence Cupgf? = 0 in the relevant region and
thus the Petrov type would be N. Such metrics generalize those of Goldberg and Kerr
mentioned earlier and, as mentioned in the introduction, cannot be vacuum metrics if a
proper conformal vector field is admitted. Further discussion of such spacetimes together
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with a specific example of one which admits a proper conformal vector field is given in
appendix 1.

Now let W' be the open subset of M given by W' = int(M\W) so that the Petrov
type is N everywhere on W’. Then one repeats the calculation of the previous paragraph
but where now the appropriate canonical forms for the Weyl and curvature tensors in some
open neighbourhood of any p € M are

¥
Caped = C{NapNea — Nab Noa) Rapea = dNapNog + € Nap Nea (13)

where ¢ is a nowhere zero function and 4 and e functions on that neighbourhood. One
obtains

U(‘ea:bxaxb) = V(Ea;byayb) = V(‘ea;bxa.)’b) = U(ea;byaxb) =0, (14)

If D is the (necessarily open) subset of W on which v is non-zero, equation (14) shows
that £ kas vanishing twist expansion and shear on D. On the interior (in W’) of the set
WA\D, v = 0 and so, from (7), @5 = 0 on int(W'\ D). If ¢, is not null at one (and hence
every) point of int{W'\ D) one obtains an immediate contradiction with the algebraic type
of the Ricci tensor (1) (Hall 1990). Thus ¢, is nul} everywhere on int(W’\ D). The Ricci
identity applied to ¢, then gives Raps¢? = 0 (and hence, from (1), ¢,£° = 0). It follows
that ¢, o £, on int(W'\D) and hence from (7) that £, is recurrent on this set. Returping
to the subset D, if the rotation r of £ (in the sense of Ehlers and Kundt 1962) fails to
vanish at any point p and hence in some open neighbourhood E of p then g would restrict
to one of Kundt’s type N class of metrics on E (Kundt 1961). But then it follows (see
appendix 2 and cf Salazar er al (1983) for the vacuum case) that the conformal vector field
X is homothetic when restricted to E, contradicting the proper conformal nature of X. It
follows that the rotation of £ is zero on D and hence (since its expansion twist and shear
also vanish on D) that £ is recurrent on D (cf Ehlers and Kundt 1962). Using the previous
argument one now sees that £ is recurrent on W’. Thus £,.,, = £,4p and the type N condition
on the Weyl tensor together with (1) yields Rypc4€? = 0 and hence, from the Ricci identity,
gra;p) = 0. It follows that g is locally the gradient of a function o, say, and that £ may be
locally rescaled to the vector field e™£ which is covariantly constant; (e™?£,).p = 0. Thus
(W', g) is locally isometric to a generalized (null Einstein-Maxwell) pp-wave.
In summary, the following result has been established.

Theorem, Let (M, g) be a null Einstein-Maxwell field whose Weyl tensor does not vanish
at any point of M and which admits a proper conformal vector field {equation (2) with
¢, not vanishing over any non-empty open subset of M). Then M may be decomposed
disjointly as M = W U (M\W) where W is open and the Petrov type is III at each point of
W and where the Petrov type is N at each point of M\ W. The null ray vector £ is properly
recurrent on W and scalable to a covariantly constant null vector field on int(M\W). The
region int(M\W) is everywhere locally isometric to a generalized pp-wave.

Appendix 1

Here it will be shown that on the open subset W of M where the Weyl tensor is of Petrov
type I everywhere and £ is recurrent, the function ¢ is necessarily a function of u (&
being the coordinate adapted such that £, = —u,,). An example of a null fluid with these
characteristics (Petrov type III, £ recurrent) which admits a proper conformal vector field
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will also be provided. It follows from the above requirements that the metric belongs to
one of Kundt's class of metrics (Kundt 1961) and it can be written in the form

ds* = 2d¢ dz — 2du(dv + wdd + wdE + Hdu) (Al)
in some open neighbourhood of any point of W. Here the notation 1s that of Kramer et al
(1980, p 205) with £ =(0,1,0,0), &, = (—1,0,0,0) and

w=w{,u) H=j(ws+ v+ H (A2)
It is remarked that for the other family of solutions listed in Kramer ef al, £ is non-recurrent.

If the metric in (A1) admits a proper conformal vector field X with associated function

¢ as in (2} then (5) gives

X, = X5 =X =0 (A3)
and (2) can be rewritten as i
H X+ 2HX" + X', + wX’, + X’ = 20H (Ad)
Xﬁ:"‘x.vv =2¢ (AS5)
X4 = X% = (A6)
X5 =X, =0 (AT
X4+ X5 =2¢ (A8)
W XC 4+ X3+ w(X® + X5) — X5, = 20w (A9)
DeXC + X% + DX, + X5) — X5, = 200, (A10)

From (A3) and (A6) it readily follows that X* = X*(u}; and from (A3) and (A8) that
¢, =0, and thus (A5) gives
X' =(2¢ - X"+ Cu,§,{) (A1)
where C 1§ a real function of its arguments. Substituting (Al1) into {A9) and (A10), and
taking into account (A7) it follows that ¢ ; = ¢; = 0; i.e. § = ¢(«) and also

X' =AW+ B  C=al)+)+ ). (A12)
Differentiating (A9) with respect to £ and (A10) with respect to ¢, and adding gives
W + W5+ WAL + BY + W (AL +B) —24, =0 (A13)

which constitutes an integrability condition for (A9) and (A10). Substituting now (A13),
{A15) and (A16) into (A4), one finds from the coefficients of the terms linear in 2,

(Dur + W, )X* + wes(AL + B) 4+ 0e (AL + B) + (g + w )XY, = —4A , +2X7,.
(Al4)
Combining the two last equations gives
Au=1Xx", ie. A =1X" + constant, (A15)
Solutions to the above equations can be found, thus providing examples of Petrov type

IIT mul] fluid spacetimes admitting proper conformal vector fields; take, for instance, w and
H%in (A1) to be

w=utt 4y 7t and H® = —ww (A16)
then this metric admits the following conformal vector field X
X = 1?3, — utvd, + 080 + u’E0; (A1T)

with corresponding conformal factor ¢ = u?,
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Appendix 2

Suppose now that M is everywhere of Petrov type N, and that the rotation of £ fails to
vanish at some point p € M and hence in some open neighbourhood E of p (ie £ is
non-recurrent on E). It will now be shown that X is homothetic on E.

Choosing local coordinates on E the line elemeni can be written as in (A1) with the
functions w and H being in this case (see Kramer ef al, p 295):

w=-2v/ +{) and H==v/¢++HW,5,2). (A18)

Substituting these values in the equations (A3}-(A10), it follows from (AS), (AS) and (A8)
that

¢ =) Xt =) (A19)
XV = (2¢ - X+ C,£,%) (A20)

where C is a real function satisfying

~2C/@ + )+ Cr — pul =0. (A21)
Substituting (A19) and (A20) back into {A4)}, one finds from the linear terms in v that
C=—3X5,¢+8) (A22)

and hence (A21) implies
¢.=0 (A23)

and so X is homothetic on E.
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