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1. Introduction

The purpose of this paper is to review, clarify and prove some new results concerning axial
symmetry in general relativity.

Apart from its intrinsic mathematical interest, axial symmetry is physically significant in
general relativity in that it is believed to describe quite accurately a large number of situations
of interest in the astrophysical context, or even (up to a certain degree of approximation) in
cosmology, see for instance [1].

In what is to follow, (M, g) will denote a spacetime; i.e. M is a connected, C3 Hausdorff
four-dimensional manifold and g is a C2-Lorentz metric of signature +2.

The paper is structured as follows. In section 2 we begin by pointing out some of the
unsatisfactory characteristics of the usual ‘polar’ coordinates r and φ, give the definition of
axial symmetry and summarize its most immediate consequences. In so doing, we shall
partly follow the work of Mars and Senovilla [2, 3], which brilliantly generalizes, reviews
and updates the pioneering work on axial symmetry by Carter [4, 5] and Martı́n [6]; we
shall provide alternative proofs to the statements in [2, 3], mostly based on the fixed-point
theorems for conformal Killing vectors due to Hall [10] (see [11] as well), and also prove the
existence of certain geometric structures which will be of help for later developments. We
shall relate these results to those by Wilson and Clarke [7], where a theory for a particular
class of axially symmetric spacetimes which are regular on the axis is put forward, and the
condition of ‘elementary flatness’ on the axis is thoroughly studied in connection with other
conditions such as the trivial limiting holonomy of a family of loops and the regularity of
various degrees of differentiability. Note, though, that in this reference a certain form for the
metric is assumed, implying strong restrictions on the axial Killing vector field (hypersurface
orthogonality and spacelike character everywhere except on the axis, among others); whereas
the present treatment, based on the definition of axial symmetry as given in [2, 3], covers a much
broader class of spacetimes (see the next section). Section 3 looks deeper into the geometric
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structure of axially symmetric spacetimes in a neighbourhood of the axis. Coordinates with a
well defined geometrical meaning are introduced, and the behaviour of the metric coefficients
near the axis is worked out in this and in other related coordinate systems; giving coordinate
expressions for the metric in those systems which could be of interest for the study of this class
of spacetimes.

In section 4, we briefly discuss the case of axially symmetric spacetimes admitting another
isometry, and consider the special cases of stationary and cylindrically symmetric spacetimes.
Finally, in section 5, we present a ‘fluid toy model’ possessing axial symmetry.

2. Axial symmetry revisited

The intuitive idea of axial symmetry (see, e.g., [1], p 192) is that of an isometry generated by
a spacelike Killing vector (KV), say �ξ , whose orbits are closed (compact) curves. The axis of
symmetry is then the set of points which are unchanged by the isometry, or fixed points, which
can be shown to be precisely those at which �ξ vanishes.

The usual approach then consists in adapting a coordinate, say φ, to the KV generating
the axial isometry so that �ξ = ∂φ . This has the advantage that the metric and other geometrical
objects in the manifold become independent of this coordinate, but strictly speaking, one
should be aware that a coordinate chart with one of the coordinates chosen in this way, can
never contain points belonging to the symmetry axis, and therefore this choice may not be
the most convenient one when it comes to studying geometrical or physical properties in a
neighbourhood of the axis. Furthermore, this coordinate choice can be misleading in some
other ways; consider for instance R

2 endowed with the usual Euclidean flat metric whose
associated line element reads, in the usual Cartesian coordinates (x, y):

ds2 = dx2 + dy2;
the axial Killing vector is �ξ = y∂x − x∂y and the axis of symmetry (fixed points) consists
of a single point O (the origin) with coordinates x = y = 0; note that �ξ(O) = 0, whereas
ξa;b(O) �= 0 as it should be since otherwise a well known theorem (see, for example, [1],
p 100) would imply that �ξ = 0 everywhere on R

2. Consider next the polar coordinates (ρ, φ)

defined as usual; the line element then reads

ds2 = dρ2 + ρ2 dφ2,

�ξ becomes �ξ = ∂φ , and the fixed point O is ρ = 0. Now computing ξa(O) and ξa;b(O) in
these coordinates, it turns out they are both zero, which would seem to imply (see above)
that �ξ = 0 everywhere in R

2, which is obviously not true. Needless to say, this is just a
coordinate problem, because the Jacobian of the change of coordinates we have performed is
singular at O (note also that the metric is apparently singular at ρ = 0); or, in other words,
the coordinate chart (ρ, φ) does not cover O†. These considerations apply to the case of any
space or spacetime with axial symmetry such that a coordinate has been adapted to the axial
KV in the above form and contains points belonging to the symmetry axis.

The above problems (coordinate singularities and the need to distinguish them from real
ones, and ‘bad’ behaviour of the axial Killing vector on the axis) call for a precise definition
of axial symmetry and a detailed study of its consequences, which in turn implies stepping

† If one starts by considering a two-dimensional manifold with metric ds2 = dρ2 + ρ2 dφ2, the point ρ = 0 does
not belong to the manifold, hence, strictly speaking, the above considerations do not apply, what happens in this case
is that there exists a trivial extension of the manifold which also includes ρ = 0. I thank Professor Senovilla for
clarifying this point.
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initially away from cylindrical coordinates to recover them later on in the process of writing
down the metric.

The remainder of this section will be devoted to presenting such a definition and providing
an account of its most immediate consequences. We shall follow the definition of axial
symmetry as given by Mars and Senovilla [2] (see also [3]), and we shall prove the results
derived from that definition by making use of some powerful theorems on fixed points of
conformal vector fields due to Hall (see [10] for an excellent account of these results). We also
refer the reader to [2, 3] for alternative proofs to most of our statements.

Definition 1. A spacetime (M, g) is said to have axial symmetry if and only if there is an
effective realization of the one-dimensional torus T into M that is an isometry and such that
its set of fixed points is non-empty.

One remark is in order here: definition 1 implicitly assumes that there exists at least
one fixed point in (M, g). If this condition is dropped, the spacetime is said to be cyclically
symmetric (see [5]). Examples of cyclically symmetric spacetimes do indeed exist, and can
be constructed by identifying points in spacetimes admitting a spacelike isometry (see [8]).
Alternatively, one could consider, for example, the exterior field of an axially symmetric source
whenever the axis is entirely contained in the source, or also the case of Misner spacetime [9].
However, as Carter showed [5], cyclically symmetric spacetimes which are asymptotically
Minkowskian in spacelike directions, have necessarily fixed points under the isometry and are
therefore axially symmetric.

Also note that definition 1 does not coincide with the definition of axial symmetry given
by Carter in the above reference [5], as the set of fixed points (or axis) was required to be a
two-dimensional surface there, but as is stated explicitly in that reference, the existence of fixed
points in cyclically symmetric spacetimes readily implies that they form a two-dimensional
surface (see proposition 3 in [5]), hence both definitions are, in fact, equivalent once the
distinction between cyclic and axial symmetry is made.

In what follows, the one-parameter group of axial isometries (effective realization of T )
will be denoted as {ϕt , t ∈ T } and the KV �ξ that generates it will be referred to as the axial
KV, whereas its (non-empty) set of zeros (fixed points of the isometry) will be denoted by W2

and called axis of symmetry, i.e.

W2 ≡ {p ∈ M : �ξ(p) = 0}. (1)

Coordinate indices will be denoted by lowercase latin letters and the covariant derivative by a
semicolon; Killing’s equation will then read

ξa;b + ξb;a = 0.

The Killing bivector, Fab, is defined as Fab ≡ ξa;b. Note that at points p ∈ W2, Fab(p) �= 0
necessarily (otherwise �ξ = 0, see remark above), and since a KV is a particular case of affine
motion it satisfies ξa;bc = Rabcdξd ; that is, Fab;c(p) = 0. Summarizing,

∀p ∈ W2, ξ a(p) = Fab;c(p) = 0, Fab(p) �= 0. (2)

The above considerations, together with the fact that the axial Killing vector has
closed periodic orbits, have powerful implications on the geometry of the spacetime in a
neighbourhood of the axis, as we shall see presently. To this end, let p be a point on the axis
(p ∈ W2) and consider the tangent space at p, TpM; the map ϕt∗ is then an automorphism
of TpM , given by [10, 12] ϕt∗ = exp(tA), where A is the matrix A = ξa

,b(p) computed
in any coordinate system. Note that since ξa(p) = 0, ξa

,b(p) = F a
b(p); that is, matrix A

coincides with the automorphism associated with the Killing bivector at p. Let ψ now denote
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the exponential diffeomorphism from some open neighbourhood of �0 ∈ TpM to some open
neighbourhood U of p ∈ W2; it follows that [12]

ψ ◦ ϕt∗ = ϕt ◦ ψ, (3)

wherever it makes sense.
Bearing all of this in mind, we can prove the following

Theorem 1. Let p be a fixed point of the axial isometry, then the Killing bivector is spacelike
at p.

Proof. The proof to this statement can be largely gathered from the results on fixed points
of conformal symmetries due to Hall [10]. Thus, a Killing bivector at a fixed point can
be non-simple (eigenvalues ±β, ±iα, type E), timelike (eigenvalues ±β, 0, 0, type E), null
(all eigenvalues equal to 0, type B2), or spacelike (eigenvalues 0, 0, ±iα, type C2). Since
we demand the isometry to have closed, periodic orbits, it follows that none of the integral
curves of �ξ can become arbitrarily close to the fixed point p, which rules out type E in
Hall’s classification and therefore Fab(p) cannot be non-simple, nor timelike. Assume now
that Fab(p) is null, it then follows that Fab(p) = 2l[axb] for some null vector �l and some unit
spacelike vector �x orthogonal to �l; the differential map at p would be, in a null tetrad containing
�l and �x:

ϕt∗|p = exp(tA); ⇒ (ϕt∗|p)a
b = δa

b + t (laxb − xalb) + 1
2 t2lalb,

and one readily sees that there is no value of t , other than t = 0, for which ϕt∗|p = id|TpM ;
from where it follows that Fab(p) must be spacelike. �

Since Fab(p) is spacelike, one has Fab(p) = λ(xayb − yaxb) for some spacelike, unit,
mutually orthogonal vectors �x and �y. The differential map at p will be, in a null tetrad
{�l, �n, �x, �y} (lana = xaxa = yaya = 1),

(ϕt∗|p)a
b = δa

b + tF a
b(p) + 1

2 t2F a
cF

c
b(p) + · · ·

= δa
b +

[
− (λt)2

2!
+

(λt)4

4!
− · · ·

]
(xaxb + yayb)

+

[
λt − (λt)3

3!
+ · · ·

]
(xayb − yaxb)

= lanb + nalb + cos(λt)(xaxb + yayb) + sin(λt)(xayb − yaxb); (4)

and one can now, without loss of generality, rescale t so as to obtain the standard 2π periodicity,
thus having λ = 1 and hence

Fab(p) = xayb − yaxb. (5)

Now let Pp ⊂ TpM be the subspace spanned by {�x, �y}; its image under the exponential
diffeomorphism ψ will be a two-dimensional, regular, spacelike submanifold of U , Np, which
on account of (3) is mapped onto itself by the axial isometry. Thus, the orbits of �ξ are ‘packed’
around the axis forming the submanifolds Np, the axial KV �ξ being tangent to them; hence

Proposition 1. The axial Killing vector is spacelike on U .
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Similarly, the image by ψ of the subspace Lp ⊂ TpM spanned by {�l, �n} (i.e. the
vectors spanning the blade of the dual bivector of Fab(p)) is also a two-dimensional,
regular, timelike submanifold of U whose points are fixed under the action of the isometry
which can be seen to be totally geodesic (see [12]) and, since the connection is symmetric,
autoparallel.

Thus, we have proven

Theorem 2. The axis of symmetry, W2, is a two-dimensional, timelike autoparallel surface.

Since ψ∗ = id|TpM , it follows that the subspaces Lp and Pp introduced above are
precisely the subspace tangent to the axis at p and its orthogonal complement, respectively;
i.e. Lp = TpW2, and Pp = (TpW2)⊥, and from equation (4) it can be immediately seen that
(see also [2]):

Theorem 3. For any point p on the axis, if �vp ∈ TpM (�vp �= 0), then

(a) �vp ∈ Lp ⇔ ϕt∗(�vp) = �vp, ∀t . (Alternatively, �vp is tangent to the axis iff [�v, �ξ ]|p = 0).
(b) �vp ∈ Pp ⇔ ϕt∗(�vp) = �wp, ∀t , such that �vp and �wp are linearly independent but ϕt∗( �w)

depends linearly on the previous two. (Alternatively, �v|p is normal to the axis at p iff �v|p
and [�v, �ξ ]|p are linearly independent and [[�v, �ξ ], �ξ ]|p depends linearly on the previous
one.)

(c) �vp /∈ Lp, �vp /∈ Pp ⇔ ϕt∗(�vp) = �wp, ∀t , is such that �vp, �wp and ϕt∗( �wp) = �up are linearly
independent vectors, but ϕt∗(�up) depends linearly on the previous one. (Alternatively, �v
is neither tangent nor normal to the axis at p iff �vp, [�v, �ξ ]|p and [[�v, �ξ ], �ξ ]|p are linearly
independent vectors and [[[�v, �ξ ], �ξ ], �ξ ]|p depends linearly on the previous one.)

Further results concern the Petrov and Segre types of Weyl and Ricci tensors at points
on the axis (see [10]). They can be easily obtained by taking into account that both the
Ricci and the Weyl tensors are invariant under isometries. Considering then L�ξ Rab = 0

and L�ξ Cabcd = 0 at points p on the axis, and since �ξ(p) = 0, these Lie derivatives read

simply RcbF c
a + RacF

c
b

p= 0 (i.e. Fab(p) determines an eigenspace of the Ricci tensor at p),
and CebcdF e

a + CaecdF e
b + CabedF e

c + CabceF
e
d

p= 0, from which the algebraic types can be
readily read off, thus giving:

Theorem 4. In an axially symmetric spacetime and at points on the axis, the Petrov type of
the Weyl tensor can only be D or O, whereas the Segre type of the Ricci tensor is {2, (11)},
{1, 1(11)}, {zz, (11)}† or some degeneracy thereof.

A further consequence of definition 1 above is the so-called elementary flatness condition,
which ensures the standard 2π -periodicity of the axial coordinate near the axis [2, 3] (see also
[7] for an alternative proof and an interesting study of its relation to other properties).

Theorem 5. At points near the axis of symmetry one has.

∇c(ξaξa)∇c(ξaξa)

4ξaξa

∣∣∣∣
W2

−→ 1. (6)

† As is well known, the Segre type {zz, 11} cannot satisfy the dominant energy condition and therefore is not of
physical interest.
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3. Geometry in a neighbourhood of the axis. Coordinate considerations

In this section we will study the behaviour of the metric when the symmetry axis W2 (assumed
to be regular) is approached. We will do this by introducing various coordinate systems on the
exponential neighbourhood defined in the preceding section, and discussing their geometrical
meaning.

Now let p ∈ W2 be a fixed point of the isometry, from (3) it can be immediatly seen that
in the resulting exponential coordinate system in U , say {xa}, the axial KV �ξ has components

ξa = F a
b(p)xb; (7)

that is, they are linear functions of the coordinates† {xa}. Consider now the regular submanifold
Np ⊂ U through p and choose (normal) coordinates x, y on it such that x(p) = y(p) = 0. It
follows that there exist coordinates (x, y, z, t) on U such that, for any p′ ∈ W2 ∩ U , points in
Np′ = ψp′(Pp′) have all the same z and t coordinates and x(p′) = y(p′) = 0; furthermore, in
this coordinate system we have‡:

Proposition 2. In the coordinates introduced on U , the axial Killing vector reads

�ξ = y∂x − x∂y. (8)

The existence of one such coordinate system can be seen as follows: for any q ′ ∈ U ,
q ′ /∈ W2, q ′ /∈ Np, there exists a point p′ ∈ W2 ∩ U such that q ′ ∈ Np′ ∩ U . Now let
γ be the geodesic (entirely contained) in W2 ∩ U joining p and p′, and let τ denote the
parallel transport along γ from p to p′. Next choose a null tetrad at p, {�lp, �np, �xp, �yp} such
that {�lp, �np} and {�xp, �yp} span Lp and Pp, respectively. We can define a tetrad field on γ

by parallel transporting the above tetrad along it. Since W2 is autoparallel, it follows that
{�l, �n} and {�x, �y} will span at each point on W2 ∩ U the tangent space to the axis at that point
and its orthogonal complement, respectively (see [12], vol II, p 60). Finally, choose normal
coordinates x, y on Np ∩ U as above (which, in particular, can be such that ∂x |p ‖ �xp and
∂y |p ‖ �yp) and define χ : Np ∩ U → Np′ ∩ U as q ′ = χ(q) ≡ (ψp′ ◦ τ ◦ ψ−1

p )(q); the map χ

then defines coordinates on Np′ with the required properties.
Note that equation (8) is actually a requirement in the definition of Ck-regularity as given

in [7], the other condition being that, in those coordinates, the metric and its inverse have Ck

components on some neighbourhood of the axis, from which the elementary flatness condition
follows if k � 2 (see proposition 1 in [7]). Our point of view is slightly different in that
assuming the metric to be C2 in some neighbourhood of the axis we actually prove the existence
of coordinates in which �ξ takes the required form. Furthermore, and despite the fact that these
coordinates are non-unique as we shall discuss later on in this paper, the coordinates x, y

introduced have a clear geometric significance; namely, they are normal coordinates on the
regular submanifolds which are perpendicular to the axis at every point of it, whose existence
we have also proven.

In what follows, we shall put xA = {x, y}, A = 1, 2 and xα = {z, t}, α = 3, 4; hence the
submanifolds N are simply those given by xα = constant, whereas the axis W2 is given by
xA = 0. It can then be shown

† Equations (3) and (7) as well as (2) and the discussion following, hold for any affine motion, including homotheties
and proper affine motions.
‡ For some of the developments that follow, it might be necessary to restrict U to a convex normal neighbourhood
U ′ ⊂ U ; however, we shall keep writing U so as not to complicate the notation unnecessarily.
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Theorem 6. In the previously established notation it follows that

gxx
W2= gyy, gxy

W2= 0, gAα
W2= 0, (9)

gxx,A
W2= gyy,A

W2= 0, gxy,d
W2= 0, gxx,α

W2= gyy,α, (10)

gαβ,A
W2= 0, gαx,x

W2= gαy,y, gαx,y
W2= −gαy,x . (11)

Proof. All of the above results can be seen to follow from F a
b;c

W2= 0 (see equation (2)), the
form of the axial KV on U given by (8); i.e. �ξ = y∂x − x∂y , from where one also has

F a
b =




0 1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0


, (12)

on U , and the equations

L�ξ gab = 0, and ∂d(L�ξ gab) = 0, (13)

both evaluated on the axis W2.
Alternatively, some of the above can be derived from

5A
αβ

W2= 5α
βA

W2= 0, (14)

which is just a direct consequence of the autoparallel character of W2†. Also note that

5A
BC

W2= 5α
AB

W2= 0, (15)

which shows the ‘normal’ character of the coordinates xA chosen on N . �
The significance of the preceding theorem lies in that it yields information on how

certain metric coefficients tend to zero when approaching the symmetry axis, thus helping
to understand the meaning of this and other related coordinate systems that one can use in a
neighbourhood of the axis.

Let us next write down the most general form for the metric on U in the above coordinates
xa = (x, y, z, t). Imposing L�ξ g = 0 with �ξ given by (8) it follows:

gab =




B + A sin 2(φ + M) A cos 2(φ + M) D sin(φ + N) E sin(φ + S)

A cos 2(φ + M) B − A sin 2(φ + M) D cos(φ + N) E cos(φ + S)

D sin(φ + N) D cos(φ + N) F J

E sin(φ + S) E cos(φ + S) J H


,

(16)

where φ ≡ arctan x/y and A, B, D, E, F, J, M, N, S and H are all functions of t, z and
r ≡ (x2 + y2)1/2. The function r is invariant on each orbit of �ξ , thus labelling the orbits of the
axial KV on each submanifold Np.

† See [12] vol II, p 53 for the definition of an autoparallel surface from where the first part of equation (14) follows
directly, and [12], vol II, p 60 for a general property of autoparallel surfaces stating that every vector orthogonal to
an autoparallel surface remains orthogonal to it under parallel transport along any curve contained in that surface,
which is equivalent to the second part above. This can be seen to be equivalent to the vanishing of the two second
fundamental forms on the axis W2.
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It is quite interesting to see what theorem 6 implies for the various metric functions and
the way they tend (or do not tend) to zero when approaching the symmetry axis W2: note that,

since gAα
W2= 0 (see (9), (11)) implies that E and D tend to zero when r does as, at least, r;

furthermore, and without loss of generality, if t and z are chosen orthogonal on W2, then (11)
implies that J must tend to zero as r2 at least. On the other hand, equations (9) and (10) imply
that A also tends to zero as r2 at least, whereas B must be of the form B = B0(xα)+O(r2) with
B0(xα) �= 0. As for the other metric coefficients, regularity on W2 together with (11) implies
that the functions F and H must be such that F = F0(xα) + O(r) and H = H0(xα) + O(r),
respectively, with F0(xα) �= 0, H0(xα) �= 0.

So far we have not made use of the coordinate freedom we still have. Note that a rotation
in the x, y plane such as

x ′ = r sin(φ + h(r, z, t)), (17)

y ′ = r cos(φ + h(r, z, t)); (18)

which preserves the form of the axial KV �ξ (i.e. �ξ = y ′∂x ′ − x ′∂y ′ ), the submanifolds N , the
axis (i.e. W2 is given by x ′ = y ′ = 0), and the form of the metric (including the behaviour
near the axis of E, D and J ), allows us to set A = 0, i.e. gxy = 0; alternatively, the above
transformation can be used to set M, N or S equal to zero.

The above transformation is a rotation on each of the regular submanifolds N which also
depends on r , that is, on the particular orbit of �ξ .

If we now change to polar coordinates r, φ defined as above, the KV takes then the familiar
form

�ξ = ∂

∂φ
, (19)

while the metric reads, in coordinates xa′ = (φ, r, z, t) as

gab =




r2(B + A sin 2M) rA cos 2M rD sin N rE sin S

rA cos 2M B − A sin 2M D cos N E cos S

rD sin N D cos N F J

rE sin S E cos S J H


, (20)

where again, a redefinition of the angular coordinate such as φ → φ + h(r, z, t) would allow
us to set A = 0 (or one of the functions M, N or S), but we choose not do so at this stage.
Note the extra factors r and r2 in some of the metric coefficients. Thus, taking into account
our previous comments on how the different functions tend to zero when approaching the axis,
we have that (at least)

gφφ ∼ O(r2), gφr ∼ O(r3), gφz ∼ O(r2),

gφt ∼ O(r2), grr ∼ O(0), grz ∼ O(r), (21)

grt ∼ O(r), gzz ∼ O(0), gzt ∼ O(r2), gtt ∼ O(0).

We shall next perform coordinate changes so as to bring the above metric to other forms,
better suited for some kinds of calculations (such as, for instance, numerical calculations).
In doing so, two things will be of major interest to us. On one hand, we want the
time coordinate to remain completely free (i.e. we do not want to make use of the gauge
freedom in choosing the coordinate time at this stage; again, this is of interest in numerical
calculations based on the 1 + 3-formalism of general relativity). On the other hand, we want
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to ‘keep track’ of how the metric coefficients tend to zero when approaching the axis (this
is crucial when computing derivatives numerically near the axis in spacelike directions). To
this end, let us consider the effect of the following family of coordinate transformations;
namely,

x ′ = f (r, xβ) sin(φ + h(r, xβ)), y ′ = f (r, xβ) cos(φ + h(r, xβ)),

z′ = G(r, xβ), t ′ = t,
(22)

or, equivalently in terms of polar coordinates:

φ′ = φ + h(r, xβ), r ′ = f (r, xβ), z′ = G(r, xβ), t ′ = t.

These changes preserve the form of the axial KV (i.e. �ξ = y ′∂x ′ − x ′∂y ′ ), but they do
not preserve the coordinate expression of the submanifolds N (i.e. Np = {xα = constant} �=
{xα′ = constant}). The symmetry axis W2 is preserved if and only if f (r, xβ) is such that
f (0, xβ) = 0. The form of the metric is also preserved, and the behaviour near the axis of
the metric coefficients changes depending on how the functions f (r, xβ) and G(r, xβ) are
chosen. Since we are interested in preserving the coordinate expression of the axis, let us
put

f (r, xβ) = rf̄ (r, xβ) with f̄ (0, xβ) �= 0; (23)

and also, without loss of generality

G(z, xβ) = z + G̃(r, xβ). (24)

Note that the inverse change of coordinates, will also be of the above form, that is: φ =
φ′ + ĥ(r ′, xβ′), r = f̂ (r ′, xβ′), z = G(r ′, xβ′), t = t ′, and also f̂ = r ′ ¯̂f (r ′, xβ′) with
¯̂
f (0, xβ′) �= 0 and z = z′ + ˜̂

G(r ′, xβ′).
One can now work out the expressions of the metric coefficients in the new (primed)

coordinates, along with their behaviour near the axis. The calculation is straightforward but
rather long and tedious, we give the results dropping primes for convenience:

gφφ ∼ O(r2), gφr ∼ min O(r3, r2h,r , r2G̃,r ),

gφz ∼ O(r2), gφt ∼ O(r2), grr ∼ O(0),

grz ∼ O(r), grt ∼ O(r), gzz ∼ O(0),

gzt ∼ min(O(r2), O(G,t )), gtt ∼ O(0).

(25)

The following comments are now in order.

(a) If h,r
W2= G,r

W2= 0, then gφr ∼ O(r3).
(b) If one sets G(r, z, t) = z + r2Ḡ(r, z, t) with Ḡ(0, z, t) �= 0 (i.e. G̃ = r2Ḡ), then

gzt ∼ O(r2).
(c) Note that, by implementing one such coordinate change, we can, in fact, extend the

neighbourhood U of the axis to which all our previous discussions were restricted; thus
the new (primed) coordinate chart can be defined on V ⊇ U , x ′ and y ′ no longer being
normal coordinates on N .

It is now easy to show that if we perform one of the above changes with

φ′ = φ + h(r, xβ), r ′ = rf̄ (r, xβ), z′ = z + r2Ḡ(r, xβ), t ′ = t; (26)



2684 J Carot

where f̄ (0, xβ) �= 0 and Ḡ(0, xβ) �= 0†, the metric takes the form (dropping primes)

gab =




r2ḡφφ r2ḡφr r2ḡφz r2ḡφt

r2ḡφr ḡrr rḡrz rḡrt

r2ḡφz rḡrz ḡzz r2ḡzt

r2ḡφt rḡrt r2ḡzt ḡt t


, (27)

where ḡab = ḡab(r, z, t), and they are non-zero on the axis r = 0‡. The above form of the
metric is invariant under the coordinate changes given by (26), and so are the expressions of
both the axial KV (ξ = ∂φ), and the axis W2 (r = 0).

Further, the functions h, f̄ and Ḡ in (26) can be chosen so that (dropping primes again)
gφt = grt = gzt = 0, thus the metric reads

gab =




r2ḡφφ r2ḡφr r2ḡφz 0

r2ḡφr ḡrr rḡrz 0

r2ḡφz rḡrz ḡzz 0

0 0 0 ḡtt


, (28)

where, as before, the barred functions are non-zero on the axis r = 0 (see the footnote referred
to above).

We shall refer to the above form of the metric as the shift-free form because it corresponds
to gti = 0, i = φ, r, z, that is, the so-called shift vector of the metric in the 1 + 3-formalism is
zero.

The easiest way to prove this, is by showing that it is always possible, by means of one of
the above transformations, to set the shift vector equal to zero, i.e.

gt ′φ′ = gtφ + gtth,t + gtrh,r + gtzh,z = 0, (29)

gt ′r ′ = gtt rf̄,t + gtr (f̄ + rf̄,r ) + gtzrf̄,z = 0, (30)

gt ′z′ = gtt r2Ḡ,t + gtr (2rḠ + r2Ḡ,r ) + gtz(1 + r2Ḡ,z) = 0. (31)

Now, from the fact that gti, i = φ, r, z depend on r, z and t and the elementary theory of
differential equations, it can be immediately seen that one can always find a function h(r, z, t)

satisfying (29). On the other hand, equations (30) and (31) can be rewritten as

r(gttγ,t + gtrγ,r + gtzγ,z) = −gtr , (32)

2rgtr Ḡ + r2(gtt Ḡ,t + gtrḠ,r + gtzḠ,z) = −gtz, (33)

where γ ≡ ln f̄ , and again the theory of differential equations, together with the expressions
of gtt , gtr and gtz in terms of the metric functions appearing in (20) and their respective orders
as given in (21), allow us to conclude that solutions to the above equations always exist for
some coordinate ranges (see the appendix for details).

† If one imposes that on the axis ∂xA′
∂xB = δA

B , it follows that f̄ (r, z, t)
W2= 1 and also h(r, z, t)

W2= 0. Furthermore, if

the ‘normal’ character (see (15)) of the coordinates on N is to be preserved; i.e. 5A′
B ′C′

W2= 5α′
B ′C′

W2= 0, it also follows

that f̄,r (r, z, t)
W2= h,r (r, z, t)

W2= 0, and then gφr = O(r3), see (25).
‡ This is necessarily so for the diagonal terms ḡaa in order for the metric to be regular at points on the axis; as for the
non-diagonal terms ḡab with a �= b, they could also vanish on the axis in particular spacetimes. The above is just a
‘lower bound’ on how quickly the metric coefficients tend to zero when approaching the axis.
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It is interesting to note that this will only be possible, in general, if the spacetime admits
no further isometries which form a group together with the axial isometry. Let the spacetime
be (for instance) stationary as well as axially symmetric; one can then always adapt the time
coordinate t to the Killing vector implementing the stationarity (see the next section for details)
and the metric reads then as in (20), the metric functions depending now only on r and z. In this
case though, it is not possible in general to perform one of the above changes of coordinates
that simultaneously preserves the form of the timelike Killing vector and sets gt ′φ′ , gt ′r ′ and
gt ′z′ equal to zero†. To see this, consider the above equations (29)–(31) specialized to this
case, they read (without now even restricting the form of f and G)

gt ′φ′ = gtφ + gtrh,r + gtzh,z = 0, (34)

gt ′r ′ = gtrf,r + gtzf,z = 0, (35)

gt ′z′ = gtrG,r + gtzG,z = 0. (36)

Since all the functions involved depend now only on r and z, it follows that in order for the
last two equations to be satisfied, the gradients of f and G should be linearly dependent at
each point, the coordinate change then being non-admissible. The same holds if the spacetime
admits any other isometry which, together with the axial isometry, forms a group G2 (see the
next section for further details).

4. Axially symmetric spacetimes admitting further symmetries

In this section, and for the sake of completeness, we summarize some results on spacetimes
admitting other isometries which, together with the axial one, form a two-parameter group
of isometries G2. Essentially, all the results we present in this section are known, and the
reader is referred to [2, 3, 13, 14] for the proofs omitted here, as well as for more detailed
discussions.

The basic result concerning this issue, was already known to relativists some three decades
ago but, surprisingly, it has been forgotten and rediscovered many times over [15]; it can be
stated as follows.

Theorem 7. Let (M, g) be an axially symmetric spacetime‡ (axial KV �ξ ) admitting another
Killing vector field �λ such that �ξ, �λ generate a two-parameter group of isometries G2, it then
follows that

[�ξ, �λ] = 0, (37)

that is, G2 is Abelian.

Proof. Let �ξ, �λ be the infinitesimal generators of the isometries ϕt and χs , respectively, and
let ϕt be such that ϕ0(x) = ϕ2π (x) = x (or equivalently, ϕt (x) = ϕt+2π (x) for any x ∈ M);
i.e. the orbits of the subgroup G1 ≡ {ϕt } spanned by �ξ are closed.

Let O1 be the (closed) orbit of G1 through a given point x0 ∈ M , that is O1 = {ϕt (x0), ∀t ∈
[0, 2π)}, and let χs be an infinitesimal isometry generated by �λ. Consider now χs(O1), which
will also be closed since χs is a diffeomorphism. In any coordinate chart xa covering O1 and
χs(O1), we will have χs(O1) = {xa(t) + sλa(xb(t)) + O(s2), xa(t) = ϕa

t (x0)}; the fact that

† This will only be possible when the spacetime is static, that is, the timelike Killing vector is hypersurface orthogonal.
‡ This result holds for any two-parameter group of transformations of a spacetime such that the orbits of one of their
subgroups are closed.
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χs(O1) is closed implies that for any value of the parameter t , xa(t + 2π) + sλa(xb(t + 2π)) =
xa(t) + sλa(xb(t)), and since xa(t + 2π) = xa(t). This, in turn, implies

λa(xb(t + 2π)) = λa(xb(t)) (38)

for points on O1.
Now let x ∈ O1 such that xa = xa(t) and let ϕa

2π (x) = ya . Next define on O1 the vector
field �λ′ by Lie-dragging �λ along O1, i.e.

�λ′(x) ≡ exp (−tL�ξ ) �λ(x). (39)

Since λ′c(y) = ∂yc

∂xa λa(x), it follows from (38) that �λ′(ϕ2π (x)) = �λ(ϕ2π (x)) for any x ∈ O1,
which, on account of (39) can be expressed as

exp (−2πL�ξ ) �λ(x) = �λ(x), (40)

expanding the first member above we have

�λ(x) − 2π [�ξ, �λ](x) +
(2π)2

2!
[�ξ, [�ξ, �λ]](x) · · · = �λ(x). (41)

Now, if �ξ, �λ generate a group, it must be that [�ξ, �λ] = a �ξ + b �λ for some constants a and b,
and substituting this into the above equation one has

−2π(a�ξ + b�λ) +
(2π)2

2!
b(a�ξ + b�λ) · · · = 0, (42)

which readily implies a = b = 0 from where the theorem follows. �

From the preceding theorem and theorem 3, it follows that any such Killing vector field �λ
must be tangent to the axis W2.

Suppose now for definiteness that the orbits of the Abelian G2 generated by �ξ, �λ are
timelike (T2 in the following) over a certain region of W2 ∩ U ; it then follows that a timelike
Killing vector must exist which can be set equal to �λ without loss of generality, and it can then
be immediately seen that one can choose the time coordinate adapted to it, i.e. �λ = ∂t . The
other coordinate on W2 ∩ U , z, can still be introduced in a way such that g(∂t , ∂z)|W2 = 0,
and the form of the metric in the coordinates {x, y, z, t} chosen on U , but with t adapted
to �λ, will be that of (16) with all the arbitrary functions appearing there now depending on
r = (x2 + y2)1/2 and z alone; note though that the time coordinate t is no longer free. Similar
comments apply to coordinates {φ, r, z, t} and the form of the metric (20).

Coordinate changes such as (26), but with the functions h, f̄ and Ḡ not depending on t ,
will render the metric (20) (independent of t) in the form (see comments following (25))

gab =




r2ḡφφ r2ḡφr r2ḡφz r3ḡφt

r2ḡφr ḡrr rḡrz r2ḡrt

r2ḡφz rḡrz ḡzz r2ḡzt

r3ḡφt r2ḡrt r2ḡzt ḡt t


, (43)

with ḡab = ḡab(r, z), ḡab(0, z) �= 0, and simultaneously preserve the form of both Killing
vector fields (�ξ = ∂φ, �λ = ∂t ) and the coordinate expression of the axis (r = 0). Again, the
above form of the metric, the expressions of both Killing fields and the axis of symmetry,
are invariant under the above coordinate changes; thus, choosing h(r, z), f̄ (r, z) and Ḡ(r, z)

appropriately the metric (43) can be brought to the Weyl form [1], but in general not to the
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shift-free form (28) unless �λ happens to be hypersurface orthogonal (see the comments at the
end of the preceding section).

The case in which the orbits of G2 are spacelike (S2), corresponds to cylindrical symmetry;
a spacetime is said to be cylindrically symmetric if and only if it admits a group G2 of isometries
acting on spacelike orbits S2 and contains an axial isometry. The reader is referred to [13, 14]
for a detailed discussion, but comments regarding the form of the metric, etc similar to those
in the T2 case apply also here.

5. A fluid ‘toy model’

The purpose of this section is to build a simple model of axially symmetric perfect fluid using
the shift-free form of the metric (28) introduced in section 3 and imposing the following
restrictions.

(a) The barred functions in (28) do not depend on r; that is, the radial dependence is factored
out in the form of the coefficients appearing in that expression. This, in particular, will
allow one to set gtt = −1 without loss of generality.

(b) The spacetime presents a discrete symmetry z �→ −z (reflection across the equatorial
plane); that is, gφz = grz = gtz = 0.

From the above restrictions and (28) it follows that the form of the metric is

gab =




r2ḡφφ(z, t) r2ḡφr (z, t) 0 0

r2ḡφr (z, t) ḡrr (z, t) 0 0

0 0 ḡzz(z, t) 0

0 0 0 −1


. (44)

Demanding the Einstein tensor associated with the above metric to be of Segre type
[1] {(111), 1} and excluding further degeneracies (?-term), we shall note its non-degenerate
timelike (unit) eigenvector (4-velocity of the fluid) as �u, (g(�u, �u) = −1), its associated
eigenvalue as −ρ, ρ � 0 (where ρ is the energy density as measured by an observer comoving
with the fluid), and the degenerate eigenvalue by p (the pressure measured by that same
observer); Einstein’s field equations will then read

Ga
b = (ρ + p)uaub + pδa

b . (45)

Since �u is non-degenerate, it follows that it must be invariant under the isometry group;
that is,

[�ξ, �u] = 0; (46)

hence, theorem 3 implies that �u must be tangent to the axis of symmetry W2 at points on it.

This implies, using coordinates {x, y, z, t} defined as in (16) that ux W2= uy W2= 0, or equivalently

ur W2= uφ W2= 0; and from (45) it then follows that

Gφ
r

W2= Gφ
z

W2= G
φ
t

W2= Gr
φ

W2= Gr
z

W2= Gr
t

W2= 0. (47)

Further, from the discrete symmetry across the equatorial plane z = 0, it also follows that
uz = 0, and the field equations (45) then imply

Gz
φ = Gz

r = Gz
t = 0. (48)
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A direct computation of Gz
φ and Gz

r for the metric (44) implies, on account of (48) that

ḡφr = α(t)ḡφφ ḡrr = β(t)ḡφφ. (49)

Substituting this into the expressions of G
φ
t and Gr

t , and taking into account (47), one obtains

α,t = β,t = 0; (50)

that is, α and β are both constant, whereas G
φ
r

W2= Gr
φ

W2= 0 are satisfied identically.
Now setting ḡφφ(z, t) ≡ A(z, t), ḡφr (z, t) ≡ B(z, t), ḡrr (z, t) ≡ P (z, t) and ḡzz(z, t) ≡

M(z, t), it follows from Gz
t = 0 (see (48)) that

A, tz

A
− 1

2

A, z

A

A, t

A
− 1

2

A, z

A

M, t

M
= 0, (51)

from where it follows that

M = (A, z)
2

A
, (52)

where an arbitrary function of z has been set equal to one by suitably redefining the coordinate
z.

At this stage it can be immediately seen that the fluid 4-velocity is just �u = ∂t (comoving
velocity), and G

φ
φ = Gr

r is satisfied identically, whereas G
φ
φ = Gz

z holds if and only if α = 0,
which casts the metric into diagonal form and allows one to set β = 1 by a trivial redefinition
of the radial coordinate. The line element then reads

ds2 = A(z, t)

{
r2 dφ2 + dr2 +

(
A, z

A

)2

dz2

}
− dt2, (53)

where the function A(z, t) must satisfy

1

2

A, t

A

(
A, tz

Az

− A, t

A

)
+

A, tt

A
− A, ttz

Az

− 1

4A
= 0. (54)

The energy density ρ and pressure p are given by

ρ = − 1

4A
− 1

4

(
A, t

A

)2

+
A, t

A

A, tz

Az

, p = 1

4A
+

1

4

(
A, t

A

)2

− A, tt

A
. (55)

Note that the above metric (53) admits three independent spacelike Killing vectors (the
axial KV, �ξ = ∂φ , �η = sin φ ∂r + (1/r) cos φ ∂φ , and �ζ = cos φ ∂r − (1/r) sin φ ∂φ) acting on
two-dimensional flat orbits (surfaces of constant t and z), and is therefore a type B warped
spacetime (see [16]).

6. Conclusions

In this paper, we have reviewed the definition of axial symmetry for a spacetime and derived
some of its most immediate consequences assuming that the axis is non-singular. Many of these
results were already known (see [2–6]), but we have provided alternative proofs based on fixed-
point theorems for conformal Killing vectors (see [10]); some others, such as the existence
of submanifolds N consisting of isometry orbits ‘packed’ together in a neighbourhood of the
axis and its consequences (see the next paragraph), do not seem to appear in the literature on
the subject.
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We next introduced a coordinate system with a well defined geometrical meaning and
gave the expressions of both the axial KV and the metric in those coordinates; further, and
taking into account geometrical properties of the submanifolds N and the symmetry axis W2,
we worked out how the metric coefficients tend to zero (for those which do) when the axis
is approached. We then discussed the coordinate changes that preserve the form of both the
metric and the axial KV, as well as the location of the symmetry axis, giving again, in these
new coordinates, the way in which the metric coefficients tend to zero when approaching the
axis. Using one such coordinate change, we have shown that it is always possible to transform
the metric to the shift-free form given by equation (28), provided that no other isometry exists
in the spacetime which forms a group G2 with the axial isometry.

Attention was then devoted to the consequences of the existence of another Killing vector
which, along with the axial KV, spans a group G2. Special mention has been made of the cases
of stationary and cylindrically symmetric spacetimes.

In the last section, a ‘toy model’ of a fluid possessing axial symmetry was presented.

Appendix

Let us consider the form (20) of the metric with A = 0 without loss of generality. One then
has

(det g)gtt = FB2 − r2D̄2[sin(2M + 2N) − B], (A1)

(det g)gtr = −rĒFB cos S + r3D̄J̄ B cos N + r3D̄2Ē sin N sin(N − S), (A2)

(det g)gtz = −r2J̄ B2 + r2D̄ĒB cos(N − S); (A3)

where we have put D = rD̄, E = rĒ and J = r2J̄ , the barred quantities being functions of
r, z and t which do not vanish (in general, that is, except in particular spacetimes) on the axis
r = 0. It can then be immediately seen that equations (32) and (33) always have a solution of
the required characteristics.
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