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LETTER

Lie Groups of Conformal Motions acting on Null

Orbits
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Space-t imes admitt ing a 3-dimensional Lie group of conformal mot ions

act ing on null orbits containing a 2-dimensional Abelian subgroup of

isomet ries are studied. Coordinate expressions for the met ric and the

conformal Killing vect ors (ckv) are provided ( irrespect ive of the matter

content ) and then all possible perfect ¯ uid solutions are found, although

none of these verify the weak and dom inant energy condit ions over the

whole space-t ime manifold.

KEY WORDS : Exact perfect ¯ uid solutions

In this letter we shall consider space-t imes (M, g) admitting a maximal

three-parameter conformal group C3 containing an Abelian two-parameter

subgroup of isometries G 2 whose orbit s S2 are spacelike, diŒeomorphic to
2 and admit orthogonal two-surfaces. Furthermore, we shall assume that
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the C3 acts transit ively on null orbit s N3 , thus complement ing a previous

paper [1] in which the case of null conformal orbit s was explicit ly excluded.

In part icular, in this let ter we shall provide the coordinat e expressions for

the metric and the ckv for each Lie algebra structure and give all possible

perfect ¯ uid solut ions.

A few remarks concerning Lie groups acting on null orbit s are in order

here. In most cases the study of null orbit s has been restricted to isometries

only. It is a well known fact that isometry groups G r , r ³ 4, acting on

N3 have at least one subgroup G3 acting on N3 , N2 or S2 [2]. In the

case in which the subgroup G3 acts on S2 , the space-t ime is an lrs model,

and the G r admits either a diŒerent subgroup G 3 acting on N3 or a null

Killing vector (kv) [3]. The case G3 acting on N2 was studied by Barnes

[4]; the group G 3 is then of Bianchi type I I and perfect ¯ uid solut ions

are excluded since the metric leads to a Ricci tensor whose Segre type

is not that of a perfect ¯ uid. Another case that has been considered in

the literature is that of a G3 acting on N3 in which Ra bka kb = 0, and

this condit ion excludes perfect ¯ uid sources with m + p /= 0. It is also

known that perfect ¯ uid solut ions cannot admit a non-twist ing (w = 0)

null kv except when m + p = 0. The algebraically special perfect ¯ uid

solut ions with a twist ing null kv are treated by Wainwright [5], and they

admit an Abelian group G 2 . Space-t imes admit ting a null ckv have been

studied recently by Tupper [6]. He has found that , for perfect ¯ uid and

null radiat ion, non-conform ally ¯ at space-t imes admitting a null ckv are

algebraically special; furthermore, if one assumes the ckv to be proper

(non-homot hetic) then the only possibilit ies are those solut ions in which

the line element admits a mult iply transit ive group of isometries G 3 acting

on two-spaces of constant curvature.

One might get the impression that space-t imes admitting a three-

dimensional Lie group of conformal motions C3 acting on null orbit s (i.e.,

the case under considerat ion here) might not admit any perfect ¯ uid so-

lut ions, since the line element of these space-t imes is, by the theorem of

Defrise-Carter [7], conformally related to one admitting a G3 acting on

null orbit s and such space-t imes, as we have pointed out above, do not

admit perfect ¯ uid solut ions. However, we will show that this is not the

case. Indeed, a conformal scaling changes the algebraic structure of the

Ricci tensor. Nevertheless, we ® nd that there are only a few perfect ¯ uid

solut ions possible.

The classi® cation of all possible Lie algebra structures for C3 was given

in [1] where coordinat es were adapt ed so that the line element associat ed

with the metric g can be written as
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ds
2

= e
2F f ± dt

2
+ dr

2
+ Q[H - 1

(dy + W dz )
2

+ H dz
2
] g , (1)

where F , Q, H and W are all functions of t and r alone. (The precise

hypotheses leading to this classi® cat ion were given explicit ly in Ref. 1.)

If the conformal algebra C3 belongs to the family A (i.e., the commu-

tator between the ckv and each kv is a kv), it was shown in [1] that , for

null conformal orbit s, one can always bring the ckv, X , into the form

X = ¶ t + ¶ r + X
y
(y, z ) ¶ y + X

z
(y, z ) ¶ z (2)

where X y (y, z ) and X z (y, z ) are linear funct ions of their arguments to

be determined from the commutation relat ions between X and the kvs.

Considering now the conformal Killing equat ions for the ckv (2) and the

metric (1), for each possible group type, one obtains the following forms for

X and the metric funct ions F , Q, H , and W appearing in (1) as follows:

I Q = q(t ± r ) , H = h (t ± r ) , W = w (t ± r ) ,

X = ¶ t + ¶ r . (3)

I I Q = q(t ± r ) , H = h (t ± r ) , W = w (t ± r ) ±
t + r

2
,

X = ¶ t + ¶ r + z ¶ y . (4)

I I I Q = e - ( t+ r ) / 2
q(t ± r ), H = e

( t + r ) / 2
h (t ± r ),

W = e
( t+ r ) / 2

w (t ± r ) , X = ¶ t + ¶ r + y ¶ y . (5)

I V Q = e - ( t+ r )
q(t ± r ), H = h (t ± r ), W = w (t ± r ) ±

t + r

2
,

X = ¶ t + ¶ r + (y + z ) ¶ y + z ¶ z . (6)

V Q = e - ( t+ r )
q(t ± r ), H = h (t ± r ), W = w (t ± r ),

X = ¶ t + ¶ r + y ¶ y + z ¶ z . (7)

VI Q = e - ( 1+ p ) ( t + r ) / 2
q(t ± r ), H = e

( 1 - p ) ( t+ r ) / 2
h (t ± r ) ,

W = e
( 1 - p ) ( t+ r ) / 2

w (t ± r ),

X = ¶ t + ¶ r + y ¶ y + pz ¶ z (p /= 0, 1) . (8)
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VI I Q = e - p ( t + r ) / 2
q(t ± r ), c = c(t ± r ), g = g(t ± r ),

H =

Ö 4 ± p2 / 2

Ö 1 + c2 + g2 + c cos( Ö 4 ± p2 (t + r )/ 2) + gsin( Ö 4 ± p2 (t + r )/ 2)
,

W =
p

2
+

( Ö 4 ± p2 / 2)[c sin( Ö 4 ± p2 (t + r )/ 2) ± gcos( Ö 4 ± p2 (t + r )/ 2)]

Ö 1 + c2 + g2 + c cos( Ö 4 ± p2 (t + r )/ 2) + gsin( Ö 4 ± p2 (t + r )/ 2)
,

X = ¶ t + ¶ r ± z ¶ y + (y + pz ) ¶ z (p
2 < 4) . (9)

In all of these cases F = F (t, r ) and the conformal factor C is given by

C = F , t + F , r . (10)

Note that these results are completely independent of the Einst ein

® eld equat ions and therefore of the assumed energy-momentum tensor.

Furthermore, it is easy to prove that family B (i.e., the case in which the

commutator between the ckv and at least one kv is a proper ckv) cannot

admit ckv acting on null orbit s (the proof can be found in Ref. 8).

Let us now study possible perfect ¯ uid solut ions. For a maximal

C3 , with a proper ckv, all possible solut ions have been found. We will

summarize the result s obtained for the diŒerent metrics (the details can

be obtained from Ref. 8). For type I (i.e., the case in which X is a null

ckv), we ® nd that the space-t ime always admits a further kv tangent to

the Killing orbit s, and the metric then admits a mult iply transit ive group

G 3 of isometries. This result is consistent with Tupper’ s analysis [6]. For

types I I and I V , either X is not a proper ckv or it does not correspond

to a perfect ¯ uid solut ion (i.e., wrong Segre type). For types V and VI I it

can be shown that either C3 is not maximal or X is not a proper ckv (see

Ref. 8 for details) . Therefore, perfect ¯ uid solut ions under the previous

hypotheses can only occur for the types I I I and VI .
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T y p e V I (including type I I I for p = 0):

We make the coordinat e transformation u = t + r and v = t ± r , so

that we have h = h (v ) and q = q(v ). The ® eld equat ions yield

W = 0, (11)

F = f (x) +
1

2

1 + p

1 ± p
ln h ±

1

2
ln q, x º u ±

2

1 ± p
ln h, (12)

0 = { q,v h ,v

qh
+

h ,v v

h }S 0 + ( h ,v

h )2

S 1 , (13)

where

S 0 º ± 1 + p
4

+ 4f ,x ± 4pf ,x + 4p
2
f ,x ± 4p

3
f ,x

+ 8f
2
,x ± 8p

2
f

2
,x ± 32f

3
,x + 32pf

3
,x

± 8f ,x x + 8p
2
f ,xx + 32f ,x x f ,x ± 32pf ,x x f ,x , (14)

S 1 º 2 + 2p + 2p
2

+ 2p
3

± 16f ,x ± 8pf ,x ± 16p
2
f ,x ± 8p

3
f ,x

+ 32f
2
,x + 16pf

2
,x + 48p

2
f

2
,x ± 64pf

3
,x

± 16f ,x x + 16pf ,xx ± 32pf ,xx + 64pf ,xx f ,x , (15)

and h ,v = 0 is excluded since the solut ion does not correspond to a perfect

¯ uid. Therefore, two possibilit ies arise:

(i) S 0 = 0, S 1 = 0,

(ii)
q,v h ,v

qh
+

h ,v v

h
= a( h ,v

h ) 2

(a = const).

In the ® rst case f ,x must be a constant, and therefore the ckv is not proper.

In the second case we have that

q,v

q
= a

h ,v

h
±

h ,v v

h ,v

, (16)

which can be integrated to give

q =
h a

h ,v

, (17)

and eq. (13) reduces to

1 =

f ,x x [f ,x 32(ap ± a ± 2p) + 8(2 ± p2 a ± 2p + 4p2 + a)]

[4f ,x ± p ± 1][f 2
,x 8(ap ± a ± 2p)+ f ,x 8(p2 + 1) + a ± ap+ ap2 ± ap3 ± 2 ± 2p2 ]

. (18)
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It is convenient to further divide the analysis into three sub-cases.

Sub-case (a): a = 2p/ (p ± 1). Equat ion (18) can be readily integrat ed to

give

f =
p + 1

4
x ±

(1 ± p)2

p2 + 1

1

2
ln j x j + c, c = const . (19)

We notice that for p = ± 1 there exists a third kv of the form

f = ( 1

2
+

1

2

h

h ,v ) ¶ t + ( 1

2
±

1

2

h

h ,v ) ¶ r + y ¶ y ± z ¶ z . (20)

Sub-case (b): a = 2/ (1 ± p). When p = ± 1 the solut ion is a part icular case

of sub-case (a) . The remaining cases may now be integrated giving

f = ± ln j 1 ± e - ( 1+ p ) x / 4 j + c, c = const . (21)

We note that in this sub-case there exists a further kv

f = ( 1

2
+

1 ± p

4

h

h ,v
) ¶ t + ( 1

2
±

1 ± p

4

h

h ,v
) ¶ r +

1 ± p

2
y ¶ y ±

1 ± p

2
z ¶ z , (22)

which violat es our requirement of a maximal three-dimensional conformal

group C3 .

Sub-case (c): Finally we consider the possibility a /= 2p/ (p ± 1) and a /=

2/ (1 ± p). The solut ion of (18) is then given implicit ly by

x = c 1 ln j f ,x ± b0 j + c 2 ln j f ,x ± b+ j + c 3 ln j f ,x ± b - j , (23)

where

b0 =
p + 1

4
,

b± =
± 2(p2 + 1) ± Ö 2(p2 + 1)(1 ± p)2 (a2 ± 2a + 2)

4(ap ± a ± 2p)
,

(24)

and c i , i = 1, 2, 3, are constants satisfying c 1 + c 2 + c 3 = 0.

A careful analysis of the weak and dominant energy condit ions shows

that for all cases (i.e., for all values of the parameters a and p) the solut ions

can only satisfy the energy condit ions over certain open domains of the

manifold (see Ref. 8).

The special degenerate cases of vacuum and Einstein space-t imes have

also been studied. There are no solut ions in either case providing that the

group C3 is maximal and the ckv is proper [8].
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