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Abstract. The existence of a Conformal Vector Field (CVF) is studied in the important class
of warped manifolds of arbitrary dimension generalizing in this way the corresponding results of
the four dimensional geometries. As a concrete example we apply the geometric results in the
case of brane-world scenarios when the bulk geometry admits a hypersurface orthogonal Killing
Vector Field (KVF) and is filled with a perfect fluid matter content.
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1. Introduction
Warped Lorentzian manifolds (M,g) are characterized by the existence of two submanifolds
O,S with associated metrics g1,g2 and appropriate signature in order to maintain the overall
Lorentzian signature of g and a function Y defined on O such that M = O×S and g = g1⊗Y 2g2.
In the case where n = 4 the resulting construction leads to the notion of a warped product
spacetime (the reader is referred to [1, 2] for a discussion on the geometric and dynamical
properties of warped product spacetimes). Both in classical relativity and in higher dimensional
theories of gravitation, important solutions of the Field Equations (FE) are of warped form
providing a strong motivation to study the implications either by the existence of a specific
symmetry assumption or by assuming a specific matter source for the gravitational field or even
the possible interplay between the two assumptions.

The propose of the present article is to develop a methodology of studying the existence of
Conformal Vector Fields (CVFs) X in the important class of warped geometries irrespective of
the dimension and the specific geometric structure of the constituent submanifolds. We recall
that CVFs are defined by the requirement LXg = 2ψg where ψ is a smooth function of the
warped manifold and reduce to Killing Vector Fields (KVFs) when ψ = 0, to Homothetic Vector
Fields (HVFs) for ψ;A = 0 and to Special CVFs for ψ;AB = 0. Throughout this work the
following index conventions have been used: full (d + m)−dimensional indices are denoted by
capital latin letters A, B, ... = 0, 1, 2, ..., d+m (d, m �= 1), lower latin letters from the first half of
the latin alphabet denote spacetime indices a, b, ... = 0, 1, 2, 3, lower latin letters from the second
half correspond to m−dimensional coordinates i, j, ... = d+1, d+2, ..., m and greek indices take
the values α, β, ... = 1, 2, ..., d.

2. Conformal symmetries of d + m decomposable metrics
The main result of the present work is the next Theorem which generalizes known results [3, 4, 5]
in the literature concerning the existence of CVFs in 4-dimensional decomposable space-times,
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in the case of a (d + m)−decomposable manifold.

Theorem 1. Let gAB = gαβ ⊗gij be a (d+m)−decomposable metric with Lorentzian signature.
Then:

(i) The KVFs of each metric gαβ, gij are also KVFs of the full (d + m)−metric gAB.
(ii) The metric gAB admits a HVF iff each gαβ, gij admits one. If Hα(xβ) and H̄i(xj) are

HVFs of the constituent metrics gαβ, gij with conformal factors b and b̄ respectively, the
HVF HA of the (d + m)−metric is given by HA = b̄Hαδα

A + bH̄iδ
i
A with conformal factor

bb̄.
(iii) A necessary condition for the (d+m)−metric to admit a proper CVF with conformal factor

ψ is each of the constituent metrics to admit the gradient CVFs ψ,α, ψ,i. ��

Proof
It is convenient to write the d + m decomposable metric as follows:

gAB = gαβ(xγ)δα
Aδβ

B + gij(xk)δi
Aδj

B (2.1)

and we denote the covariant derivative with respect to the metrics gαβ , gij with ”|” and ”||”
respectively.

For general vectors Kα(xA), Ki(xA) we decompose their first derivatives into irreducible parts,
according to the general relations:

Kα|β = λ(xA)gαβ + Hαβ(xA) + Fαβ(xA) (2.2)

Ki||j = λ̄(xA)gij + H̄ij(xA) + F̄ij(xA) (2.3)

where Hαβ = Hβα, Hα
α = 0, Fαβ = −Fβα and similarly for the ”i, j” indices.

Let us consider now a general vector field ξA in the d + m manifold (M,g). Denoting the
covariant derivative with respect to gAB by a semicolon we write again:

ξA;B = ψ(xC)gAB + HAB(xC) + FAB(xC). (2.4)

For convenience we d + m decompose the general vector field ξA as follows:

ξA = Kαδα
A + K̄iδ

i
A (2.5)

where Kα, K̄i are the orthogonal projections of ξA.
From equations (2.2) -(2.5) and following [3] we may express the irreducible parts of ξA w.r.t.

to the corresponding parts of the vector fields Kα, K̄i. We restrict our considerations to ξA being
a CVF of the metric gAB which is equivalent to HAB = 0. It follows that:

Hαβ = 0, H̄ij = 0, λ = λ̄ = ψ, Kα,j + K̄j,α = 0 (2.6)

Because ΓA
αi = 0, (2.6) can be written:

Kα||j + K̄j|α = 0. (2.7)

Using the fact that Kα is a CVF of the metric gαβ differentiating the last relation of (2.6) w.r.t.
β and using Kα,j + K̄j,α = 0⇒ Kα,β,j = Kα,jβ = −K̄j,αβ we obtain:

K̄j,αβ + Γγ
αβK̄j,γ = −ψ,jgαβ (2.8)
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where in the above equation the index j should be understood as counting the components of
K̄j . With this convention we rewrite (2.8) (and a similar relation for Kα) as follows:

K̄i|αβ = −ψ,igαβ , Kα||ij = −ψ,αgij . (2.9)

These equations mean that each Kα, K̄j (and for each value of the corresponding covariant
index) is a gradient CVF of the metrics gij , gαβ . Moreover Ricci’s identity for the vector fields
K̄i|α, Kα||i implies:

(d − 1)ψ,iγ = Rδγ(K̄i)|δ, (m − 1)ψ,iγ = R̄id(Kγ)||d. (2.10)

where Rαβ , R̄ij are the Ricci tensors associated with the constituent metrics gαβ , gij respectively.
We consider cases according to the type of the conformal symmetry.
KVFs
Then ψ,A = 0 and equations (2.9), due to (2.6), imply that each pair K =

{
Kα,i, K̄i,α

}
must vanish in which case Kα(xβ) and K̄i(xj). We conclude that the KVFs of the (d +
m)−decomposable metric gAB are identical with the KVFs Kα(xβ) and K̄i(xj) of the constituent
metrics.

HVFs
Since again ψ,A = 0 the same arguements apply, therefore we conclude that the full

decomposable metric admits a HVF HA if and only if both the constituent metrics admit one,
say Hα(xβ), H̄i(xj). If ψ1, ψ2 are the (constant) conformal factors of the HVFs Hα(xβ), H̄i(xj)
respectively, then:

HA = ψ2Hαδα
A + ψ1H̄iδ

i
A (2.11)

with conformal factor ψ = ψ1ψ2.
Proper CVFs
In this case differentiating equations (2.10) w.r.t. ”j” and ”β” we obtain:

ψ|αβ = −�̄�ψ

m
gαβ , ψ||ij = −��ψ

d
gij (2.12)

where ��, �̄� denote the d’Alambertian operator w.r.t. the metrics gαβ , gij respectively. Therefore
each of the constituent metrics admits the gradient CVFs ψ,α, ψ,i. Furthermore the conformal
factors �̄�ψ,��ψ satisfy:

m��ψ + d�̄�ψ = 0 (2.13)

We note that equations (2.12) are necessary (but not sufficient) conditions and can be used as
a simple criterion to check whether a specific (d + m)−decomposable metric admits a proper
CVF or not. However when the constituent metrics possess additional restrictions (e.g. they
are Einstein spaces or spaces of constant curvature) we can draw further conclusions regarding
the form of the CVFs and the structure of the metrics gαβ , gij similarily to the case of four
dimensional decomposable manifolds (see e.g. [3, 5] for details). ��

3. An application
In brane cosmology we assume that our Universe is a defect embedded in a higher-dimensional
bulk space [6] in which the bulk (warped) metric, in Gauss normal coordinates, can be written
as (A, B, ... = 0, 1, 2, 3, 4):

ds2 = −m2(τ, η)dt2 + dη2 + R2(τ, η)dΩ2
k (3.1)

where dΩk is the three dimensional metric of constant curvature parametrized with k = 0,±1.
The above approach has been provide a context in which the cosmological evolution can dis-

play novel features [7, 8]. Although the brane evolution depends on the matter content which is
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assumed to be located in the bulk, the geometry of the brane is unaffected and is described by
the existence of a G6 group of isometries acting on the three dimensional spacelike orbits S3 of
constant curvature. However the bulk geometry depends crucially on the dynamic assumptions
we made for the matter content of the bulk. For example an extensively studied case in the
recent literature is when RA

B = −2
3ΛδA

B which results as its unique solution, the well known
five-dimensional AdS-Schwarzschild static metric for the bulk [9].
This conclusion can be proved straightforward by means of Theorem 1 leading to:

Proposition 1. Let M a n−dimensional pseudo-Riemannian manifold endowed with
Lorentzian metric ĝ admitting a Gr group of isometries acting on d−dimensional spacelike
orbits Sd with r = d(d+1)

2 (⇔ Sd are of constant curvature and d = n− 2). Then a Λ−term or
a degenerated algebraic type [(1, 1), 1, ...1] for the Ricci tensor implies that the metric ĝ admits
a hypersurface orthogonal KVF thus a Gr+1 group of isometries.

The above proposition can be seen as the generalisation to 2 + (n − 2) warped geometries
of Birkhoff’s theorem (a four dimensional version of this theorem has been shown by Barnes and
Goenner [11] using, however, a different method).

Consequently one can choose to study the brane evolution in the coordinate system adapted
to the cosmological fuid observers uA (metric (3.1)) in which the brane is located at a fixed value
(η = 0) of the extra spatial coordinate [8, 10]. In this case the KVF is:

XA = m−2
[
b2(R) (R,τ )

2 + m2
]1/2

n(R)∂τ + m−1b(R)n(R)R,τ∂η (3.2)

with b(R), n(R) arbitrary functions of the “scale factor” R(τ, η).
On the other hand we may choose a coordinate system adapted to the “fluid” velocity parallel

to the KVF XA = δA
t in which the brane is moving across the spatial direction [12, 13]. Then

Proposition 1 shows that the two approaches are (geometrically) equivalent only for the case of
a (negative) cosmological constant.

Although the assumption of Λ−term necessary implies the existence of a timelike Killing
Vector Field (KVF), in the presence of bulk matter TA

D �= ΛδA
D the cosmological evolution on

the brane is not autonomous, and the explicit knowledge of the bulk energy-momentum tensor is
necessary. Moreover the bulk metric does not necessary admits an additional isometry. Therefore
it is difficult to determine an exact solution towards an effective study of the possibility of energy
exchange between the brane and the bulk. Geometrically this energy exchange is described by
the energy flux vector field qA = −hA

DuBTD
B (where hA

D = δA
D + uAuD) and can be used in

order to study the induced modifications of the cosmological evolution on the brane. As a result,
certain additional assumptions have been made for its form [15] or for the bulk geometry. For
example one may relax the dynamical assumption of a cosmological constant for the bulk but
maintain the existence of a hypersurface orthogonal timelike KVF XA = δA

t for the bulk warped
metric [16]. According to Theorem 1, this additional hypersurface KVF is actually a KVF of
the constituent 2−metric therefore the bulk metric can be written in the static form:

ds2
5 = −n2(r)dt2 + b2(r)dr2 + r2dΩ2

k (3.3)

where n(r), b(r) are arbitrary functions.
Employing a perfect fluid (plus a negative cosmological constant) for the matter content in

the bulk with arbitrary equation of state, the fluid velocity uA is parallel to XA = δA
t . In this

case the most general solution for the metric (3.3) is:

1
b2

= k +
1

12M3
Λr2 − 1

6π2M3

1
r2

M(r), (3.4)
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where M(r) satisfies
dM
dr

= 2π2r3ρ (3.5)

where ρ is the energy density of the perfect fluid as measured by the bulk observers uA and the
pressure satisfies the conservation equation:

p′

ρ + p
=

1
r
− 1

r

[
k +

1
6M3

r2(p + Λ)
] [

k +
1

12M3
Λr2 − 1

6π2M3

1
r2

M(r)
]−1

. (3.6)

We note that for ρ = 0 and constant M we obtain the known AdS-Schwarzschild solution
[13]. Therefore the above solution can be interpreted as AdS-stars, as their form generalizes the
known four-dimensional model for the interior of stellar configurations [14]. Furthermore for a
complete solution an equation of state p = p(ρ) must be provided. For example assuming a
generic polytropic equation of state p = wργ the large-r behaviour can be obtained analytically
through the assumption that the cosmological constant term ∼ Λr2 dominates over the curvature
and matter terms. In this way we obtain

ρ(r) =
(

κ r
1−γ

γ − 1
w

) 1
γ−1

for γ �= 1 (3.7)

ρ(r) = κ r−
w+1

w for γ = 1 (3.8)

with κ an integration constant.
Clearly, under these assumptions the cosmological fluid observers ũA = δA

τ measure an energy
exchange qA and although the explicit solution for the bulk is derived on the comoving coordinate
system of the bulk fluid velocity uA (or equivalently of the KVF XA), the evolution equations
for the brane can be studied in the standard coordinate system adapted to the brane obervers
ũA.

The Hubble expansion of the brane becomes [16]:

Ṙ2

R2
= H2 =

1
144M6

(
ρ̃2 + 2V ρ̃

)
− k

R2
+

1
6π2M3

M(R)
R4

+ λ. (3.9)

where ρ̃ is the energy density on the brane, V is the brane tension and λ is the effective
cosmological constant. The novel feature of eq. (3.9) is the term ∼ M(R)/R4. It is a
generalization of the “mirage”, or “Weyl”, or “dark” radiation term [13] coming from the energy
outflow from the brane, which is related to the mass M(R) of the AdS-star in the bulk.

Acknowledgments
One of the authors (PSA) is grateful to N. Tetradis and T. Christodoulakis for stimulating dis-
cussions and comments. PSA gratefully acknowledges the hospitality of the Universitat de les
Illes Balears (UIB) during the completion of this paper. Part of this work is supported through
the research program “Pythagoras”, grant No 70-03-7310.

References
[1] J. Carot and J. da Costa, Class.Quantum Grav. 10, 461 (1993).
[2] B. M. Haddow and J. Carot, Class.Quantum Grav. 13, 289 (1996).
[3] P. S. Apostolopoulos and M. Tsamparlis,Class. Quantum Grav. 18 3775 (2001).
[4] P. S. Apostolopoulos and M. Tsamparlis, Tensor N. S. 61, 260 (1999).
[5] J. Carot and B. O. J. Tupper, Class.Quantum Grav. 19, 4141 (2002).
[6] V. A. Rubakov and M. E. Shaposhnikov, Phys. Lett. B 125 136 (1983).

32



[7] L. Randall and R. Sundrum, Phys. Rev. Lett. 83 3370 (1999) [arXiv:hep-th/9905221]; Phys. Rev. Lett.
83 4690 (1999) [arXiv:hep-th/9906064].

[8] P. Binetruy, C. Deffayet and D. Langlois, Nucl. Phys. B 565 269 (2000) [arXiv:hep-th/9905012]; P. Binetruy,
C. Deffayet, U. Ellwanger and D. Langlois, Phys. Lett. B 477 285 (2000) [arXiv:hep-th/9910219].

[9] P. Bowcock, C. Charmousis and R. Gregory, Class. Quantum Grav. 17 4745 (2000) [hep-th/0007177].
[10] C. Csaki, M. Graesser, C. F. Kolda and J. Terning, Phys. Lett. B 462 34 (1999) [hep-ph/9906513]; J. M.

Cline, C. Grojean and G. Servant, Phys. Rev. Lett. 83 4245 (1999) [hep-ph/9906523].
[11] A. Barnes, Commun. Math. Phys. 33, 75 (1973); H. Goenner, Commun. Math. Phys. 16, 34 (1970).
[12] P. Kraus, JHEP 9912 011 (1999).
[13] P. Brax and C. van de Bruck, Class. Quantum Grav. 20 R201 (2003) [hep-th/0303095]; R. Maartens,

Living Rev. Rel. 7 1-99 (2003) [gr-qc 0312059].
[14] S. Weinberg, Gravitation and Cosmology, John Wiley and Sons, New York, 1972.
[15] E. Kiritsis, G. Kofinas, N. Tetradis, T. N. Tomaras and V. Zarikas, JHEP 0302 035 (2003) [hep-

th/0207060]; N. Tetradis, Phys. Lett. B 569 1 (2003) [hep-th/0211200].
[16] P. S. Apostolopoulos and N. Tetradis, Class. Quantum Grav. 21 4781 (2004) [hep-th/0404105].

33


