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ABSTRACT

The evolution of discontinuities in a general relativistic sphere free of singularities is studied. The energy
transport mechanism through fluid is diffusive. The distribution of matter is divided by a shock wave front in
two regions. The equations of state at both sides of the shock are different, and the solutions are matched on
it via the Rankine-Hugoniot conditions. The outer metric joins the Vaidya solution at the boundary surface of
the sphere. Exploding models are obtained, and their dynamics are studied using a generalized compressibility

coefficient for nonadiabatic systems.

Subject headings: diffusion — relativity — shock waves

1. INTRODUCTION

In the general relativistic studies on the evolution of fluid
spheres, dissipative processes are generally absent. However, in
certain situations of stellar collapse, those processes might play
an important role. For example, the opacity of collapsing
matter for neutrinos and/or photons will give rise to diffusion
processes associated with radiative thermal conduction
(Kazanas 1978; Mihalas & Mihalas 1984). Also, as it has been
recently reported, the low mean energy of the detected neu-
trinos (~10 MeV) from the supernova 1987a and the long
duration of the burst attest to the diffusion, not streaming out,
of the neutrinos from the lepton-rich neutron star (Lattimer
1988).

In this paper we shall propose an extension of a method
reported by Herrera & Nuiiez (1987) to study the evolution of
discontinuities in radiating spherically symmetric distribution
of matter. In the present case the energy transport scheme is
diffusive in the two regions of the sphere divided by a shock
wave front. We do not discuss either the mechanism for indu-
cing diffusion, or the corresponding underlying microphysics,
rather we concentrate on the influence of diffusion processes on
the evolution of radiating self gravitating spheres. At either
side of the shock wave front, a physically reasonable equation
of state is chosen. The solutions are matched across it via the
Rankine-Hugoniot conditions (Taub 1948, 1983; Herrera &
Nuifiez 1987). The matching with the Vaidya metric on the
boundary of the configuration completes the consistency of the
radiating sphere. These junction conditions at the shock and at
the boundary of the matter distribution, lead to a system of
ordinary differential equations for quantities evaluated at
either the boundary surface or the shock front. The numerical
integration of this system allow us, using the fields equations,
to find the profile of the physical variables throughout. In
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order to understand further the dynamics of the system, we
shall use a generalization of the concept of adiabatic index to
nonadiabatic situations. This essentially gives a measure of the
stiffening of any piece of material during the evolution
(Barreto, Herrera, & Santos 1990). As we shall see, the intro-
duction of this parameter allows us to set up a self-consistent
explanation of the bouncing of the outer regions without
making appeal of a strong shock erupting at the boundary
surface. In the context of our approach the role played by the
discontinuity surface (the shock) is that of an interface separat-
ing two regions with different equations of state. After the
emission of the pulse, this surface becomes the boundary of the
(quasi-) homogeneous compact remnant (Herrera & Nuiiez
1990). The paper is organized as follows. In § 2 the conventions
used, the field equations, the nonadiabatic index, and the
method are sketched. Section 3 contains a model worked out.
Finally the results are discussed in the last section.

2. RADIATING FLUID SPHERE WITH SHOCK AND HEAT FLOW

2.1. Field Equations

Let us consider a nonstatic distribution of matter which is
spherically symmetric and consists of fluid unpolarized radi-
ation traveling in the radial direction (to model the streaming-
out regime), heat flow (to model diffusion regime), and an
isotropic radiation. In radiation coordinates (Bondi 1964), the
metric takes the form

ds? = e”(% du? + 2du dr) — r¥d6* + sin?2 0dg?), (1)

where f and V are functions of u and r. Here u=x° is a
timelike coordinate. In flat space-time u is just the retarded
time, therefore surfaces u = constant represent null cones open
to the future. r = x' is a null coordinate (g,, = 0) such that
surface r = constant, u = constant are spheres, and 0, ¢ = x2,
x* are the usual angle coordinates. The relationship between
these coordinates and the usual Schwarzschild coordinates
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(1 ,R, @. (D)ls given by
u'—']—j—d’ @'—0
1% ’ s

@
r=R, D=¢.

For the matter distribution considered here, the energy-
momentum tensor has the form

T;tv=(p+P)uuuv_pguv+quuv+qvuu+€k“kv’ (3)

where u,, g, and k, denote, respectively, the four-velocity of the
fluid, the heat flux vector satisfying the condition

q'u, =0 @

and a null vector pointing in the direction of the outgoing
radiation. Now, in order to give a physical meaning to the
components of the energy-momentum tensor, as given by
equation (3) let us (following Bondi 1964) introduce purely
local Minkowski coordinates (¢, x, y, z) by

dt = f[(V/r) 2 du + (r/V)' 2 dr] ,
dx = ef(r/V) 2 dr ,

dy=rdo,

dz=rsin 0d¢ .

Then, denoting Minkowskian components of the energy-
momentum tensor by a caret, we have

. | 4
160 = T;)O(eZﬁ 7) >

Toy = (Too + Tor)e? ,

&)

N N N r
Ty, = (Too + Tyy + 2T5y)e* 7

T3 =T3=T3=13. ©

Next, one assumes that for an observer moving relative to
these coordinates with velocity w in the radial direction, the
space contains .

1. Anisotropic fluid of density p and pressure P.

2. Unpolarized radiation of energy density € traveling in the
radial direction. )

3. A radial heat flux g.

4. Isotropic radiation of energy density 3 4.

For this specific observer, the covariant energy tensor is

p+3+e —g-& 0 0
—q—¢€ D+ 6+ € 0 0
1 b o , )
0 0 p+6 0
0 0 0 p+é

and a unit spacelike vector radially oriented (along the x-
coordinate) has components

(0, —1,0, 0). ®)
Then a Lorentz transformation readily shows that
~00 _ 4 _ P+ Po? 20w
™" = 7})0 - 1— wz + (1 _ w2)1/2(1 - 2771/7‘)1/2 te€, (9)
. ~ P+ po? 20w
11 —1 =
T Ty, 1 —o? + (1 — @)1 = 2m/n)'? +€, (10)
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_goi_p _ _@p+P o1 + »?) e
ot 1-0?) (-1 -2mm"* =’
(11)
2=T}=-P, (12
where
=p+35, P=P+5,
p=>p - & 13)
€=e(1 _Z) V= —2m),
and
L (1 = 2m/r)?
0=4 A0 (14
and for the unit radial vector we get
A=y = s, (15)
(1 _ C02)1/2
a1 a -1
=—f, = e peTE (16)

From equation (5) above it follows that the velocity of a given
fluid element in the null coordinate system is given by

—=— 7

Also, it is worth noticing that the function /m(u, r) is the mass in
the static case, and its value in the boundary surface of the
sphere equals the Vaidya mass (Bondi 1964). So far we have
considered the general case when both the heat flow term and
the outgoing null radiation are present. In what follows, we
shall restrict ourselves to the case we are concerned with in this
paper. Thus we shall assume € = 0. The purely streaming-out
case (g =0, € #0) has been considered before (Herrera &
Nuifiez 1987, 1990)

Then the Einstein fields equations may be written in radi-
ative (null) coordinates as

p + Pw? 20w
1—w? (1 — o)1 - 2m/r)'?
1 . r—2m
=m(——moe 2 4+ m1>, (18)
p—Po  (1-0)Q [1-w]? im "
140 (=202 14+0]|  4w?’ (19)
| ) l-o)Q [1-w]” r—2m
1+a)(p+P)—2(1—2ﬁz/r)”2l:1+a):| T 2m? B
(20
Bore”? 1 2m
p=-fu® (1
4n +87t1 r
(2800 2 b B g
r 8nr

Here, differentiation with respect to u and r is denoted by
subscripts 0 and 1, respectively.
We consider the sphere of radius a(u) divided in two regions
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(denoted by I and II) by a discontinuity surface (a shock) at a
radius c(u). The matching conditions across the shock (the
Rankine-Hugoniot conditions) require the continuity of the
first and second fundamental forms, plus the continuity of
T,,n’, where T, is the energy-momentum tensor and n’ is the
unit vector normal to the surface r = c(u). The continuity of the
first and second forms leads to the following conditions (Taub
1948, 1983; Herrera & Nuiiez 1987):

(Al =[m]. =0, 22

and
[2ﬁle2ﬂ<1 - 27”’) — 26, — e '—"r—l] =0, @)
where
[ch =0 Ef|r=::+0 ~f|r=c+0 =ﬁl _fi .
Next, since f is continuous across c(u),
ﬂ(n u) x ﬂ(C, u) + ﬂllc(r - C) s

and then

[Bo +¢coB1l. =0. (24)

Substituting equation (24) back into equation (23) and using
equations (19) and (20), we get

(@ + P)¥ —p]. =0, 25
with (see egs. [39], [40] below)
¥=1+coe k(1 —2m/r)~1. (26)
The conditions [T,,n"], = O read
[+ PY¥-p5l.=0, 27

which is exactly the condition (25) (Herrera et al. 1987), and

pt+w’P  p—wP OR2w + P(1 — w?)] _o
e 1+o (-2mnP1—wy)”| ="

(28

At this point the following remark is in order: since r = c(u) is a
surface of discontinuity, then

E_ ¢| = ﬂ
du_ 0T V== G0

In other words, the velocity of the shock, in general, is not
equal to the velocity of matter evaluated at r = ¢(u). Should
r = c(u) not be a discontinuity surface, then

dr
Co=”|r=c= E ’

and it is easily found from equations (17) and (27) that

1
=T (29)
Substituting equation (29) back into equation (27) we get
QU — )2
P — —— =
l: (1 - 2';'/")1/2 r=c 0 ’ (30)

which indicates that the hydrodynamic pressure is not contin-
uous across r = c(u) as expected for a dissipative fluid (Santos
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1985; Herrera et al. 1987; Lake 1987). This is the situation at
the boundary surface r = a(u), i.e., for a surface to be a bound-
ary, the velocity of matter must be equal to the velocity of the
surface itself.

2.2. Generalized Concept of Adiabatic Index for Nonadiabatic
Systems

To study the evolution of the radiating system we include,
briefly, in this part a definition of compressibility proposed by
Barreto et al. (1990). This concept takes into account the emis-
sion and absorption processes and is obtained by extrapolating
the physical meaning of the terms appearing in the definition of
the adiabatic index, that is,

_dlnP
T dlnp’

Gy

where P and p are the hydrodynamic pressure and energy
density, respectively. The generalized concept of adiabatic
index is given by

dInIl

NA =T (32
where IT and E are the total flux of momentum in the direction
of contraction and the total energy density as measured by
some suitable defined Minkowskian observer (N.A. stands for
nonadiabatic). This definition is completely general; it is not
related to a specific degree of symmetry of the system or to a
given radiation transport regime.

For our spherically symmetric system the total flux of
momentum in the radial (x) direction, as measured by our (x, y,
z, t) local Minkowski observer, is given by

= T4, , (33)

which we can obtain, using equations (15)-(16) and (9)(12)

Qw
1 — od( = 2m/r)V

— 20%p + P(1 + 0?)
- (1 _ w2)3/2

- (3 + Y.

(34

Note that in the case of slow (w? ~ 0) and adiabatic (Q = 0)
contraction, equation (34) reduces to hydrodynamic pressure.
Then the generalized concept of hydrodynamic adiabatic index
is given by ’
_dinIl
N.A. — d h‘l T’bo .

It may be calculated using equations (34) and (9). Observe that
in the slow adiabatic contraction we get 'y , = T.

(32)

2.3. The Method

Using the fields equations (19) and (20), we obtain for the
metric functions £ and /

iy = f 4nt2p,dr , 0<r<cw, (39
0

my = f ’ 4nt?pydv + myfu, cu)] , cu)y<r<a(m, (36)

(u)

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1991ApJ...375..663B&amp;db_key=AST

J. 2 2375, J663BT

120

rt

666 BARRETO, HERRERA & NUNEZ Vol. 375
and can be written as
r 2nr? < A=FQ-1). 1)
B =f = (b1 + Pydr + Bylu, cw)],
' ew T — 2y ' ! 2. The second surface equation relates the total loss rate
0<r<a(u) 37 with the energy flux through the boundary surface. This can be
s - T ’ obtained by evaluating equation (18) at r = a + 0, and we get
T 2wt ~ (Herrera et al. 1987)
Bu= J 7 — 2 (P + Pz, cuw<r<a(, (38 [2F'7g00 — 1Y7/Q] A(l F)
a(u) I . q — + —
where we have defined the two auxiliary functions F= A ’ “2)
. _p—oP 1-wQ [1-w]? with ¢ = 4na®Q,.
PETTe =22 |1+w| (39) 3. The third equation at the boundary surface will be
obtained from the conservation equation T4,, = 0 evaluated at
P P—ap 1-wQ [1-a]? 40 the surface.
“1+o (1- 2/ |1 + o ’ (40) 4. The remaining equations are also model-dependent and

hereafter referred to as effective density and effective pressure,
respectively. The subscripts I and II indicate the region where
the quantity is evaluated. We can now restate the Herrera &
Nuiiez algorithm (1987) for the composite sphere with heat
flow:

1. Take two static interior solutions of the Einstein equa-
tions for distributions of matter with spherical symmetry, given

Psa=pPA1) 5 P = Pulr)
Py = P(r); Pyy= Pylr).

2. Assume that the r-dependence of P, j; and p, ; is the same
as that of P, and p, y, but taking care of the boundary
condition which, for this case, reads

Py=—0,pya »

and the conditions at r = ¢(u) given by equations (27) and (28).

-3. With the r-dependence of p; ; and P, ;;, and using equa-
tions (35)+38), one gets 7y iy and f; ;; up to some functions of u
which will be specified below.

4. For these functions of u, one obtains the following ordi-
nary differential equations (surface equations). Three of them
(two model dependent) emerge because of the junction condi-
tions and the field equations evaluated at the boundary
surface. The remainder of the surface equations comes from the
Rankine-Hugoniot conditions.

5. Providing three additional functions, one evaluated at
r = a(u) and the other two evaluated at c(u), the system of the
superficial equations may be integrated for any particular set
of initial data.

6. Feeding back the result of integration in the expressions
for /m, ; and B, y, these four functions become completely deter-
mined.

2.4. Surface Equations
As it should be clear, the crucial point in the above algo-

4 rithm is the system of surface equations, described as follows:

1. The first surface equation comes from equation (17)
evaluated at the boundary r = a(u), which after scaling the
radius g, the total mass m, and the timelike coordinate u by the
initial mass m(u = 0) = m(0)

A=a/m0), M=m/m0), um0)->u,
and defining
2M 1
F=1—-——, Q=
A’ 1-w,’

© American Astronomical Society e

are written as a result of the matching conditions across
r = c(u).

3. A MODEL

In this section we shall explicitly work out a model to illus-
trate the method just presented above. Let us first specify the
effective variables in both regions of the sphere. For the inner
region, a solution having as its static limit the well-known
Schwarzschild homogeneous interior solution has been con-
sidered:

Bu=1w), @3)
(gl — G W] — 173
datd ‘“){ 1 — gLl — B/ @I } > @

where f(u) and g(u) are two arbitrary functions of u. We can
now integrate equations (35) and (37) to obtain

il 1) =2 1 @)

1, wOlgwe) — 1]

= OTgwwn — 1]

+ ﬂll[u9 C(u)] ’ (46)

where

w(x) = [1 — 8mx(u) f (w)/3]'/2 .

So far we have three unknown functions of u which are f(u),
g(u) and By[u, c(u)]. For the outer region, the effective variables
are chosen inspired in the static Tolman VI metric (Tolman
1939):

" 3h(u
pu =20 @
r
~  hu) |1 — %@wr
By=—5 | —2
=2 [ 1 —k(ur |’ “8)
where h(u) and k(u) are unknown functions of u, related
through the boundary condition Py, = —w, jy,. Thus, we get
for the metric functions
iy, ¥) = 12nh(u)r — dnc(u)[3h(u) — c2(w)f(w)/3], (49)
8nh(u) 1 — k(wr
,)=———"d2n| ———
i = s |
3k(u)y:| y + or
1 1
+[ + 5 n S+ oaw ||’ (50)
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with with
y = 2[12nc(wh(u) — 4nc3(u) f(w)/3] , 6= y + 6C A< 8nH <5 + 3K'y)
and _‘)’+5A’ B o yK+46)’
6 =1—24nh(u) . G_I—KC _ lénH
) , ) ‘ T 1-KA® T 9K +4’
Having specified the solutions at either side of the shock (up to d
some functions of u), we are now ready to write out the surface an
equations. Two of them correspond to the surface at r = a(u) D=ygG'"?—1.

(egs. [41] and [42]). The third one can be obtained from the
equation [T4 ],-, = O after lengthy and tedious calculations.
If the effective density isseparable;ie.,; p = f(w)g(r), we get

_ofH A F (1+FQ-1  AFQ
Q—Q<H_2A_F A *3H
2 2Q — 1°H
X I:[QF(ZQ —)]4nA> 40 R,
T2nH? 1
—Fe- 1)|[W F
Jf6H, __H 8K 21— 9K4)
A3 T 4201 —KA)|1-KA A ’
, (51)
where
H 8K 2l —9KA)
R = - Bi—xa [1 kAT 4 ]
3H [1-F 12zH®Q — 1)
+A3QF[ 2 T 0 ] (52)
with
g_A1-F-C1-6)
N 247(A — C) ’
403
T 34(4Q — 1)’
and

C=cw/m0), M=m/m0), G=1-2M/C.

Observe that the equations (41), (42), and (51) are coupled with A

the solutions at r = ¢(u) through the appearance of the function
f(u) in equations (49) and (50).

For the fourth equation, we can use the condition (27),
taking into account equations (45), (46), (49), and (50). Thus

C= —g [{3D(1 — KO)(1 — G)Y34 — 2C) — (1 — F)4]}

x {2(1 — G)[3(1 — KCXA — C) — 2DC(1 — 3KC)]

+4(1 — F)AD( — 3KC)} "1 + 1], (53)

where

{=9¢", ¢=06"

We can use, equivalently, the field equations (18)~(21) evalu-
ated at each side of the shock, instead of the condition (28), to
obtain the other surface equations

1G*+®GP +37G+ =0 (54)
that can be solved easily, algebraically in G, and
A
D=—
5 (55)

the quantities y, @, n, Z, Y, and © are very complex functions of
A, F,Q, C, G, D, and their derivatives (see Appendix). Thus we
are left with six equations for nine unknown functions of u: 4,
F,C,Q,D,G,S,q,-._o and g,_.,. To fulfill the numerical
integration of the system of surface equations (41), (42), (51),
(53), (54), and (55), we provide as “observational” input the
functions S, ¢q,-._¢, and g,-.+o. Physically S represents the
total radiated mass per unit of retarded time u; q,_._, and
q,-c+0 are the energy flux density per unit of time u at both
sides of the shock wave front. We have selected

S qFllz(zn _ 1)3/2
Q b

as a Gaussian pulse such that the total ejected mass is 1/10 of
the initial total mass. At both sides of the shock we have also
chosen a Gaussian pulse. The total radiated energy flux at
r = c(u) is 10~ of the total initial mass m(0). The peak of the
pulse at the shock is emitted four units of time before the
maximum of the luminosity at the boundary surface is signa-
led. The opacity (emissivity) of the shock front may be varied
modifying the shape of the pulses at both sides. The effect of
this parameter on the evolution of the discontinuity surface
will be analyzed elsewhere.

The surface equations were integrated numerically with the
following initial data:

A0)=20, C0)=12,
F(0)=09, G(0)=0907,
Q(0) =092, D(0)= —0.598 ,

which emerges as the most interesting model from a large
number of other data sets considered. Figure 1 shows the evo-
lution of the boundary surface A(u) and the shock at C(u). As
was stated before, the physical variables are obtained from
equations (18)+21). The evolution of these matter variables are
monitored at fixed radius labeled r/a(0) and are displayed in
Figures 2 through 5. Figure 6a exhibits the march of the non-
adiabatic index at three fixed-mass shells. Figure 6b represents
the values of this index through the sphere at four different
times. Finally, Figures 7 and 8 sketched the variation of the
nonadiabatic index and the matter velocity, respectively, at
both sides of the shock. The next section is devoted to the
discussion of results.
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20 10
A
18 L a
|
16 |-
P 5 L
P b
14 -
C
12 /\ —
Cc /g
10 | 1 1
0 10 20 30 40 0 A L 1
u ) 20 40
F1G. 1.—Evolution of A(u) and C(u) u

4. DISCUSSION OF THE RESULTS

The matter distribution considered is free of singularities
everywhere. The Rankine-Hugoniot relations match, through
the shock, the inner and the outer solutions, and the junction
conditions across the boundary surface fulfill the remaining
coupling with the radiating version of the Scharzschild exterior
solution (the Vaidya solution). The diffusion limit is assumed
through the composited sphere, except at the boundary surface
and at both sides of the shock front. Figure 1 represents the

2
|
a
o
o) C
-1 1 | 1
(o} 10 20 30 40

u

FiG. 2—Evolution of the dimensionless pressure P = Pm(0)? (multiplied by
10°), monitored at different regions: curves a—c are for r/a(0) = 0.2, 0.6 and 1,
respectively.

FiG. 3—Evolution of the dimensionless density p = pm(0)® (multiplied by
10°), monitored at different regions: curves a— are for r/a(0) = 0.2, 0.6, and 1,
respectively.

evolution of the discontinuity and the boundary surfaces. It is
clear from this figure that the shock does not reach the bound-
ary of the matter distribution. Instead, it expands and later it
recedes. During this period the outer boundary bounces and
expands with an increasing velocity. It can be noticed that the
expansion of the core enhances the expulsion of the outer
mantle. This piston-like effect mechanism can be also observed
in Figure 4 where the velocity profiles recorded at different
mass shell are displayed. It is also apparent from this figure

0-2
ol
& oo
-0l
-02 ] ] |
o 10 2uO 30 40

F1G.- 4—Evolution of the matter velocity (dr/du), monitored at different
regions: curves a—c are for r/a(0) = 0.2, 0.6, and 1, respectively.
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6

5 |

A

30

-1 |
0 10

|
20
u
FiG. 5—Evolution of the dimensionless heat flow @ = Om(0)? (multiplied

by 10°), monitored at different regions: curves a—c are for r/a(0) = 0.2, 0.6, and
1, respectively.

40

that the bounce in every mass shell occurs at the same retarded
time u = constant. Now, as it follows from equation (2) for two
events (a) and (b) happening at the same “retarded ” time u, we

have
r r
73‘“@?“'):([?"'),,-

Since asymptotically (as r — o0) V = r (Bondi Van der Burg, &
Metzner 1962), then

T, — T, ~ r, — r, + 0 (gravitational potential) .

Therefore inner shells bounce earlier than the outer ones, as
seen by a distant observer. This result reveals a deep difference
between the free streaming out and diffusion regimes (Herrera
& Nuiiez 1987, 1990). The Gaussian-like shape of the pressure
profile at the boundary surface is direct consequence of the
junction condition given by equation (30). The stiffness of both,
the inner core and the outer mantle as measured by the non-
adiabatic index can be readily observed in Figures 6a and 6b.
The nonadiabatic index of the material is greater at the inner
side of the shock than at the mantle side. It is worth noticing
that the emission of radiation diminishes the nonadiabatic
index of the material softening the sphere. This effect is clear
from Figure 6a. Moreover, after the emission of the radiation,
the inner shells of the core asymptotically collapse to the
hydrostatic limit. It is important to notice how well-defined
zones (stiff core and soft mantle) emerge after the emission of
the radiation (curves a and d, Fig. 6b).

Let us now, on the basis of the information provided by our
model, try to set up an intelligible scheme in order to under-
stand the “mantle-bouncing” effect recorded above. In this
sense we call the attention to Figure 6b. Observe the increas-
ing, before the bouncing, of the nonadiabatic index at the outer
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F1G. 6—a) Evolution of the nonadiabatic index, monitored at different
regions: curves a—c are for r/a(0) =02, 0.6, and 1, respectively. (b)) Non-
adiabatic index as a function of the dimensionless coordinate r/a(0), monitored
at different times: curves a—d are for u = 20, 24, 28, and 30, respectively.

regions and the subsequent “relaxation” after bouncing. This
stiffening-softening of the outer mantle, clearly leading to an
expansion, is preceded by the appearance of a minimum of the
nonadiabatic index, just at the outer side of the shock. This will
lead to the “breaking” of the sphere (see Fig. 8) at the shock
front. As a result of these two effects (stiffening-softening plus
“breaking”) we shall have a compact, homogeneous
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Fi1G. 7—Evolution of the nonadiabatic index at both sides of the shock

“remnant” and an ever-expanding mantle. This picture is very
similar to the one described before (Herrera & Nuiiez 1987,
1990). However, in those models the streaming-out limit was
used throughout. As a result of this the “breaking” of the
sphere occurred, in those models, not at the shock front, but
somewhere farther from the center. This difference brings out
further the higher “efficiency” of the diffusion limit as com-
pared with the streaming-out approximation (Barreto,
Herrera, & Santos 1989).

Thus in the context of a consistent general relativistic frame-
work and adopting simple and highly idealized but not
extremely unphysical equations of state, we were able to set up
a bouncing mechanism not involving propagation of a strong
shock wave reaching the boundary surface. However, the

extent to which this result could be of any use is clearly
restricted by the main limitations of our approach, namely:

1. The two “seed ” equations of state used at either side of
the shock, although not completely deprived of physical
meaning, have not been obtained from a realistic treatment of
ultradense matter. Both the microphysics of the fluid and the
link between the specific luminosity profile and the particular
regime of radiation transport are absent.

2. The assumption of pure diffusion is too strong as to be
applied to the collapse of a real massive star.

3. The particular profile of the stiffness exhibited in Figure
6b is not related in any way to the microphysics of the fluid.

4. There is no neutrino physics associated with the heat flow
vector g*.

APPENDIX

EQUATIONS FOR THE DISCONTINUITY SURFACE

From the Rankine-Hugoniot condition (28) we obtain

Q+aQ, +b=0 (A1)

where

with

P+ P, 1

P4y, 2

_Qs+ﬁs+ﬁs
2P, + py

_ a2 -1

Q= 4n0, c76™7

s = I, IT indicating the region they belong to. The field equation (18) evaluated at both sides of the shock leads to the quartic
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equation:
QF—203 +aQ2+ Q. + =0, (A2)
where
9, + 5P
=<4,
“T4p,+P)
5p, + P
=% __ 3,
I=-%.+%)
Ps 1
= —_-—F= -2 N
" T4, P)
and
iy e 2P
= —_— lI’~ —_— s
4=0 < Ps 4nC2G> ’
with the property

a+pf=1,

it can be shown that equations (A2) have solutions

3 «a a 3 1
a-x [3-5:G-3)]+5 *)

Two of these solutions correspond to discontinuities that travel with the light velocity. Then, for physical models (—1 < w < 1,

p > P, p > 0) the only solution results
3 1
= [Z_ - A4
o, =/ 5%+ 5, (A4)

substituting equation (A4) in equation (A1) and evaluating at both sides of the shock, we obtain atr = ¢ + o
1G*+®G* +1G+X=0 (AS)

which is solved algebraically in G. Atr = ¢ — o, we have

(A6)

=
I
@1~

where all quantities are listed below:
x=—OR
® = (1.75 — P)R? — 0> — R(1 + Q)0
n=2175—-P)Y1.5—-P)(1 + Q)+ 2(1.75 — P)O — (1 + Q)0
=(1+Q)*15—P)—(1.75 - P)?
Y=U-[1L75+(W + 1)(1.5 - U)'2 + 0.5(W — V)]
®=05V-W)-V(Q15-U)?
0 = —1/(8nC Aey)
P = [qy/(4nC?) + (2.25 — Y)e, + 1.25¢, + (1 — G)C/(8nC2GA)]/es
R = b,/(4n Aey)
Q = —[—b,/(4nA)] + G(2bs + 4b% — b,/C)/(87) + [3ba(l — 2m,) — m,]/[87C + 1.5¢, + 0.5¢,]/e;
U = [0.25%e, + 5es) + qi./(4nC?) — Pe, + m;]/eq
V = bs/(4n Aeg)
W = — [—be/(4nA)] + G(2b, + 4b} — bg/C)/(87) + [3bg(1 — 2m,) — ms]/[8nC + 1.5¢, + 0.5e5]/es
e, = py. = 3H/C?
e; = Py, = ¢,(1 = 9KC)/[3(1 — KC)]
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e3 = puc + Py
¢4 = i = A(1 - GY(8xC?)
es= —ey D +2/3))D =P,
e =P + Py,
A = o2 = (/g2
(=0
f=or
¢ =@ + 8C)/(y + 54)
A = —8nH(J + 3Ky)/[6(yK + )]
6=(1-KC)/1—KA)
I' = 16nH/(yK — ¢)

¥ = — {3D(1 — KO)(1 — G)(34 — 2C) — A(1 — F)J/[4D(1 — 3KC)A(1 — F)1}
by = bJ[HJ/H — (s + 8, O))/(y + 6C) — 2K, C/[(1 — KC1 — 3KC)]

by = bJ[Hy/H — (v, + 6, O))/(y + 6C) — 2K, C/[(1 — KC)Y1 — 3KC)]

by = —by(0/(y + 6C) + 2{(4Q — 3)/[34(4Q — D]}/[(1 — KC)1 — 3KC)])

b, = 8nH(1 — 3KC)/(1 — KC)y + 6C)
bs = —bg/D

bs = bel(f, G +£)lf — G/G — 21 — G)C/CG) — (1 — D1 — GYC/AGCD)]bs

b, = bg[D(2 — G) + (D + 1)(1 — G)/(CGD)]
bg = —4nCf/(3GD)

my = 12nH = fy,

my =0=rmy,,

my = 0.5[C(1 — G) — GC)/(4nC?6D) = m,
my =151 — G) =y,

ms =3(1 — G)/C = iy,

H =[A(1 — F) — C(1 — G)]/[24n(A — C)]
H, = C/[24n(A — C)]

H, = {[A(l - F)— AF — C(1 - G))(4 ~ O) — [A(1 - F) - C(1 -~ G))(4 - O)}/[24n(4 ~ C)*]

y = 8n(3nCH — C%}3)

7, = 24nCH, — 8xf, C*/3

y, = 24n(CH + CH,) — 81C*(3Cf + Cf,)/3
§=1-24nH

0,= —24znH,

o, = —24nH,
f=3(1 — G)/(8nC?

f, = —3/8nC?

fy = =30 — G)C/@4nC?)

K, =K, Q,

K, = K, Q, + K,

K, = 8/[34(4Q — 1)’]

K, = —A(4Q — 3)/[34%(4Q — 1)]
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Q, = QH/H
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Q, = QH,/H + Q{—24/4 — F/F — (Q — 1)[ — 2FQ/A + 12nH(3Q — 1)[(4Q) — 0.53 + F)/A] + Qq/[6HQ2Q — 1)nA]

— Q[0.5(1 — F) — 127H(Q — 1)/Q — 3F/(8Q)]/A}
K = (4Q — 3)/[34(4Q — 1)]

A=a(uym0), F=1—2M/A, M =mym(0)
Q=1(1-0w,), C = c(u)/m(0) , G=1-2M/C,
D=gG'? —1, g arbitrary

M = m_/m(0)

and finally g, gy, and g,, are the heat flux given as Gaussian-like at r = a(u), r = c(u) + 0, and r = c(u)— 0, respectively.
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