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ABSTRACT

A method recently proposed by the authors to study the evolution of discontinuities in radiating spherically
symmetric distributions of matter is systematically applied to model the evolution of a composite radiant
sphere. The matter configuration, free of singularities, is divided in two regions by a shock wave front, and at
each side of this interface a different equation of state is considered. Solutions are matched across the shock
via the Rankine-Hugoniot conditions, while the outer region metric joins the Vaidya solution at the boundary
surface. The influence on the evolution of these composite spheres of different shapes of neutrino outburst
profiles and particular neutrino-transfer processes from the inner core to the outer mantle is explored. Pro-
spective applications to supernova scenarios are discussed.

Subject headings: neutrinos — shock waves — stars: supernovae

I. INTRODUCTION

The discovery of the supernova SN 1987A and the observation of its associated neutrino pulse have renewed the interest in the
problem of gravitational collapse of massive stars (M, > 8 M ). For the first time, a recorded neutrino profile provides a wealth of
observational and experimental data about the nature of the processes producing the final compact remnant. However, interesting
controversies have been raised over both the form of the detected neutrino outburst profile and the possible hydrodynamic
scenarios compatible with this detection. The discrepancies between the data collected by Kamiokande II (Hirata et al. 1987) and
Irvine-Michigan-Brookhaven (IMB) (Bionta et al. 1987) groups and those reported by the Mont Blanc detector (Aglietta et al.
1987) have motivated a fruitful debate over the specific contour that might represent the detected burst (De Rujula 1987). The
hydrodynamic pictures proposed to be consistent with this first observation range from the prompt Type II supernova (Baron et al.
1987; Bruenn 1987; Kahana, Cooperstein, and Baron 1985) and the advective overturn detonation mechanism (Arnett 1987) to the
two-bang explosion yielding either a black hole (Aglietta et al. 1987; Hillebrandt et al. 1987), a neutron star (De Rujula 1987), or
disruption of a light neutron star in a ultra—close binary system (Stella and Treves 1987). The diversity of proposed explanations has
stimulated reworking of the neutrino physics involved in order to establish a definite conclusion about the detailed aspects of the
interior current supernova processes from the observed data (Sawyer 1988; Lattimer 1988). Besides the decisive roles played by the
neutrinos on the supernovae outcome, it is a well-established fact that during the implosion the core pulls away from the rest of the
star and the flow is separated into an inner subsonic core and an outer supersonic mantle by a discontinuity surface (a shock).

In this context, it is interesting to explore the influence that different pulse signatures would have on the hydrodynamics of a
radiating general-relativistic composite sphere. We have proposed in recent work (Herrera and Nuiiez 1987) a method to study the
evolution of a general-relativistic radiating fluid sphere divided in two regions by a shock wave front. At either side of the shock
wave front, a physically reasonable equation of state is chosen. In the static limit the inner region corresponds to the homogeneous
Schwarzschild incompressible fluid, whereas the outer mantle represents a highly compressed Fermi gas. The solutions correspond-
ing to either side of the front are matched across it via the Rankine-Hugoniot conditions (Taub 1948, 1983; Herrera and Nifiez
1987). Matching with the Vaidya metric on the boundary of the configuration completes the consistency of this radiating sphere. A
heuristic assumption relating pressure, energy density, and the radial velocity of matter is introduced. This Ansatz, together with the
junction conditions at the shock and at the boundary of the matter distribution, leads to a system of ordinary differential equations
for quantities evaluated at either the boundary surface or the shock front. The numerical integration of this system allows us, using
the field equations, to find the profile of the physical variables throughout. The luminosity has been assumed to be a Gaussian-like
pulse which carries out a fraction of the total initial mass.

The present paper illustrates a systematic application of the method. It is apparent from the modeling performed that the outer
matter shells bounce earlier than inner ones. This very peculiar scenario seems to be closely related to the specific regime of
radiation transport assumed (free streaming out) for the Tolman VI-like equation of the outer mantle. We shall comment further on
this point in the last section. It is important to keep in mind that, in the context of the present approach, the shock wave is to be
considered as an interface separating the quasi-static stiff core from the outer mantle. In all the models presented below, this
interface fades out and becomes a new boundary surface delimiting the compact homogeneous remnant.

In the present work, we are particularly interested in simulating departures, at the interface and at the boundary surface, from the
streaming-out limit approximation for the radiation field. This is carried out in two ways: (@) by modifying the contour of the
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radiation flux emission at the boundary of the configuration and at each side of the shock wave front; and (b) by introducing “ time
delays ” between absorption and emission of the radiation flux pulse at the interface and on the boundary surface.

This paper is organized as follows. In § II, the conventions used in this paper, the Einstein field equations, and a brief outline of the
method are sketched. Section III contains a description of the models worked out. The discussion of the results is presented in § IV.
The Appendix resumes an erratum in Herrera and Nuiiez (1987).

II. FIELD EQUATIONS AND THE METHOD

For completeness we outline here the method presented in our previous paper (Herrera and Nuidiez 1987). Let us consider a
nonstatic distribution of matter which is spherically symmetric. In radiation coordinates (Bondi 1964) the metric takes the form

ds? = e*[(V/r)du? + 2dudr] — r*(d9? + sin? 9do?), 1)

where # and V are functions of u and r. Here u = x° is the timelike coordinate, r = x! is the null coordinate, and 9 = x? and ¢ = x>
are the usual angle coordinates. The u-coordinate is the retarded time in flat spacetime, and therefore u-constant surfaces are null
cones open to the future. This last fact can be readily noticed from the relationship between these coordinates and the usual
Schwarzschild coordinates (T, R, ©, ®):

u=T—JI1/dr, 9-0,

@
r=R, o=0.
The hydrodynamic scenario, as viewed by a local Minkowskian observer comoving with the fluid, consists of
1. Anisotropic fluid of density p and pressure P;
2. Isotropic radiation energy density 32,
3. Unpolarized radiation energy density € traveling in the radial direction.
The energy momentum tensor describing this fluid can be written as (Bondi 1964; Herrera, Jiménez, and Ruggeri 1980)
T,=p@+PU,U,—-Pg, +¢K,K,, 3)
where p = p + 32, P = P + #2,and the flux of radiation &, as measured by the local Minkowski observer, is related to € by
1
e=e 1@ @)
l-w
The four-velocity vector U, and the null vector K, can be written as
v\1/2 V\-12/1 — @\!/2
U =6 %81 — 212~ 1,8
u =90, ¢l — w®) (r) +6“e(r) (1+w s 5)
and
vV 1/2
K, = 5,,%"(7) . ©6)
Using equations (1), (3), (5), and (6) the Einstein equations can be expressed as (Bondi 1964 ; Herrera, Jiménez, and Ruggeri 1980):
p+ Pw 1 _ g 2
= - 1-—— 7
T—w? € 47tr(r—2ﬁz)< Moe A1 =) (72)
p+Pw My
L 7
1 —w?  4mr*’ (7b)
1—w r—2m
P a— P)= ——— 7
1+cu(p+ ) 2ar? By, (7c)
—Bore™® 1 2m B: 38,1 — 2my) — iy,
4n + 8n r Buu+ 4h1 r + 8nr (7d)

We have denoted differentiation with respect to u and r by the suffixes 0 and 1, respectively, and have used
V = e*[r — 2im(u, r)] . ®)

The matter radial velocity w measured by a local Minkowski is related to the velocity of matter in the radiative coordinates by

e gt )
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FiG. 1.—The two-region model sphere considered throughout this work. Region I, the inner core, is enclosed by a shock surface C(u). The outer mantle completes
the sphere of radius A(u).

The field equations may be integrated outside the matter configuration to obtain

= Mo
" 4nr(r — 2m)’

where m is a function of integration depending on u. Inside, the function m(u) is generalized to /(u, r) everywhere within the matter
configuration.

It is sufficient to provide § and  to calculate the physical variables p, P, w, and € algebraically from equations (7a){7d). Let us
now define two auxiliary functions to accomplish this task. They will be hereafter referred to as the effective density and the effective
pressure, respectively:

p=0, V=r—-2mu, € (10)

. p—Pow
% 11
P="Ta (11a)
~ P—po
= > 11b
F l1+ow (11b)
Observe that field equations (7b) and (7c) can be integrated:
m= J dnripdr , (12a)
la(u)
T 2mr? _
= b + Pdr, 12b
g LM_M(H )dr (120)

where r = a(u) defines the boundary of the fluid sphere.

The composite sphere of radius a(u) is divided in two regions, called I and II, by a discontinuity surface (a shock) of radius c(u) (see
Fig. 1). Both a(u) and c(u) are functions of the timelike coordinate.

The matching conditions across the shock (the Rankine-Hugoniot conditions) require the continuity of the first and the second
fundamental form plus

[T,n]. =0, (13)
where T, is the energy-momentum tensor, n” is the unit vector normal to the surface r = c(u) (Taub 1948, 1983), and

[.f]c =f|r=c+0 —'flr=c—0 .

These junction conditions at r = ¢(u) lead to (see Herrera and Nuifiez 1987)

(1 —-w[pl. = Y[PI. , (14a)
and

[QQ—-1D)FE+P)+(1—¥)p+e€]l, =0, (14b)
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where
Qs=<—1—> , s=L1I,
I—w/czo
and
=\ -1
w1+ ée'z"(l . 27'") . 15
Using the field equations (7b) and (7¢), we obtain for the metric functions # and i
iy = f 4nr’pydr, 0<r<c); (16a)
o
iy = f dnr’pydr + ifu, cw)], o) <r<a(); (16b)
c(u)
and
T2t . .
Bi= 7 (P1 + Ppdr + Bylu, c(w)] , 0<r<c; (17a)
ewy T — <My
o2t ~
Bu= 7 (Pu + Pyar, 0<r<cw; (17b)
a(u) r— zmy

where the subscripts I and Il indicate the region the quantity is referred to. We can restate the algorithm for the composite sphere as
follows:
1. Take two static interior solutions of the Einstein equations for fluids with spherical symmetry,

P =pir), Psn = pu(r) ;
Py =P, Py = Pyr) .

2. Assume that the r dependence of P, ;; and Pr,u is the same as that of P, ;; and p,, y, but considering the boundary condition
which, for this case, reads

Plla = —W4Pnq

with the conditions at r = ¢(u) given by equations (14a) and (14b).

3. Given the r dependence of p, ;; and P, ;; and using equations (16a){17b), we get iy y and B ; up to some functions of u which
will be specified below.

4. For these functions of u we obtain the following ordinary differential equations (surface equations). Three of them (two are
model-independent) emerge because of the junction conditions and the field equations evaluated at the boundary surface. The
remainder of the surface equations comes from the Rankine-Hugoniot conditions (14a) and (14b).

a) The first surface equation comes from the definition (9) evaluated at the boundary r = a(u), which, after scaling the radius a, the
total mass m, and the timelike coordinate u by the initial mass m(u = 0) = m(0),

A = a/m(0) , M = m/m(0) , u/m0)=u ,
and defining

can be written as
A=FQ-1). (18)

b) The second surface equation relates the total mass-loss rate with the energy flux through the surface. This can be obtained by
evaluating equation (7a) for r = a + 0 and takes the form

M = —FE, (19)
where the total luminosity E is defined by
E = (4nr%€), _ 4, -
Using the above definitions and equation (18), we can rewrite equation (19) as

F 2E+(1-F)Q-1
F A '

(20)
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¢) The third equation at the surface is obtained from the conservation equation T*,,, = 0 evaluated at the surface. From
(T“l;u)a =0 5
we get
@+ P) oP @+ P -
- (=) —| === (4P +Z)| =0. 21
[(1 Z2n) ) e \or)s LA =2\ T 2) ], Gl

Notice that equations (18) and (20) are model-independent, while equation (21) should be particularly shaped for every model
considered.

d) The remaining equations are also model-dependent and are written as a result of the matching conditions across r = c(u).

5. Providing three additional functions, one evaluated at r = a(u) and the other two evaluated at r = c(u), the system (18), (20),
(21) and the matching conditions may be integrated for any particular set of initial data. v

6. By substituting the result of the integration in the expressions for 4, ; and B, ;;, these four functions become completely
determined.

7. By using equations (7a)«(7d), the matter variables p, P, », and € may be found for any part of the sphere.

Finally, we sketch the assumptions for the effective variables. For the inner region a solution having as its static limit the
well-known Schwarzschild homogeneous interior solution has been considered:

pr=f), (22
and
~ 8n vz 8n 172
B =f(u){g(u)[1 -3 er(u)] - 3} / {1 - g(u)[l -3 er(u)] } : )
For the outer region the effective variables are chosen, inspired in the static Tolman VI metric (Tolman 1939):
. 3h(u
pu= 4
r
5 h(w) | 1 — 9k(u)r
Pu= r? [ 1—k(wr |’ @)

Functions f(u), g(u), h(u), and k(u) are arbitrary; however, h(u) and k(u) are related through the boundary condition P, = —w, .

III. MODELING

The original incentive for the present work was to study the possible general-relativistic hydrodynamic scenarios associated to
different forms of the received burst. However, the opportunity to shape the radiation profile at both sides of the shock motivates us
additionally to simulate eventual complex neutrino-transfer phenomena, from the inner core to the outer mantle, enriching the
corresponding hydrodynamic scenarios.

Modeling is performed, setting the initial data for the surface equations and the particular forms of the radiation flux energy
density emission profiles at each side of the shock wave front and on the boundary surface. These emission contours have been
selected to be shaped either by one or two consecutive Gaussian pulses characterized by the following parameters: (a) Pulse widths
(variances) (PW1, PW2); (b) Time for the first peak (TFP); (c) Separation in time of the peaks (STP); (d) Pulse height ratio (PHR); (e)
Total radiated energy (TRE). A standard model is defined as having

A = 20.000, Q = 0920,
u=0 u=0

F = 0900, C = 12.000,
u=0 u=0

G = 0907, D = —0.598 ,
u=0 u=0

as the set of initial data for the surface equation. It is worth mentioning that the surface equations are scale invariant in the sense
that these initial data are given in terms of dimensionless (scaled) variables. The radiation profile is represented by one Gaussian
pulse determined by

TFP =200, PW1=12.

The total radiated mass, at the surface and at both sides of the shock front, is expressed as a fraction of the total initial mass of the
configuration. It is considered for the present calculations that 102 of the total initial mass is radiated at the boundary surface, and
1073 is emitted at shock front.

The evolution of both the radius of the sphere (the boundary surface) and the shock wave front are sketched in Figure 2. Figures
3a-3d display the profiles for energy density, pressure, the radial velocity, and radiation flux density, respectively. The running time
is suggested by the behavior of the matter variables themselves. They have been monitored at five different fixed-mass shells,
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F1G. 2—Time evolution of A(u) and C(u) for the standard exploding sphere

r/ag = 02,04, 0.6, 0.8, and 1.0. Notice that these recordings have been made at fixed r/a, positions [except for r/a, = 1.0; a is the
initial value for the radius of the surface boundary: a, = a(0)], differing from the movable shells r/a of our previous work (Herrera
and Nufiez 1987). As is clear from equations (2), in these fixed shells the evolution of the physical variables, described from Bondi’s
coordinates (Bondi 1964), coincides with the description from the usual Schwarzschild’s coordinates. Finally, Figure 4 represents the
evolution of the shock intensity, defined as the pressure difference at both sides of the shock front .# =Py, — P,

In Table 1 we have resumed the influence of several factors over the mean shock intensity .# and over the strength of the
bouncing. The numbers at the upper left corner on the squares placed at the first row and the first column label the different models
sketched in the table. The standard model corresponds to the 00 position. Both the sign of the relative mean shock intensity

and the sign of the relative strength of the bouncing SIGN (¥7;) of the other models are represented at the corresponding i, j
address, where i indicates columns and j indicates rows. Radiant circles bigger than the one used for the standard model indicate

stronger bounces, and smaller ones represent less violent rebounds.
The relative strengths of the bouncing has been defined as the quantity SIGN (¥7;) as

( i) SIGN [4;{60) — A,0(60)] = (+);

(+) if iiy [ SIGN [A4,/60) — Ao(60)] = (0) , and
n {SIGN [A;£60) — Ago(60)] = (+) ;

SIGN 77, = <

i) SIGN [4,{60) — Ap0(60)] = (—);

(=) if< {SIGN [A4:{60) — Aoo(60)] = (0), and

L " ISIGN [4£60) — Ao(60)] = (—) ;

where A(60) = A(u)|, -0, and A(60) = A(u)], - o, and we have associated

more violent bouncing <> SIGN 77, = (+),

less violent bouncing <> SIGN 7", = (—) .
Symbols for the relative mean shock intensities are
ll= strong shocks = SIGN () = (+),
= standard shock = SIGN (#,) =(0),
|= weak shocks =SIGN (£,) =(—).

On the squares at the first row (cols. [1]-[9]) the different modifications of the standard value of the total energy flux density at
both sides of the shock (¢, for region I, ¢ for region II) and on the initial mass of the core have been expressed. A 10% increase on
the standard value of the energy density flux on the shock wave front in region I is indicated by ¢, + 10% (col. [4]). Variations to the
other parameters are sketched on this first row in a similar way.
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FiG. 3.—Evolution of the physical variables. (a) Density, (b) pressure, (c) mass velocity, and (d) energy flux density are monitored at five different fixed-mass shells.
Curves are labeled by the corresponding ratios r/a, = 0.2, 0.4, 0.6, 0.8, 1.0.

In the first column (labeled “0 ™), there are 10 combinations of different profiles at the surface of the sphere and at both sides of the
shock. The one-pulse shape has PW1 = 1.2 and TFP = 20.0 or 30.0, and the two-pulse profile has PW1 = 1.2, PW2 = 1.2,
TFP = 25.0, STP = 10.0, and PHR = 1.0. The other parameters retain their standard values.

IV. DISCUSSION OF THE RESULTS

Before discussing the results themselves, we would like to emphasize the most important features which establish this scheme as a

consistent and workable framework in general-relativistic radiating hydrodynamics.
The matter distribution considered is free of singularities everywhere. Rankine-Hugoniot relations match, through the shock, the
inner and the outer solutions. The junction conditions across the boundary surface satisfy the remaining coupling with the radiating
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F1G. 4—Time evolution of the intensity of the shock, £ = P;; — P,

versions of the Schwarzschild exterior solution (the Vaidya solution). A heuristic assumption relating pressure, energy density, and
the radial velocity of matter leads (via the junction conditions at the boundary and the Rankine-Hugoniot relations) to a system of
ordinary differential equations for quantities evaluated at either the boundary surface or the shock front. This Ansatz, chosen on a
solid physical ground, relates the equation of state in the inner core to the generalization of the Schwarzschild homogeneous interior
solution, considered to be a stiff equation of state for ultradense matter, because it describes an incompressible fluid in the static

limit. For the outer mantle the equation of state is inspired in the Tolman VI static solution which represents a highly relativistic
Fermi gas.

TABLE 1
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Notice that the general form of the energy-momentum tensor used to describe the fluid in both regions,
T,=p+PU,U,—Pg, +eK,K,,
constrains radiation to travel radially along the null vector
K, =1 - 2m/r'3s',,

i.e, the free-streaming limit approximation is assumed throughout the sphere except on the boundary and at both sides of the shock
front. On these surfaces it is possible to shape at will the profiles of the radiation flux density and to introduce delays in time for the
emission and absorption of the radiation pulse. This assumption makes it feasible to study radiation-hydrodynamic scenarios
through the sphere, and not be restricted to only the free-streaming approximation. Table 1 summarizes the influence of particular
combinations of different pulse shapes on the bouncing of the sphere and on the strength of the shock. But before discussing these
results, the evolution of the standard model defined has to be considered.

Since the timelike coordinate is also a scaled variable, the characteristic times for the hydrodynamic processes discussed below
may be associated to the radiation time scale, which is related to the width of the radiation pulse itself.

In Figure 2 the evolution of both the radius of the sphere (the boundary surface) and the shock wave front is sketched. As can be
appreciated from this figure, the position of the shock remains almost constant, although the boundary surface bounces. Figures
3a-3d displays the profiles for energy density, pressure, the radial velocity, and radiation flux density, respectively. It is apparent
from Figure 3c that the outermatter shells bounce earlier than inner ones. This bouncing scheme is maintained until the shock
surface is reached. Moreover, during the bounce of the mantle, the shock wave separating the compact inner core from the outer
mantle fades out (Fig. 4). Therefore, the early discontinuity surface bounding the core evolves into a boundary of the static and
homogeneous remnant. As mentioned in § I, the origin of the peculiar bouncing of the mantle is to be found in the assumption of a
free streaming-out radiation field propagating outward through the outer mantle with a Tolman VI-like equation of state. In fact,
Herrera, Jiménez, and Ruggeri (1980) originally found this scheme of bouncing for a Tolman VI-like sphere, assuming as well a free
streaming-out radiation field. Recent calculations (Barreto, Herrera, and Santos 1989) for the same Tolman VI model but in the
diffusion limit approximation yield the opposite picture for the bouncing; i.e., inner shells bounce earlier than the outer ones.

a) Pulse-Shape Independent Parameters

Conclusions from Table 1 can be classified as pulse shape independent parameters. Columns (4)<7) contain the influence of the
total energy flux density on the shock at the mantle. Columns (8) and (9) enclose the relevance of the mass of the core. Both
quantities emerge as decisive parameters affecting the bounce of the sphere. The more energy the shock deposits on the mantle, or
the more massive the core is (within the values considered here), the stronger the bounce results.

As expected, the mean intensity of the shock is related to the radiation flux discontinuity across the shock:

[|= strong shocks < [e]>0,
|= weaker shocks < [€]<O0.

This result is related to the contribution of the radiation pressure discontinuity [€] to the mean intensity of the shock % ;.

b) The Changing Radiation Pulse

Columns (0)3) enclose the effect of a change of the pulse shape at the shock front, at the boundary surface, or on both the sphere
bouncing and the shock strength. This influence has been observed when we considered standard values for the mass of the inner
core and for the total radiation flux energy density at both sides of the shock front (col, [0]) and when the total radiation flux energy
density at the shock front on the core side have been varied (cols. [1]-[3]). The modifications of the radiation pulse shape denote
departures from the free-streaming approximations and may represent complex radiation transfer phenomena through the sphere.

Differing from the constant shock opacity parameter of our previous work (Herrera and Nuifiez 1987), E, = «E,;, situations where
a time-dependent transfer function changes the pulse shape are sketched in rows 2, 4, 5, 6, and 7. In particular, rows 4 and 5 (and
equivalently, 6 and 7) suggest that a concentration of two pulses into one leads to stronger explosions than the inverse combination
of pulse shapes across the shock. The opposite picture is obtained when this phenomenon is simulated on the boundary surface
(rows 3 and 8).

The effect of a pulse delay on the boundary surface and on the shock front are enclosed in rows 1 and 2. As can be seen from these
rows, stronger bounces are associated to pulse delays on the surface, and fainter ones correspond to delays on the shock front.

It is apparent from Table 1 that the shock does not appear to be directly responsible for the expulsion of the outer envelopes of
the sphere material, but it is closely related to it. It is also well-established that a deeper recession of the shock front is related to a
stronger explosive ejection. This peculiar recession-explosion association and the general hydrodynamic scenario obtained recall
those situations where the long-term mechanism leads to viable supernova outcomes. However, we do not find any revival of the
original shock. Should the picture above turn out to be a suitable description of a supernova event, then strong shock fronts will no
longer be required to explain the ejection of the outer envelope, nor will it be necessary to look for the revitalization of stalled
shocks. Moreover, the surface which delimits the remnant is the shock itself once it has faded out and has been transformed into a
boundary. If the interface propagates outward, the inner core grows by accretion of the outer mantle onto it, which would hinder
stabilization of the appropriate ejection conditions.

Above, we have tried to exhibit the intrinsic relation between the “ optical ” properties of a detected burst and the corresponding
hydrodynamic scenario of the source. However, to accomplish this task we have been forced by our own limitations to adopt some
rather strong assumptions concerning the choice of the equation of state for both the inner core and the outer mantle. Although our
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selection is not completely deprived of physical meaning, it is clear that a choice based on a more realistic treatment for the
ultradense matter would lead to results more appealing to people working on supernova explosions.

In this regard, we are aware that there is a missing link between the specific luminosity profile and the particular regime of
radiation transport, on one hand, and the description of the corresponding underlying microphysics, on the other. In this sense we
consider this work not to be a definitive, self-contained model for a supernova explosion but rather a proposition for further
participative research.

The erratum in Herrera and Nuiiez (1987), which we have pointed at in the appendix of the present work corresponding to the
equation defining 7,, leads to a different conclusion when the influence of the relativistic deviation of the core is examined. More
massive cores deliver more violent explosion. The other results remain valid and seem to be independent of the particular pulse
combination (neutrino transfer scene) considered.
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APPENDIX
In Appendix IT of Herrera and Nuifiez (1987), the generalized Tolman-Oppenheimer-Volkoff equation is
Q= E+ €+ §+
=t gt otlagt,

and the corresponding coefficients should read

» AF ~ AC(F - G) ~ AG
U=t o h-cl-06" T Ud-0al-FH-Cl-6)" BT al-FH-cl-0)
T, = (‘;A"Ql) [24nH(3Q — 1) — Q(F + 3) — 4FQ?]
1 27HQ — )] FQ —1) AC(F - G)
+§Z{'3F+4(1 "F)[Q" - ]}+ y [2_(A—C>A(1 —F)—C(l—G)]‘

Notice the minus sign in the last term of 7, differing from the one that appeared in Herrera and Nuifiez (1987).
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