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Abstract

Starting from a modified Hamilton’s principle conceived for a varia-
tional approach to dissipative systems, the various formalisms of classical
mechanics(Lagrangian, Hamiltonian, canonical transformations, Poisson’s
brackets, Hamilton-Jacobi) are covered in a unified and pedagogical way.
In particular, we will show that, in the context of the action principle, the
time evolution of the system is not canonical. By explicitly solving the
modified Hamilton-Jacobi’s equation, we will obtain the dynamical solu-
tion for the linearly-damped harmonic oscilator. We will also establish
Noether’s theorem form in our formulation and will later use it to find a
conserved quantity associated to the damped harmonic oscilator. Finally,
we will briefly show how to carry out the generalization to classical field
theories.

RESUMEN

Partiendo de un Principio de Hamilton modificado, concebido para
el tratamiento variacional de sistemas disipativos, en este trabajo se de-
sarrollan los diversos formalismos de la mecdnica cldsica (Lagrangiano,
Hamiltoniano, transformaciones candnicas, Hamilton-Jacobi) de una man-
era unificada y pedagdgica. En particular demostramos que en el contexto
del principio de accidn, la evolucién temporal del sistema no es candnica.
Resolviendo explfcitamente la ecuacién modificada de Hamilton-Jacobi
obtenemos la solucién dindmica para el oscilador armonico linealmente
amortiguado. Establecemos la forma que el teorema de Noether asume
en esta formulacién y se usa para conseguir una cantidad conservada aso-
ciada con el oscilador amortiguado. Finalmente mostramos cémo llevar a
cabo la generalizacién a teorias clasicas de campo.

1 INTRODUCTION

It is well known that our models of fundamental interactions are time-reversible..
This is to say that the basic equations describing nature are invariant under the
transformation ¢ — t. This is in sharp contrast with the description of phe-
nomena on a ordinary scale, where dissipation and irreversibility are the norm;



the transition from reversibility to irreversibility is not clear at all[l]. From the
perspective of newtonian mechanics, some systems can be phenomenologically
simulated by effective forces which provide a reasonable description of dissipa-
tion. Linear friction ~ @, Coulombian friction, ~ @/v, viscosity ~ V?v,Dirac’s
damping ~ ¥ are just some cases of physical relevance.

Within the framework of variational mechanics the situation is less comfort-
able since, in order to derive the equations of motion from a hamilton’s principle,
bonding forces doing virtual work equal to zero are needed, and this is not the
case with frictional forces. This leads to the introduction of elements of a for-
eign nature to the variational analysis, such as Raleigh’s function[2]. Despite
this, a great many authors have entered upon the subject ever since Bateman
proposed the Lagrangian in 1931,

L(z,z,t) = e)‘t(%ma':2 - §mw2x2), (1)
where lambda is the damping constant, for the treatment of the linearly-damped
oscillator. Bateman’s Lagrangian was later “rediscovered” by Caldirola[3] and
Kanai[4](see[5] for a detailed historic recount).

It is a known fact that the Lagrangian (1) and its associated Hamiltonian
lead to difficulties in interpretation even within the classical domain[6]; i.e.,
the corresponding energy does not decay in time as it is to be expected from
a physical point of view. In the quantum-mechanical case the Bateman la-
grangian leads to the violation of the uncertainty relations. Ray’s analysis[6]
reveals that the Lagrangian (1) corresponds to a frictionless particle of variable
mass m = moe™, and the violation of the uncertainty principle is due to the
fact that an exponentially-growing mass quickly abandons the quantum realm.
The distinction between mathematical Lagrangians (the sub-integral quantity
in the action’s definition) and physical ones (associated with the dynamics of
the system) formulated by Rayl[6], is of relevance here, and it is incorporated,
up to a point, in our proposed Hamilton’s principle for dissipative systems.

JFrom the standpoint of quantum mechanics, the problem of dissipation
has been the subject of considerable attention over the last years[5] [11], not
only due to its intrinsic academic importance, but also because of the range
of its potential practical applications, which include heavy ions inelastic colli-
sion processes, frictional processes related to nuclei fission , and laser theory.
In the quantum context, the question of dissipation can be regarded as the ad
hoc modification of Schrédinger’s equation introducing non-linear terms which
account for friction[9] [12], or else, as the application of a quantization pre-
scription starting from a classical formalism, i.e., starting from a Lagrangian
and quantizing ¢ ld Feynman[15]; or else as a canonical quantization starting
from a classical Hamiltonian or starting from Hamilton-Jacobi’s equation and
quantizing a la Schrédinger [12].

In 1986, in reference[13] an alternate way was proposed in order to work out a
consistent, physically plausible formalism, leading, after quantization, to Kostin-
Langevin’s equation[17], which describes a Brownian particle in a thermal bath.
Since then, the proposed hamilton’s principle has been used as the basis for the



formulation of the damped oscillator’s path integrals[14], as well as for deducing
the telegraphist’s equation which describes the attenuation of charge waves in
transmission lines[19].

In this work, we revisit and extend the variational principle proposed in[13].
We have opted for a manifestly pedagogical approach, starting from the action
principle and running through the diverse formalisms of variational mechanics.
For the sake of simplicity we have considered a system with a single degree of
freedom and the simplest of frictional scenarios, the linear one. Nothing con-
ceptually new is added with the extension to more general cases. On the other
hand, we have not restricted ourselves to any particular physical system; how-
ever, the examples considered all refer to the oscillator since this is the most
cited example in the literature. This article is organized as follows. In sec-
tion 2 we define the action corresponding to the dissipative system as well as
establish the Hamilton’s modified principle governing its dynamics. In section
3 we develop the canonical formalism, which includes Poisson’s brackets and
the canonical transformations. Hamilton-Jacobi’s theory, along with an exam-
ple on how to solve the dynamical problem for the harmonic oscillator using
Hamilton-Jacobi’s equation, is presented in section 4. In section 5 we establish
the Noether’s theorem corresponding to our formulation. The proof is given in
appendix 2. This theorem is then used to obtain a constant of motion associated
with the damped oscillator. In appendix 1 we offer a brief introduction on how
to extend the principle to the classical field theory.

2 THE DYNAMICAL PRINCIPLE FOR DIS-
SIPATIVE SYSTEMS.

Let us consider a mechanical system in one dimension, under a conservative
potential represented by V' (z) and under a dissipative force proportional to the
speed (as usual, a dot on top of a quantity denotes the time derivative of that
quantity). We postulate that the evolution of the system between instants t;
and t» is such that the action given by

to
S = eM L(x, ) dt (2)

t1

takes on a stationary value for the real trajectory of the system. It is important
to note that L(x, &) represents the system’s physical Lagrangian, i.e. the kinetic
energy minus the potential energy,

1
L(z,%) = §mj:2 - V(x), (3)
so that the canonical momentum p = ‘g—écoincides with the kinetic momentum

mx. However, for the purposes of variational mechanics in order to deduce the
Euler-Lagrange’s equations, the whole sub-integral quantity is to be used as



Lagrangian.. From the action principle defined by equation (3), it is straight-
forward to obtain the following equation of motion:

1oV

S \G =
THAT m Ox

(4)
If there are no external forces acting upon the particle, V' = 0, although this
does not mean we are dealing with a free particle (because of the dissipative
force). For a damped harmonic oscillator, we must choose, naturally, V' = %ka.

It is worth noting that the action integral defined by equation (3) contains
the time parameter ¢ explicitly and in a non-symmetrical way, in other words,
the action we are starting with (and therefore all the formalisms and equations
of motion thereby deduced), is not invariant under the transformation ¢ —
—t, so that an ab initio time arrow characteristic of irreversible phenomena is

introduced.

3 THE CANONICAL FORMALISM.
3.1 THE HAMILTON’S EQUATIONS

The hamilton’s equations can be obtained constructing the Hamiltonian the
usual way,

H(z,p)=pi—L (5)

where it is understood that the speed is expressed in terms of the momentum p
as usual. Since L =T — V is the physical Lagrangian of the system, it follows
that H is the physical Hamiltonian which represents the system’s energy 7'+ V.
Thus, the resulting action is

ta
S = eM (pi — H) dt (6)

t1

and the Euler-Lagrange equations for the independent variables z and p turn
out to be

. 0H
r = 8—p, (73)
. OH

These equation are successful in capturing a fundamental property of dis-
sipative systems which other variational treatments fail to show, i.e., that the
Hamiltonian decreases with time, as it should be with one representing the par-
ticle’s energy. In effect, taking the time derivative and substituting for & and p
by using equations (7a)and (7b), yields

_OH. OH. OHOH 0OH OH

0= 5+ 5P~ e ap ~ op o TP



After simplifying, the result is

. 0OH
H=-)\p—<0. 8
P o (8)
Equation (8) explicitly shows that the energy dissipates, at least for those
systems whose Hamiltonian are a homogeneous function of second degree. In
the case of the damped harmonic oscillator, H = —\p?/m, is obtained which is
always negative.

3.2 CANONICAL TRANSFORMATIONS.

As in the standard formulation, we can consider transformations of the canonical
variables (z,p) into new ones, function of the latter, which we will denote by
(X, P).Since we are to demand that these new variables be canonical, they must
satisfy the new Hamilton’s equations of the type

- 0K
X = % (%)
. 0K

where K (X, P,t) plays the role of the new Hamiltonian. These equations stem

from an action similar to (6) and therefore, the sub-integral quantities must

differ by the time derivative of a generating function or generator,which we will

denote by F'

e dF
dt

Let’s consider in detail the case in which the generator depends on both the
old coordinates x, the new coordinates X, and on time, F' = F (z, X,t). In this
case, after multiplying by dt, equation (10) turns out to be

pi—H=PX -K+e (10)

_ aF’l _ aFl _ 8F1
de — Hdt = PdX — K dt MZ2 g M gxX M2 .
par te T te Toxtate Ty

Identifying the differential’s coefficients on both sides of the latter equation,
we obtain the equation for the canonical transformation generated by Fi,

OF,
-t Y41
p € ox
OF,
P = —e—“a—X} (11a)
F
K = H+e_>‘tb.

ot

We can likewise obtain the equations for the canonical transformations cor-
responding to a generator of the type F = Fx(x, P,t). the resulting equation



are

OF.
-t Y42
p =€ ox
F:
X = e”‘t% (12a)
K = H—APX+e’M%.

It is similarly easy to obtain the equations corresponding to the generators
F5(p, X, t) and Fy(p, P,t). The corresponding details can be found in reference[13].
It is useful to consider some examples. Let’s pick Fp = e P z. Using equations
(12a) we obtain

P:p’ X:[E’ K:H,

so that e’ Pz is the generator of the identity transformation. Another impor-
tant is the generator Fy = e* X z. Using equations (11a) yields

X =p, P=—z, K = H — \PX,

which represent the exchange between the coordinate and the momentum. It is
trivial to verify that the canonical equations transform into themselves under
this transformation.

3.3 POISSON’S BRACKETS AND CANONICAL IN-
VARIANTS.

The formalism allows an elegant formulation in terms of Poisson’s brackets. Let
F and G be two functions of the canonical variables x and p. We define Poisson’s
brackets of F' and G in the usual manner,
OF 0G OF 0G
[F,Glop=F5—F — 5 - (13)
or Op  Op Ox
With this definition, the bracket already preserves its conventional proper-
ties, namely, antisymmetry, bilinearity, Leibniz rule and Jacobi’s identity prop-
erties. In terms of Poisson’s bracket, the equations of motion can be rewritten
as

& = [z,H] (14a)
p = [pH - p. (14)

It is easy to corroborate that, if a transformation (x,p) — (X, P) is canoni-
cal, then the corresponding Poisson’s bracket is an invariant, this is,

[F) G]IP = [Fv G]XP

and particularly
[wap]XP =1.



Let us now demonstrate the following result. The “volume” of a region in
the phase space is a canonical invariant, this is

// dmdp:// dX dP. (15)

To demonstrate this, let’s remember that in general, for an arbitrary trans-
formation (z,p) — (X, P), it follows that dX dP = Jdxzdp, where J is the
transformation’s Jacobian. So it is that the demonstration of (15) is equivalent
to demonstrating that the jacobian of a canonical transformation is unity,[20].
Effectively, from its definition and using some known properties of the jacobian,

we obtain
_AXP) _OGP) da) _ 00X Olp)
~ O(x,p)  O(z,P)' O, P) O(z) O(P)

We can make use of a type 2 generator, and using equations (12a) we have

(16)

6(X) Y 82F2 and 8(p) ZC_M 82F2

ax) ¢ 0zoP (P) aP oz

so that equation (16) shows that J = 1.

It is convenient to consider in this context the motion of the “phase” fluid in
time. If we associate the tangent vector V = (&, p) to the trajectory of a point
(z(t),p(t)), then the divergence in the phase space of this vector field is

.=+ 0z  0p
divV = — + —p,
oxr OJp
and resorting to the canonical equations (7a) and (7b) for substituting & and p,

we obtain .
divV = =\, (17)

This result deserves two comments. In first place it is noticeable that, in our
description of the system’s evolution, the phase fluid behaves as an compressible
fluid, which is to say that Liouville’s theorem (which, in the usual formulation
of mechanics, establishes the constancy in time for the volume of a region of
the phase space ), no longer holds. An equivalent way to look at this is to see
equation (17) as indicating that a set of different initial conditions is joining
toward the same final condition. This lack of symmetry between the initial and
final conditions is due, essentially, as we pointed out in the introduction, to the
presence of the term e* in the action. This term breaks the invariance ¢t — —t
in hamilton’s modified principle.

In second place we note that, since the phase volume is a canonical invariant
as previously shown, we conclude that the evolution in time cannot be con-
sidered as a canonical transformation. Otherwise said, the Hamiltonian is not
the generator of infinitesimal transformations in time if the Hamiltonian is to
represent the dissipative system’s energy, as is the case in our formulation.



4 HAMILTON-JACOBI'S THEORY

The essence of the Hamilton-Jacobi’s method is to take advantage of the freedom

provided by the canonical transformations in order to build a new, jacobian

identically zero, so that with that Hamiltonian the integration of Hamilton’s

equations and therefore, the solving of the dynamical problem is elementary.
Since under a canonical transformation the new Hamiltonian satisfies

OF
K(X’ P) = H(Q?,p) + e_Atﬁa
the demand K = 0 results in
OF
H(z,p) +eM— =0 (18)
ot
and the new Hamilton’s equation are
Q@ =0
P = -)\P.

The integration shows that Q = Q¢ = const., whereas P = Pe™*. Let’s pick
a generator F(z, P,t). Note that, since P is a known function of ¢, F' is only a
function of z and ¢. Using equations (11a) we obtain Hamilton-Jacobi’s modified
equation, which must satisfy generator F"

OF
A 0F
€ ox

5 + H(z,e

) =0. (19)
It is convenient to define a new generator S = e MF with respect to which
equation (19)is re-written as

oS oS

— + XS+ H(x,—) =0. 20

NS+ H (o, ) (20)
Next we will that the solution to equation (20) is precisely the reduced action,
defined by

S = e M /eMLdt (21)

considered as a function of the coordinate and time. The demonstration consists
in taking the time derivative on both sides of (21), obtaining

85 oS -

—+—i=—-AS+L

ot T or " +h

but since ‘g—f = p, and recalling that H = pi — L, we see that S satisfies

equation (20). It is important to point out that it is the reduced action S which
is directly linked to the physics of the system. In particular, its gradients is the
kinetic momentum. Let us remark that the reduced action is not additive, i.e.,
the action between two instants is not the sum of the actions corresponding to



intermediate instants owing to the exponential outside the integral in definition
(21). That is the reason for the appearance of the non-linear term A S in
equation (20), which has important consequences for the quantization of the
system and bears responsibility for the appearance of the non-linear term in
Kostin-Langevin’s equation[17], since the identification of wave amplitudes ¢ ~
e~ #°leads, via A S to terms of the form X log(¢)/1*).

As a way to illustrate , we will solve the dynamic problem for an linearly-
damped harmonic oscillator using Hamilton-Jacobi’s modified equation (20).
For convenience we will take m = 1, so that the Hamiltonian of the system is

1 1
H(z,p) = 5p* + 5w’ 2 (22)
2 2
so that Hamilton-Jacobi’s modified equation is,

s . 1[ra5\* ., .| _
E+AS+§[<%> +w 1’]—0. (23)

Let us now propose the following ansatz:
S =2%f(t).

Substituting in equation (23) and multiplying by f yields the following differ-
ential equation for f(t)

ﬁ+2f2+>\f+£—0

dt 2
whose solution is

ft) = —%w' tan[w’ (t —c)] — A (24)

4 )
where ¢ is a constant of integration and w' = 1/w? — %2. Having determined the

function f(t), and therefore S, we can use equations

P= a(ng) — PO e*)\t’ (25)
but )
9 (gcf) = ng = 2% W' [1 + tan®(w't — c)]. (26)

Solving for  and recalling the identity 1+ tan? a = cos® a, the result is
z=Ae M? cosw't (27)

where A = POI/Q/w’. We have set the phase ¢ = 0 at the end of the computation.
This is one the usual expressions for the solution of the damped oscillator.



5 NOETHER’S THEOREM

It is a well known fact that, within the formulation of variational mechanics
(and in field theories), Noether’s theorem establishes a profound connection
between symmetries properties of the action and the conserved quantities[18].
In this section we will determine the form this theorem takes for our variational
principle as well as present an example whereby a constant of motion for the
harmonic oscillator is obtained.

Theorem (Noether)

Let us suppose that the action integral of a damped physical system, as
given by equation (2) is invariant under the infinitesimal transformation

t — t'=t+ed(x,t) (28a)
z(t) — 2'(t) ==z() + e¥(z,t), (28b)
then the quantity
oL
=N | T _
C=e 5% (—9)— LD (29)

is a constant of motion, this is, C' = 0 on the trajectory of the system. We be-
lieved it convenient to postpone the demonstration of this theorem for appendix
2, and consider next an application as way of example.

Let us consider the following transformation

t - t'=t+a (30a)
a(t) - /() =e Fa(t) (30b)

which corresponds to a time translation and to a time dilation of the variables
linked to damped harmonic oscillator (with mass m = 1), whose physical La-
grangian is
1 w?
L=-i%— —2°
2 2

It is easy to see that action S = [eM(3i? — < 22) dt is invariant under the

2
transformation (30a-30b). In effect,

ty .1 da! 2 tata %) 2
SI — /t, e)\t [g(d_j,)Z_%xIZ] dt' = /tlJra e)\t e)\a [ef)\a%_%ef)\alj] dt = S.
1
The infinitesimal form of the transformation (30a-30b) is
1
t'=t+ e x':m—ie)\m, (31)

so that by comparing with (28a,(28b)), we conclude that ® = 1 whereas ¥ =
— 3. Finally, equation (29) allows us to obtain the constant of motion

C =M (2% + Nix + w? 2?) (32)

associated to that symmetry. This first integral for the damped oscillator has
been studied in other contexts and by many authors; see[21] and references
therein cited.
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5.1 APPENDIX 1: EXTENSION TO FIELD THEO-
RIES

The proposed variational principle may be appropriately extended to continuum
systems and fields. We will present here the simplest of generalizations. Let
¢(Z,t) be a physical field whose dynamics is determined by the Lagrangian
density L£(¢,0¢), where 9 condenses the different time and space derivatives.
We will postulate that the equations of motion of the corresponding damped
system are the Euler-Lagrange’s equation for the action

S = / eM L(p,00) d . (33)
A brief calculation shows the Euler-Lagrange’s equations to be
0 oL - oL oL oL
DYoo () e
ot \ 8(3) (Vg) a(z) 90
For example, if we choose the well known Klein-Gordon’s Lagrangian,
L1 (86N 12N 5
co.00 =5 (%) -5 (F0) +me
equation (34) leads to
- 99 _

The telegraphist’s equation, which describes the attenuation of electrical charge
waves in transmission lines[19], can be obtained in a similar way.

5.2 APPENDIX 2. DEMONSTRATION OF NOETHER’S
THEOREM

In order to demonstrate Noether’s theorem, let us note that, from the infinitesi-
mal transformation (31), we can write, neglecting quadratic and superior terms
in e,

dt’ dt

- 1+€ed s (14+ed) ' =1—¢d
dx' (") dt dx'(t) L . .
= — =(1—¢d ) =
g T ( €®) (z +e¥) =1 + €

where ¢ = ¥ — &®. Using these equations, the variation of the action is
t2

t2
0S = AHE®) [(x 4+ €W, i+ e€) (1 + ed) dt — / eM L(x, &) dt.
t1 t1

11



Expanding in power series, and again neglecting terms of order €2 and taking
into account that the interval of integration is arbitrary, yields

oL . . . 0L . _
Woo 4 (§ —id) o= + OL+ ABL =0. (36)

We can simplify this expression noting that

(ext ) At At A\t
7d L _ . _3L . _3L
n =€ T ) +etx ) - + )\ e L

and using the form of Euler-Lagrange’s equations

d (8(6“ L)) _ (ML)

dt Ot or
yields
d oL
N e OV Ty o
e (e 550 € L) AL. (37)
Finally, substituting (37) in equation (36), we obtain
d [ (0L,.
d G- 0)— Le
| (Gra-w-re)], (38)

which concludes the demonstration of the theorem.
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