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Abstract

Feed-forward artificial neural networks (ANNs), trained with the generalized delta rule, were evaluated for modeling the non-linear behavior
of calibration curves and increasing the working range for the determination of cadmium by graphite furnace atomic absorption spectrometry
(GFAAS). Selection of this analyte was made on the basis of its short linear range (up to 4.0�g l−1). Two-layer neural networks, comprising
one node in the input layer (linear transfer function); a variable number of neurons in the hidden layer (sigmoid transfer functions), and a single
neuron (linear transfer function) in the output layer were assessed for such a purpose. The (1:2:1) neural network was selected on the basis of
its capacity to adequately model the working calibration curve in the range of study (0–22.0�g l−1 Cd). The latter resulted in a nearly six fold
increase in the working range. Cadmium was determined in the certified reference material “Trace Elements in Drinking Water” (High Purity
Standards, Lot No. 490915) at four concentration levels (2.0, 4.0, 8.0 and 12.0�g l−1 Cd), which were experimentally within and above the
linear dynamic range (LDR). No significant differences (P < 0.05) were found between the expected concentrations and the results obtained
by means of the neural network. The proposed method was compared with the conventional “dilution” approach, and with fitting the working
calibration curve by means of a second-order polynomial. Modeling by means of an ANN represents an alternative calibration technique, for
its use helps in reducing sample manipulation (due to the extension of the working calibration range), and may provide higher accuracy of
the determinations in the non-linear portion of the curve (as a result of the better fitness of the model).
© 2003 Published by Elsevier B.V.
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1. Introduction

Electrothermal atomic absorption spectrometry (ETAAS)
is well recognized to be among the most powerful tech-
niques for analysis at trace levels. This technique is char-
acterized by its high sensitivity, considerable robustness
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towards matrix interferences, low sample consumption,
excellent performance for the analysis of solid, liquid
and gaseous samples, etc. However, ETAAS is not with-
out disadvantages, being the short linear dynamic ranges
(LDRs) among them[1]. For comparison purposes, while
the LDR for this technique extents only for about one to
two decades, inductively coupled plasma, either with op-
tical emission or mass detection, or total reflection X-ray
fluorescence spectrometry can achieve LDRs spanning
4–6 orders of magnitude[2,3]. Working outside the lin-
ear range may render inaccurate results[4]. Therefore, the
analyst is often forced to dilute a given sample in order
to bring the analyte concentration within the linear range.
Besides being time-consuming, the latter poses the intrin-
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sic risk of contaminating the sample during the dilution
process.

Several methods have been proposed with various degrees
of success, in an attempt to salvage the above inconvenience.
Among the various approaches are worth mentioning: the
use of peak area instead of peak height[5], high-pressure at-
omizers[6,7], quantitation at non-resonant absorption lines
[8,9], non-stop gas condition during atomization[8], atom-
ization off the platform or the atomizer wall[8,9], mathe-
matical corrections of the cause of deviations from linearity
[10–12], and less often modeling of the calibration curve
with polynomial expressions[4,13,14].

Artificial neural networks (ANNs) are known for their ca-
pacity to model non-linear systems[15–18]. Therefore, on
a first approximation, they could be used for modeling the
behavior of calibration curves in atomic absorption spec-
trometry. Even though ANNs have received significant atten-
tion for spectrophotometric applications[19–22], their use
in atomic spectrometry is relatively scarce[23–25].

The purpose of the present work was to evaluate the
applicability of ANNs for modeling non-linear calibration
curves in graphite furnace atomic absorption spectrometry
(GFAAS), aiming at extending the working range. Cadmium
was chosen as the analyte of study due to its short LDR. A
certified reference material, “trace metals in drinking water”
(High Purity Standards), was used to check the accuracy and
precision of the method. For comparison purposes, the deter-
mination of cadmium in such a material was also performed
through the conventional dilution procedure and by fitting
the entire calibration curve with a second-order polynomial.

2. Theory

ANNs are pseudo-parallel processing systems capable
of “adaptable learning,” meaning that they can implement
tasks without the formalisms and restrictions of computer
programming languages[26]. The fundamental constituents
of the ANNs are called neurons.Fig. 1a shows a basic
representation of one of such units. Each neuron performs
a series of simple calculations. First, the input signals (Xi)
are processed in the “body” of the neuron according to:

Zi =
∑

i

wiXi (1)

wherewi, the weights, represent the “artificial synapses”.
This value is further modified in a second step by means of
a transfer function (Γ ). The unipolar sigmoid (Eq. (2)) is
one of the most popularly used functions:

Yi = 1

1 + exp(−(Zi + θ))
(2)

This is a monotonous, non-linear function, which restricts
the output of the neuron (Yi) between 0 and 1. The term
θ is known as the bias, and it represents a threshold value
above which the neuron is said to “fire”, or emit a signal.

Fig. 1. Diagram of: (a) an individual neuron; and (b) an ANN with two
(active) layers.

Transfer functions such as the one shown above are what
make ANNs particularly suitable for modeling non-linear
systems. The valueYi is thus propagated to the neurons on
to the following layers. “Learning” consists of adjusting the
weights so that the error, that is the difference between the
neuron (or the network’s) output and the expected value, is
minimized (supervised learning). On this regards, the mean
squared error (MSE) may be utilized[27]:

MSE =
∑

i (di − oi)
2

n
(3)

in which di and oi represent the desired and the actual
network output values, respectively, andn the number of
input–output pairs (patterns) used to training the network.

The ANNs evaluated in this work are fully connected
arrangements such as the one depicted inFig. 1b. Each
black circle represents an individual neuron performing the
operations described previously. The input layer serves to
distribute the data and does not perform any calculation;
thus the units are represented as black squares, and they
are referred to as “nodes” instead. Neither is this layer
taken into account when describing the topology of a given
network. On this regards, the diagram inFig. 1b shows a
two-layer ANN. The hidden layer is known as such for it
neither receives nor transmits data directly from or to the
user. Finally there is the output layer, which provides the
results of the networks calculation. Data “flows” exclusively
from the input to the output layer, and thus this particular
topology is usually referred to as “feed-forward ANN”. On
the other hand, the adjustment of the weights is performed
on the opposite direction, i.e. it is “backpropagated”. This
means that the weights of the output layer are modified
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first, followed by those on the layer immediately preceding
it, and so on, until the weights of the input layer are finally
adjusted[26,28]. The process is iteratively repeated until
the error reaches a pre-determined level, or after a certain
number of learning/validation cycles, also selected by the
analyst, have been completed.

3. Experimental

3.1. Equipment, accessories and software

A Perkin–Elmer atomic absorption spectrometer, model
2100, provided with an electrothermal atomization system
model HGA-700, an autosampler system model AS-70, and
a deuterium lamp background correction system, was used.
Pyrolytically-coated graphite atomizers (Perkin–Elmer) with
totally-pyrolytic graphite platforms (Perkin–Elmer) were
employed after proper conditioning[29]. A monoelemental,
cadmium hollow-cathode lamp (Varian), operated at 6 mA,
was used at the 228.8 nm Cd line. All other conditions were
as recommended by the manufacturer of the spectrometer.

The neural networks were developed using PROPAGA-
TOR 1.0 (ARD Corporation) for Windows 3.X[27]. The
software generates a list of weights after training is con-
cluded. Those weights, together with the appropriate transfer
functions, can be processed by different computational tools
to yield the network’s numerical output when presented with
the corresponding input values. EXCEL 2002 (Microsoft
Corp.) was employed for this purpose in a Windows Me (Mi-
crosoft Corp.) environment. Statistical evaluations, as well as
linear and second-order polynomial fittings, were conducted
with MINITAB Statistical Software v. 13.1. (Minitab Inc.).

3.2. Reagents and materials

Cd metal powder (Merck, pro analysi) was employed for
preparation of the analyte’s stock solution. Ten percent (10%
w/v) palladium nitrate solution (Aldrich), and magnesium
nitrate hexahydrate (Carlo Erba) were used as chemical mod-
ifiers. Nitric acid (Alfa Aesar, metal basis, 99.999% purity)
served for dilution and stabilization of solutions. Distilled,
de-ionized water (Millipore, 18 M� cm−1) was utilized for
preparation of sample and standard solutions.

The “trace metals in drinking water” certified reference
material (High Purity Standards, Lot No. 490915) was em-
ployed to verify the accuracy of the methodology hereby
proposed. Such reference material has a certified concentra-
tion of cadmium of 12.0�g l−1 (±0.5%)[30].

4. Procedure

4.1. Preparation of working solutions

Cadmium standards were prepared from a laboratory-made
stock solution (1000 mg l−1 Cd in 1.0% HNO3) by proper

Table 1
Atomization program for the determination of Cd by GFAASa

Step Temperature (◦C) Ramp (s) Hold (s)

Dry 200 20 5
Pyrolysis 800 5 15
Cool down I 50 1 5
Cool down IIb 50 1 5
Atomizationb 1400 0 3 (read)
Clean 2500 1 3
Cool down 20 1 8

a Injection temperature: 100◦C; injection speed: 40%.
b Gas stop mode: 300 ml min−1 Ar flow in all other stages.

dilutions with a 0.2% v/v HNO3 solution. Fifteen stan-
dards were prepared having the following concentrations:
0 (blank), 0.5, 1.0, 2.0, 4.0, 5.0, 6.0, 8.0, 10.0, 12.0,
14.0, 16.0, 18.0, 20.0 and 22.0�g l−1 Cd. A 6000 mg l−1

magnesium nitrate solution was prepared by weighing
an exact amount (1.037 g) of Mg(NO3)2·6H2O and dilut-
ing to 100 ml with 0.2% v/v HNO3. A mixed 500 mg l−1

Pd + 300 mg l−1 Mg(NO3)2 chemical modifier was pre-
pared directly in an autosampler vial by proper dilution
of the corresponding solutions. This concentration of
modifier was chosen based on preliminary assays, in or-
der to correct for a recurrent distortion of the analyte’s
peak profile observed during the analysis of the reference
material.

The reference material was prepared by serial dilution to
yield cadmium concentrations at four levels, namely, 2.0,
4.0, 8.0 and 12.0�g l−1 Cd. These were selected to be inside
and outside the linear calibration range.

4.2. Determination of cadmium by GFAAS

Table 1summarizes the optimized atomization program
employed for the determination of Cd. Ten microliters of
the standards/samples and ten microliters of the mixed Pd
+ Mg(NO3)2 modifier were injected sequentially into a
pre-heated (100◦C) graphite furnace electrothermal atom-
izer. A single, high-temperature drying step was used in
order to reduce the span of the atomization program. A
double-staged, pre-atomization cool down step was intro-
duced in order to promote the formation of the atomic cloud
in a more favorable thermodynamic environment[31,32].
All temperatures correspond to nominal values given by the
software controlling the spectrometer. Five replicates (in-
tegrated absorbance values) for each standard/sample were
taken.

The determination of Cd in the standard reference mate-
rial was conducted three fold: (i) dilution of the sample and
quantitation of the analyte’s concentration using the linear
portion of the calibration graph (0–4.0�g l−1 Cd); (ii) mod-
eling the entire working calibration curve (0–22.0�g l−1 Cd)
with a second-order polynomial; and, (iii) modeling the cal-
ibration curve in the same range as before, by means of an
ANN.
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4.3. Artificial neural networks

Two-layer ANNs with one node in the input layer (linear
transfer function), a variable number of neurons in a single
hidden layer (sigmoid transfer function), and a single neuron
in the output layer (linear transfer function), were evaluated.
The different ANNs were trained/validated for a variable
number of cycles (104–105). The program employed in the
development of the ANNs uses the generalized delta rule
for weights’ correction[27].

Preliminary assays revealed that low MSE where obtained
using a learning rate of 0.04 and a momentum factor of 0.4,
as well as with normalized cadmium concentrations instead
of the raw ones for outputs. A group of patterns (45 inte-
grated absorbance–concentration pairs) covering the entire
working range were randomly selected and used for train-
ing the ANNs. A set of 30 patterns (validation set) was em-
ployed to prevent the networks from becoming overtrained.
The adjustment of the network weights for a given topol-
ogy was conducted at least three times, in order to avoid the
networks to be stuck in a local minimum during training. In
each case, the initial weights were randomly started (−1.0
to 1.0). The selected topology was that whose MSE best ap-
proached the average training MSE. The code (1:n:1) is used
throughout to describe the topology of the neural networks
(n representing the number of neurons in the hidden layer).

Testing the chosen ANN was conducted two fold. First,
by evaluating the quality of a linear regression analysis
of cadmium concentrations predicted by the network ver-
sus the actual concentrations in the working solutions. The
goodness-of-fit of the model generated by the ANN was also

Fig. 2. Integrated absorbance as a function of Cd concentration. The line represents a second-order polynomial fit. Inset shows cadmium’s LDR (see text
for details).

assessed through the estimation of the root mean square of
the percentage deviations (RMSPD)[13,33]:

RMSPD=

 1

N

N∑
i=1

(
Ci

Pred− Ci
Real

Ci
Real

× 100

)2



1/2

(4)

whereCi
Pred andCi

Real corresponds to theith predicted and
actual concentrations, respectively, andN is the number of
points used in the calibration (excluding the blank). Second,
employing the model thus generated for the determination
of cadmium in the reference material at the concentration
levels described in the preceding section.

5. Results and discussion

5.1. Cadmium calibration curve in GFAAS

Fig. 2 clearly shows the non-linear behavior of the in-
tegrated absorbance signal for cadmium with increasing
concentrations in the range of 0–22.0�g l−1. Above this
value the curve reached a quasi-plateau, and so thoseX–Y
pairs were discarded from the studies that followed. Pre-
cision in the above concentration range was better than
2.5 %R.S.D., except at 0.5�g ml−1 Cd (ca. 4 %R.S.D.),
which is still analytically acceptable. The data points
were fit with the second-order polynomial described by
Ai = −0.0013[Cd]2 + 0.0761[Cd]–0.0002 (r′2 = 0.9988).
The goodness-of-fit was assessed in the first place through
the adjusted coefficient of determination (r′2) [34]. This
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parameter takes into account the variation in the degrees
of freedom experienced by the residuals with the inclusion
of further terms in a polynomial expression. Therefore,
it provides a statistically more accurate reflection of the
polynomial fitness than the coefficient of determination
employed otherwise[35].

The linear range is significantly short, spanning up to
4.0�g l−1 Cd (see inset inFig. 2). The regression equation
best describing the variation of the integrated absorbance
with concentration was found to beAi = 0.0745[Cd]−
0.0019 (r2 = 0.9998). Inclusion of an additionalX–Y pair
already deteriorated the adequacy of the linear model (r2 =
0.9967). Such a short LDR entails that samples with concen-
trations higher than the upper limit would require dilution,
with all the disadvantages already mentioned. An alterna-
tive could be to extend the working range by modeling the
entire (non-linear) calibration curve with ANNs.

5.2. Modeling the calibration curve by artificial neural
networks

Vander Heyden et al.[24] developed a Kohonen neural
network approach for diagnosing the adequacy of the cali-
bration curves in AAS. Such an approach would determine
whether a calibration graph contains outliers, may give rise
to imprecision in the determinations, or deviates from lin-
earity. In our case, we decided to evaluate another kind of
ANNs, viz. feed-forward ANNs trained with the general-
ized delta rule, for modeling the non-linear calibration and
increasing the working range for the determination of cad-
mium by GFAAS.

Fig. 3. Training (�) and validation (�) mean square error for the (1:2:1) neural network.

Several ANNs were evaluated for modeling the calibra-
tion curve depicted inFig. 2. Variables to be optimized
were the number neurons in the hidden layer and the train-
ing/validation cycles. The initial criterion for selection of the
most adequate ANN was the achievement of the minimum
MSE in a relatively small number of cycles.

Fig. 3shows the trend in the training and validation MSEs
for a (1:2:1) ANN. Only such values are presented for sake
of simplicity, since increasing the number of hidden nodes
did not yield a better performance. Also, using more com-
plex networks would have unnecessarily complicated the
data processing step, and were not further considered. The
training MSE reached a quasi-plateau after ca. 4× 104 cy-
cles, whereas the validation one did so after 8× 104 cycles.
No significant variation in the MSE was observed beyond
105 cycles, and thus training/validation was stopped at this
point. The training/validation time took only 15–27 s in a
Pentium III processor; therefore, the development of the net-
works in this case was a relatively rapid process.

While a reduction of the MSE is an important aspect to
be considered for selecting the most adequate topology, it is
as relevant evaluating the generalization capacity with data
not used during the training process. On this sense, a group
of integrated absorbance data from the calibration set was
input to the selected ANN, and the corresponding concen-
trations were estimated. A linear regression model of pre-
dicted versus expected cadmium concentrations was devel-
oped. The regression equation for the (1:2:1) network was
[Cd]Pred= 1.002[Cd]Real+0.056 (r2 = 0.999). A statistical
test, Student’st-test showed that the intercept and the slope
of such equations did not differ significantly (P = 0.05)
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Table 2
Determination of Cd in “trace metals in drinking water” certified reference material by GFAAS using different calibration approaches

Concentration (�g l−1) Methoda

Dilution Second-order polynomial ANN (1:2:1)

2.0 2.09± 0.03 (1.4) 2.10± 0.03 (1.4) 2.03± 0.03 (1.4)
4.0 4.00± 0.04 (1.0) 4.19± 0.04 (1.0) 4.08± 0.04 (1.1)
8.0 – 8.05± 0.11 (1.4) 7.90± 0.12(1.5)

12.0 – 12.35± 0.08∗ (0.6) 12.30± 0.08 (0.6)

a Values correspond to the average± standard deviation (N = 5). Relative standard deviation (%R.S.D.) is given in parenthesis.
∗ Significant differences (P = 0.05).

from 0 and 1, respectively[34], indicating the adequacy of
the model in a first approximation. The RMSPDs (Eq. (4))
was also estimated in order to assess the goodness-of-fit of
the model generated by such a network. The low RMSPD
(4.3%) is a clear indication of the capability of the neu-
ral network for modeling the calibration curve in the entire
range of study.

5.3. Determination of Cd by GFAAS in a certified
reference material

As the concentration of the analyte (12.0�g l−1) in the
reference material is clearly outside the linear range, a dilu-
tion of such a solution would have been certainly considered
the first approach for the determination of cadmium. The
results obtained in such a way are presented inTable 2.
A statistical evaluation of Student’st-test [34] revealed no
significant differences (P = 0.05) between the expected
and estimated concentrations. Again, this method presents
certain disadvantages, and alternative methods should be
sought in order to overcome them.

A polynomial fitting of a non-linear curve is a relatively
fast and simple method that can be easily implemented by
any dedicated computer program. According to L’vov et al.
[10], these methods should not be considered for calibra-
tion purposes, since the coefficients adjusting the polyno-
mial lack physical meaning. Even though this observation
(coefficients’ lack of meaning) is clearly accurate, we esti-
mate that an adequate fitting, as well as the ease and speed
of such a method should make of this an interesting calibra-
tion alternative.

The determination of cadmium in the reference material
was carried out using the second-order polynomial fit dis-
cussed inSection 5.1(seeTable 2). The statistical analysis
indicates no significant differences (P = 0.05) for all but the
highest concentration. Attempts to increase the accuracy of
the determination at such a level, for instance by modeling
solely the non-linear portion of the curve (5.0–22.0�g l−1),
did not render better results. Therefore, and in spite of the
apparently goodness-of-fit of the second-order polynomial
(high r′2), this method was found partially inadequate for
the case of study. Other authors have long reported on prob-
lems associated with the accuracy of the determinations
in the non-linear portion of the calibration curves[4], yet
second-order polynomials have still been successfully used

[35]. Finally, the determination of cadmium in the reference
material was conducted by means of the model generated
by the ANN. Contrarily to the previous case, no statistical
differences (P = 0.05) were found between the expected
concentrations and those obtained by the proposed method
at all levels (seeTable 2).

The results presented here indicate that the working cali-
bration range can be extended by means of an ANN, without
sacrificing either accuracy or precision. For the specific case
of cadmium, a nearly six fold increase could be achieved.
The high sensitivity of the measurements is still preserved
at the linear portion of the calibration graphs. The latter
permits the determination of cadmium at both low (linear
portion) and moderately-high (non-linear portion) concen-
trations with the same calibration curve. This is not possi-
ble with some methods which resort to decreasing the sen-
sitivity of the measurements for increasing the LDR, thus
allowing only the determination of elements at high concen-
trations[8,9]. Another advantage of modeling by ANNs is,
in general, the fact that no a priori knowledge of the sys-
tem is required (“soft” modeling), as it is when modeling
by conventional mathematical methods (“hard” modeling).

It is important to highlight that, just like the coefficients
of the second-order polynomial, the neuron’s weights do
not have any physical meaning. Furthermore, while an ANN
can model almost any system, it is not possible to translate
such a model into a mathematical expression, particularly
for large networks. This is in fact one of the major criti-
cisms to ANNs, i.e. their “black box” character. However,
we reiterate that such models could be used for practical
purposes, e.g. for routine analysis, as long as they provide
results that could be proved to be accurate, while having an
acceptable degree of precision. Modeling calibration curves
by means of ANNs could be an alternative in multielemen-
tal (simultaneous) GFAAS, wherein selection of the dilution
factor for the determination of various analytes in a single
sample is more critical than in other multielemental tech-
niques, e.g. ICP–OES, TXRFS, etc. due to the intrinsically
shorter linear range.

6. Conclusions

An ANN was successfully used for modeling the calibra-
tion graph and increasing the working range for cadmium in
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GFAAS. An interesting aspect is that, contrary to some in-
strumental methods hitherto developed, the ANN approach
allows retaining the high sensitivity of the measurements at
the linear portion of the curve. This aspect may be of impor-
tance in those cases where the analyte concentration varies
in such a way that high sensitivity is still required for some
samples, yet dilution may be needed for some others. Mod-
eling by ANNs may represent an alternative in multielemen-
tal (simultaneous) GFAAS, as a means of coping with the
shorter linear range of the technique and the compromise
dilution conditions required for multielemental analysis in a
single sample.
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