
Locating techniques for mobile objects January - 2002

Andrés Arcia – Leandro León

Mérida, january 2002.

University of Los Andes
Engineering School

Center of Distributed Systems and Microelectronics (CEMISID)

amoret@ula.ve - lrleon@ula.ve

Techniques for Locating
Mobile Objects

Locating techniques for mobile objects January - 2002

•  Consecuences:
• Invalid references.

• Invocation failure.

• Invalid references
should be somehow
updated.

Object migration

? Site 1 Site 2

Locating techniques for mobile objects January - 2002

•  Broadcasting is the simplest solution for
updating invalid references.
–  Broadcast the new address, then migrate.
–  Broadcast for the address
 before doing an invocation.

Introduction

Locating techniques for mobile objects January - 2002

Test and update

A test for every reference is done just before an invocation, so that a client
can check whether the server remains in the same place. This method has
been used by Emerald, SOS, Amber.

Problems:
•  All invocations do the test.

•  It works well for low scale systems.

? Site 1 Site 2

Locating techniques for mobile objects January - 2002

Forward addressing
A link is left in the migration source site and it points to the migration target
site. This method is widely used by the following systems: Emerald, Guide
2, Demos/MP, Galaxy, DC++.

Problems:
•  Garbage collection.

•  It has to be a part of the migration protocol.

? Site 1 Site 2 Site 3

Locating techniques for mobile objects January - 2002

•  Fail tolerance
– Hard to detect failures.
– Difficulty for solving a failure recovering.

•  Performance
– Garbage collection.
– The higher the scale the lower the performance

(more memory, cpu and messages).

General problems

Locating techniques for mobile objects January - 2002

•  Versatility: The system is parametric and allows to
choose among different techniques.

•  Portability: It is widely portable among different
platforms and o.s.

•  It is IP-based.
•  It has been programmed in standard C++.
•  It is POSIX compliant.

•  Distribution: It is completely distributed.
•  Fail tolerant:

•  It has been proposed a fail-recovery protocol.
•  It has redundant techniques for locating objects.

Objectives

Locating techniques for mobile objects January - 2002

General service architecture

• A locator kernel per site

• A run-time library per process.

• Centralized interface, but
distributed and cooperative
service

Locating techniques for mobile objects January - 2002

General service architecture

•  Locator guidelines:
–  It knows the location of

every object and process.
–  It keeps the necessary

information for distributed
location.

–  It manages local and
distributed object location.

–  It can intercept incoming
and outgoing invocations.

–  It cooperates with the fail-
recovering protocol.

•  Runtime-locator
guidelines:
–  It keeps information of all

objects and its methods
–  It checks and dispatches

incoming invocations
–  It manages object

migration.
–  It cooperates with the fail-

recovering protocol.

Locating techniques for mobile objects January - 2002

Location techniques

•  Caching
•  Prefetching
•  Piggybacking in inter-locator messages
•  Broadcasting by stages.

Locating techniques for mobile objects January - 2002

The searching process take place once an invocation has failed.
The failure can be known through one of these three events:

•  The object was not found
•  There exist a more recent reference
•  The object has been deleted

Reference update by invocation failure

Locating techniques for mobile objects January - 2002

 The caching consist of saving recent object locations.
Those locations are obtained through searching or gotten
from update messages.

•  Types of caches:
• Input: It keeps information about invokers from other places.

• Output: It keeps information about the objects being invoked.

• Migration: It keeps information about object migration.

• New references: It keeps information about unused references.

• Deletions: It keeps deleted objects.

Caching

Locating techniques for mobile objects January - 2002

•  Input cache: A record for this cache is of the form <O,so,t>. O is the
object ID, so is the source site of the reference, and t is a logical
timestamp.

•  Output cache: A record of this cache is of the form <O,sd,t>. O y t are
the same as those described in the input cache. sd is the site where O is.

Input / output cache

Locating techniques for mobile objects January - 2002

Cache updating

The good performance of caching is reached through:

•  Updated caches: migrations have to be cached, and kept
as updated as possible.

• Prefetching: it is done through inter-locator messages.

• Recent information is handed through piggybacked
messages.

Locating techniques for mobile objects January - 2002

 This technique is used for going ahead of invocation
failure. So, through the use of prefetching, it is possible
to update a reference before it fails.

Prefetching I

Types of prefetching:

–  Prefetching from the source site of the migration.
–  Prefetching from the target site of the migration.
–  Prefetching with the output cache.

Locating techniques for mobile objects January - 2002

•  Prefetching from the source site of the migration:
–  With the input cache: Look for the records of the migrating objects and notify the

new address to the source sites.
–  With the migration cache: If an invocation to a migrated object arrives, it should be

answered the address being kept is this cache.

Prefetching II

Locating techniques for mobile objects January - 2002

Prefetching III

•  Prefetching with the output cache:
-  It consist of periodicaly check the
validity of the references. If a reference
is found to be invalid, actions for
updating can be started before time.
- New references are transparently used
from this cache.

•  Prefetching from the target site of the migration:
–  With the input cache: The records with the migrating object have to be

copied to the target-site input cache. So the prefetching with the input
cache can be applied again.

–  With the output cache: Check the references in the output cache and
convert them to local references if necessary.

Locating techniques for mobile objects January - 2002

Given a inter-locator message (invocation, update message,
etc):

•  Additional messages can be added.
•  MTU size can be completed with some of those messages.

Header:
Target address,
Object,
Method.

Invocation Msgs. piggybacking

Invocation message

Piggybacking

Locating techniques for mobile objects January - 2002

The invocation system I

Locating techniques for mobile objects January - 2002

1.  Invocation system call to the locator.

2.  Passing of a network message to the IPC
system.

3.  Reliable sending of the IPC request.

...

8.  Reliable sending of the IPC reply for the
request of step 3.

9.  Reply handing to the locator system by IPC.

10.  Upcall that unblocks the waiting process.

The invocation system: client side

Locating techniques for mobile objects January - 2002

3.  Reliable sending of the request by the
IPC system.

4.  Pass of the invocation request
message from the IPC to the locator.

5.  Upcall that unblocks the waiting
server process that contains the
requiered object.

6.  The invoked object does a reply.

7.  Pass of the invocation reply message
from the locator to the IPC system.

8.  Reliable sending of a reply by the
IPC system.

The invocation system: server side

Locating techniques for mobile objects January - 2002

1.  Object deletion: This message is used when an object
has been deleted.

2.  Object finding: This message indicates that an object
is being sought or a stale reference has to be updated.

3.  More recent reference announce: This message
propagates an updated reference. It could be used
when a new object appears or when an object
migrates.

Piggybacking messages

Locating techniques for mobile objects January - 2002

Piggyback messages spend resources (memory, cpu, network,
etc.)

⇒  Number of piggybacks messages has to be limited
⇒  piggybacks messages propagation has to be limited
Techniques:
•  Priorities
•  Site graph, frequency graph
•  Logical timestamps
•  Physical time
•  Limit in the number of messages

Piggybacking traffic control

Locating techniques for mobile objects January - 2002

There are two kinds of broadcasting:
– Unreliable broadcasting: low cost.
– Reliable broadcasting: high cost.

Broadcasting by stages

Locating techniques for mobile objects January - 2002

•  Weak broadcasting (unreliable)
1.  Make a weak broadcasting asking for the object’s owner.
2.  If the owner has not been found, then make a weak broadcasting

asking for the information in caches.

•  Strong broadcasting (reliable)
1.  Make a strong broadcasting asking for the object’s owner.
2.  If the owner has not been found, make a broadcasting ordering

to start the inconsistency-recovery protocol.
3.  If yet the object has not been found, then the object is taken as if

it were deleted.

Broadcasting protocol

Locating techniques for mobile objects January - 2002

Location system interface
–  It is composed by a set of functions that we are going to call locator

system calls. This interface offers a centralized view of the system.
–  Locator system calls are made from clients.
–  The locator clients have to link a run-time library.
–  It is used C++ exception system.

Locating techniques for mobile objects January - 2002

–  Process registering calls
void register_prc(Process_Id &)
 throw(Duplicated)

void unregister_prc(const Process_Id &)
 throw(NotFound, RefusedService)

–  Objects registering calls
void register_obj(Object_Id &, const Process_Id &)
 throw(Duplicated, NotFound)

void unregister_obj(const Object_Id &)
 throw(NotFound)

Register calls

Locating techniques for mobile objects January - 2002

Message_Id multi_receive(Binding & binding,
 const Process_Id & receiving_process_id,
 void * data,
 size_t & data_size,
 Reception_Type & message_type)

throw (NotFound, ObjectDead, RecentBinding)

Message_Id clt_invoke_send(Binding &, const void *, const size_t)
throw (ObjectDead)

void srv_invoke_reply(const Message_Id &, const Binding &,
 const Process_Id &, const void *, const size_t)

throw ()

Invocation calls

Locating techniques for mobile objects January - 2002

Invocation calls II

Locating techniques for mobile objects January - 2002

–  Object migration calls
void src_unreg_mig_obj(const Object_Id &, const Site_Id &)

 throw(NotFound, ObjectBusy)

 void tgt_reg_mig_obj(const Object_Id &, const Process_Id &,
 const Logical_Timestamp)

 throw(NotFound, Duplicated)

–  Process migration calls
 void src_unreg_mig_prc(const Process_Id &, const Site_Id &)
 throw(NotFound)

 void tgt_reg_mig_prc(const Process_Id &)
 throw(Duplicated)

Migration calls

Locating techniques for mobile objects January - 2002

 Locator strong_locate(const Object_Id &)
 throw (ObjectDead)

 Locator weak_locate(const Object_Id &)
 throw (NotFound, ObjectDead)

 void implicit_locate(const Binding &)
 throw ()

 void test_location(Locator &)
 throw (NotFound, ObjectDead)

 void ping(int number_of_entries, const Cache_Update_Policy policy)
 throw (NotFound)

Location calls

Locating techniques for mobile objects January - 2002

An example: a server code.
include "locator_calls.H"

// usage: server <number of iterations> <number of objects>

define RECEPTION_BUFFER_SIZE 4096

int main(int argc, char ** argv)

{

 bootstrap_services();

 ...

 Site_Id this_site(INVALID_SITE_ID);

 get_site_id(this_site);

 Object_Id this_object;

 Process_Id this_process;

 // REGISTRATION STAGE

 register_prc(this_process);

 register_obj(this_object, this_process);

 // BINDING FOR INVOCATIONS

 Binding binding;

 Message_Id msg_id;

 Reception_Type reception_type;

 size_t reception_size;

Locating techniques for mobile objects January - 2002

for (int services = -1;

 (services < n_times - 1) || (n_times == -1);

 n_times==-1 ? n_times = -1 : services++)

 {

 reception_size = RECEPTION_BUFFER_SIZE;

 msg_id = multi_receive(binding, this_process,
 reception_buffer, reception_size,
 reception_type);

 // processing of the invocation

 srv_invoke_reply(msg_id, binding, this_process,

 reception_buffer, reception_size);

 }

 unregister_prc(this_process);

return 0;

}

An example: a server code.

Locating techniques for mobile objects January - 2002

Locator architecture

Locating techniques for mobile objects January - 2002

Inter-locator messages

 The inter-locator messages announce events between locators.
Those events could be invocations, location actions, etc.

The network messages:
–  Invocation request
–  Invocation reply
–  Search for object
–  Reference anounce
–  Deletion anounce
–  Ping for output cache
–  Ping answer
–  Input cache sending

Locating techniques for mobile objects January - 2002

Performance

•  The experiments are simple, low scaled, and do not
represent a real OO distribuited application.

•  This is a first approach to an evaluation of the system.
•  5 sites, 2 process per site, 5 objects per process and 5

references per process. It summarizes 50 objects and 50
references for the whole system.

•  Invocations occurred with probability p.
•  Migrations occurred with probability q, where p+q=1.

Locating techniques for mobile objects January - 2002

p q Success Techniques
0.9 0.1 99.2% Caching, Prefetching

0.7 0.3 94.38% Caching, Prefetching

0.7 0.3 97.3% Caching, Prefetching, Piggybacking


Performance

Locating techniques for mobile objects January - 2002

Conclusions

•  Location and invocations of mobile objects can be done
through a simple interface.

•  The code is POSIX compliant and it is programmed is
standard C++. So the system is portable between different
Unix versions.

•  The system is scalable. This is an inherited property from
the system architecture and the techniques for updating
reference.

•  The system has been programmed with a high degree of
cohesion and low coupling. So, this means that the system
can be enhanced and modifed more easily.

Locating techniques for mobile objects January - 2002

•  Forward addressing in transport layer
•  Fast objects capture
•  Analitical and simulation models for cache

updating.
•  Higher scale experiments

Future perspectives

Locating techniques for mobile objects January - 2002

Thank you.

